Рабочий тормозной. Назначение и типы тормозных систем автомобиля

Тормозная система - один из основных механизмов функционирования автомобиля. Она предназначена для остановки транспортного средства и снижения его скорости. Также, она позволяет оставлять транспортное средство в безопасном состоянии покоя, не позволять ему самопроизвольное движение в не рабочее время.

Тормозная система состоит из множества механических элементов, которые выполняют свою особую функцию и роль в успешной работе всей системы. Рабочий тормозной цилиндр - один из важнейших элементов работы всей тормозной системы.

Таким образом, рабочий тормозной цилиндр - это самобытный механизм тормозной системы, который преобразует давление жидкости в определенную механическую силу, которая, в свою очередь, воздействует на тормозные колодки. Отличается от главного тормозного цилиндра тем, что воздействует непосредственно на тормозные колодки барабанного типа. Помимо вышесказанного определения, рабочий тормозной цилиндр - это тормозной поршень, который оказывает свое воздействие на тормозные колодки дискового типа.

Рабочая тормозная система, непосредственной частью которой является рабочий цилиндр, используется всегда и при любой скорости автомобиля для снижения скорости или остановки автомобиля. Задействуется в эксплуатацию рабочая тормозная система с нажатием водителя на педаль тормоза. Является самой эффективной из всех видов тормозных систем.

1. Рабочий тормозной цилиндр – роль в тормозной системе.

В момент торможения водитель непосредственно воздействует на тормозную педаль. Это нажатие, в свою очередь, с помощью специального штока передается на поршень главного цилиндра. Сам этот поршень воздействует уже на тормозную жидкость, вследствие чего, она задействует рабочие цилиндры. Из рабочих цилиндров, при этом, выдвигаются специальные поршни, которые прижимают тормозные колодки уже к дискам или барабанам. Дисковые колодки или барабанные у тормозной системы - это зависит непосредственно от вида этой тормозной системы.

Любой недостаток в тормозной системе может значительно снизить эффективность процесса торможения. Это, в свою очередь, приводит к нежелательным последствиям для всех автомобилей и водителей, принимающих участие в движении. Существует один элемент, который в большинстве случаев стает причиной неисправности рабочего цилиндра и, вследствие, полного или частичного прекращения всей тормозной системы. Таким элементом является тормозная жидкость. Помимо этого, множество различных неполадок могут вызывать низкокачественные и дешевые детали. Узнать, что автомобилю необходим ремонт рабочего тормозного цилиндра, вплоть до его тотальной замены, могут указать такие признаки:

1. Когда автомобиль тормозит, его последующее движение будет не прямолинейным;

2. Снижение уровня тормозной жидкости в бачка. Узнать об этом изъяне может помочь специальный индикатор, который расположен на панели приборов в автомобиле;

3. Если нужно увеличивать свое усилие для нажатия на педаль тормоза при необходимости остановиться.

Существуют проблемы, которые связаны с деталями, которые непосредственно работают вместе с рабочим цилиндром. Если автомобиль при торможении «заносит», а его движение не прямолинейно, то проблема заключается в заедании поршня. Эта поломка возникает по несколькими причинами: некачественной жидкости, изношенной детали или ее поломкой.

2. Конструкция рабочего тормозного цилиндра.

Рабочий тормозной цилиндр являет собою поршень, уходящий в просверленном отверстии в суппорте. Сам поршень задействует свое давление на тормозную колодку, за счет тормозной жидкости. Также, для более качественного уплотнения используется кольцо из резины, которое вставлено в углубление, располагающееся в стенке суппорта (поршня). Поршень чаще всего в виде стакана и полый. Довольно распространенным явлением есть хромовое покрытие поршня для защиты его от коррозии. Чтобы обезопасить от попадания пыли и грязи в рабочий тормозной цилиндр используется пыльник, который, одной стороной фиксируется на поршне, а другой – на суппорте. Пыльник изготовлен из жаропрочной резины.

Рабочие цилиндры разного диаметра принято использовать в многопоршневых суппортах – от 6 и больше. Такого типа рабочие тормозные цилиндры увеличиваются к задней части суппорта/поршня. Таким образом, задняя часть колодки значительно сильнее прижимается. Это, в свою очередь, позволяет добиться более равномерного и одинакового износа колодки, так как намного эффективнее распределяет тепло. Помимо этого при торможении автомобиля тормозная колодка стачивается, вследствие чего образуется пыль. Эта пыль накапливается к задней части колодки.

3. Виды рабочих тормозных цилиндров.

Рабочий тормозной цилиндр делится на два вида, которые, в свою очередь непосредственно зависят от типа всей тормозной системы. Так, в автомобильной природе выделяют такие виды рабочих тормозных цилиндров: первый тип рабочего цилиндра – это устройство, воздействующее на тормозные колодки барабанного типа, то есть – барабанный цилиндр; вторым типом рабочего тормозного цилиндра является тормозной поршень, который оказывает свое воздействие на тормозные дисковые колодки, соответственно, этот тип рабочего тормозного цилиндра носит название дискового типа.

Сам тип такого рода цилиндров определяется целиком и полностью тормозной системой, дисковой ил барабанной. В зависимости от производителя, марки и модели рабочего тормозного цилиндра существует множество его разновидностей, которые отличаются как по своей сути, так и по сроку действия, типу и марке автомобиля и тормозной системы. Это объясняется тем, что не все рабочие тормозные цилиндры подходят под все тормозные системы барабанного типа и дискового, так как развитие автомобильных технология принесло много новшеств и изменений в конструкции и способности тормозной системы, как неотъемлемой части всей работы единого автомобильного механизма.

Помимо данной классификации существует и другая, иная классификация, которая в большей степени относится к автомобилям отечественного производителя. Чтобы идентифицировать и определить какой именно тип рабочего тормозного цилиндра используется, в большинстве случаев достаточно будет посмотреть в инструкцию по эксплуатации автомобиля, где должно быть подробно описана и указана каждая деталь автомобиля.

Если же таковой инструкции нет, или же она есть, но в ней не указана модель и тип тормозного цилиндра, необходимо собственноручно осмотреть рабочий тормозной цилиндр. Таким образом, существуют такие типы рабочих тормозных цилиндров, основное отличие которых заключается в разном внутреннем диаметре: одноконтурный тип рабочего тормозного цилиндра, двухконтурный и трехконтурный. Так, диаметр одноконтурного составляет – 25 мм , двухконтурного – 22 мм , а трехконтурного – 19 мм. Как видно, диаметр уменьшается с добавлением одного контура на 3 мм.

Таким образом, рабочий тормозной цилиндр – один из основных механизмов функционирования всей тормозной системы автомобиля. Исполняя свою главную задачу, которая состоит в преобразовании давления жидкости в силу воздействия на тормозные колодки, он является полностью самобытным и необходимым элементом единого звена функционирования всей тормозной системы автомобиля.

Легкового автомобиля. Также вы узнаете о том, как произвести прокачку системы правильно. Будут рассмотрены конструкции с антиблокировочной системой. На данный момент без них не обходится ни один качественный автомобиль. Речь, конечно, о машинах средней ценовой категории и выше. Бюджетные автомобили могут комплектоваться данной конструкцией, но она идет как дополнительная опция. В целом же тормозные системы всех машин одинаковы, они состоят из идентичных элементов.

Немного теории о тормозной системе

Как вы понимаете, она необходима для того, чтобы изменить скорость машины. Сигналом к этому может служить либо действие водителя, либо электронная система управления. Также оно необходимо, чтобы удерживать машину неподвижно во время стоянки.

Выделяют три типа тормозных систем. Первая - это, конечно же, рабочая. Она необходима для нормальной эксплуатации машины. С ее помощью осуществляется торможение с больших или малых скоростей. О том, какие особенности имеет тормозная система "Нива-2121", схема которой является классической, будет рассмотрено ниже.

Второй тип - это стояночная. Она больше известна как ручной тормоз, если нужно машину поставить на длительный срок. В частности, если имеется уклон дорожной поверхности, эта система просто необходима. Ручником можно пользоваться во время экстренной остановки. А есть еще системы запасного типа. Они сравнительно недавно начали использоваться на автомобилях. Чаще всего их можно встретить на тех машинах, на которых имеется электрический ручной тормоз. Главное ее назначение - дать возможность водителю остановить автомобиль, если откажет рабочая система. Монтируется она на машины с электрическим ручным тормозом по одной причине: стояночный тормоз не может быть выжат, если скорость автомобиля больше нуля.

Принцип функционирования

Мы привыкли, что при нажатии на педаль тормоза автомобиль начинает замедляться. Но не все вдаются в подробности того, какие процессы при этом протекают. Не каждый знает, как работает тормозная система ВАЗ-2109, схема которой приведена в данной статье. Если проще сказать, то остановка автомобиля происходит только за счет сжатия жидкости в трубках и шлангах. Давление создается с помощью главного тормозного цилиндра, он является основным узлом системы.

Все привыкли видеть гидравлические тормоза, но имеются конструкции, в которых используется не давление жидкости, а сжатый воздух. Они идентичны с гидравлическими, только надежность у них оказывается намного выше. Элементы, используемые в пневматических тормозах, должны выдерживать очень большое давление. Правда, оно сопоставимо с тем, которое находится в гидравлическом приводе. Необходимо только внедрять ресивер для хранения сжатого воздуха. Существуют также электромеханические тормоза. Они приводятся в движение электродвигателями и специальными тросами.

Рабочая тормозная система

Тормозные рабочие механизмы размещают в колесах автомобиля, поэтому их называют колесными. Различают механический, гидравлический и пневматический привод тормозных механизмов.

В устройстве гидравлического привода используют свойств а жидкостей (закон Паскаля)

Рис. Схема гидравлического тормозного привода А – расположение, Б – соединение, В – действие тормозов. 1 – главный тормозной цилиндр, 2 – трубопроводы, 3 – тормозные цилиндры колес, 4 – тормозная педаль, 5 – присоединение шлангов, 6 – корпус главного тормозного цилиндра, 7 – гибкие шланги, 8 – бачок для тормозной жидкости, 9 – колодка, 10 – тормозной барабан.

Гидравлический привод состоит из главного тормозного цилиндра 1с резервуаром для тормозной жидкости, соединенного трубопроводами 2 с тормозными цилиндрами 3 колес, шланги, гидровакуумного усилителя.

Вся система заполняется специальной тормозной жидкостью, не разъедающей резиновые детали автомобиля.

Жидкость в гидравлической системе тормозов подается от головного цилиндра 1 к цилиндрам 3 колес по металлическим трубкам 2 и специальным шлангам из прорезиненной ткани 7, выдерживающим высокие давления и действие масел. Такая конструкция позволяет управлять тормозами, несмотря на колебания мостов и колес.

Главный тормозной цилиндр .

Главный тормозной цилиндр соединяется с колесными цилиндрами при помощи системы трубопроводов, состоящей из металлических трубок, тройников, штуцеров и гибких шлангов из прорезиненной ткани.

Рис. Главный тормозной цилиндр автомобиля ГАЗ 1 – крышка, 2 – пополнительный бачок, 3 – питающий штуцер, 4 и 17 – корпусы, 5 – защитный колпачок, 6 – толкатель, 7 и 15 – поршни, 8 – упорный болт, 9 – уплотнительное кольцо головки, 10 – манжета, 11, 16 – головки поршня, 12 – упорный стержень, 13 – возвратная пружина, 14 – упор первичного поршня, 18 – упор вторичного поршня, 19 – клапан избыточного давления, А – штуцер выхода жидкости в контур тормозного привода задних колес, Б – штуцер выхода жидкости в контур тормозного привода передних колес, I и II – полости цилиндра.

Главный тормозной цилиндр создает давление в двух независимых гидравлических контурах тормозного привода, поршнем 7 в приводе задних колес, а поршнем 15 в приводе передних колес. Если один из контуров разгерметизируется и перестанет затормаживать связанные с ним колеса, другой будет продолжать работать. При этом у водителя сохранится возможность остановить транспортное средство, правда с меньшей эффективностью.

Поршни размещены в цилиндрах 4 и 17, корпуса которых соединены питающими штуцерами 3 с пополнительным бачком, а выходными штуцерами А и Б – с контурами тормозного привода соответственно задних и передних колес.

Роль перепускного клапана исполняют плавающие головки 11 , установленные на поршнях. В расторможенном положении между головкой и поршнем под действием возвратных пружин устанавливается зазор. Полости I и II цилиндра сообщаются с бачком 2. При нажатии педали тормоза, я поршень тормозного привода задних колес перемещается, а затем при помощи упорного стержня 12 перемещается поршень привода передних колес и нагнетается тормозная жидкость через клапан 19 в рабочие тормозные цилиндры колес. Под действием пружин головки 11 поршней прижимаются к их торцу, рассоединяя полости I и II с бачком и в тормозном приводе создается давление. С помощью клапанов 19 в тормозной системе поддерживается избыточное давление тормозной жидкости 40 – 80 кПа. После прекращения нажатия педали поршень возвращается в исходное положение пружиной 13.

Под капотом автомобиля расположен запасной бачок 2, изготовленный из прозрачного материала, что позволяет контролировать уровень жидкости в нем. Пополнительный бачок служит для питания тормозной системы. Цилиндр и бачок соединены отверстиями, через которые жидкость перетекает из бачка в цилиндр и обратно.

Уровень жидкости должен всегда находится на расстоянии 15 – 20 мм от кромки заливного отверстия.

Бачок имеет три изолированные секции, одна из которых питает систему привода сцепления, а две другие – систему раздельного привода тормозов.

На автомобилях установлен двухконтурный тормозной привод с раздельным торможением передних и задних колес, имеющий в каждом контуре гидровакуумный усилитель и вакуумный баллон с запорным клапаном, которые обеспечивают независимое питание каждого контура. Гидровакуумный усилитель служит для снижения усилия водителя, нажимающего на педаль тормоза, используя вакуум, возникающий во всасывающем трубопроводе двигателя.

Гидровакуумный усилитель состоит из корпуса (силовой камеры), гидравлического цилиндра 9 и клапана управления. В корпусе силовой камеры установлена диафрагма с упорной тарелкой, пружина и толкатель. Толкатель одним концом соединен с тарелкой диафрагмы, а с другой с поршнем цилиндра усилителя, в котором установлен шариковый клапан. Силовая камера разделена подвижной диафрагмой на две части, соединенные между собой хомутиками.

Одна часть связана с атмосферой, а другая с выпускным коллектором двигателя. Гидровакуумный усилитель работает следующим образом, когда педаль тормоза отпущена, воздушный клапан управления закрыт, а вакуумный открыт, и через него обе полости камеры сообщаются между собой.

При нажатии на педаль тормоза 1, водитель принудительно перемещает диафрагму, шариковый клапан поршня 10 усилителя открывается, и жидкость из главного тормозного цилиндра поступает к колесным тормозам, приводя их в действие и создавая дополнительную силу на штоке главного тормозного цилиндра, действующую в том же направлении куда перемещает шток нога водителя. В результате для достижения необходимой эффективности торможения нажимать на педаль тормоза можно с меньшим усилием.

Вакуумный усилитель рабочей тормозной системы действует только при работающем двигателе. Это необходимо учитывать при движении транспортного средства с неработающим двигателем (например, при буксировке неисправного транспортного средства). В последнем случае, чтобы снизить скорость или остановить автомобиль, на педаль тормоза придется нажимать с большим усилием, чем на транспортном средстве с работающим усилителем.

Тормозная система с пневмоприводом . Работа пневматической системы тормозов: в компрессоре создается запас воздуха под давлением, который хранится в воздушных баллонах. При нажатии на педаль тормоза воздействует на тормозной кран, который создает давление в тормозных камерах, которые приводят в действие через рычаг тормозной механизм, который и производит торможение и при отпуске педали прекращается торможение.

Пневмопривод применяют на автомобилях большой грузоподъемности. Он позволяет получать достаточно большие силы в тормозных механизмах при небольших силах, прикладываемых водителем к тормозной педали.

Рис. Схема пневматического привода тормозов автомобиля ЗИЛ. 1 – компрессор, 2 – манометр, 3 – воздушные баллоны, 4 – задние тормозные камеры, 5 – соединительная головка, 6 – разобщительный кран, 7 – соединительный шланг, 8 – тормозной кран, 9 – передние тормозные камеры.

В пневматический привод автомобиля входят компрессор 1, нагнетающий сжатый воздух в баллоны(ресиверы)3, тормозные камеры 4 и 9, тормозной кран 8, связанный с тягой тормозной педалью и соединительная головка 5 с разобщительным краном 6, позволяющая соединять тормозную систему прицепа к системе пневматического привода тормозов автомобиля – тягача.

Вал компрессора приводится во вращение от коленчатого вала двигателя ременной передачей. Создаваемое компрессором давление автоматически ограничивается регулятором давления. Величину давления контролируют манометром.

При нажатии на педаль тормоза, тормозной кран сообщает тормозные камеры всех колес с ресиверами. Тормозная камера приводит в действие тормозной механизм за счет энергии сжатого воздуха. Поступающий в каждую камеру сжатый воздух, который прогибает диафрагму к корпусу вместе с диском и перемещает шток.

Рис. Тормозная камера 1 – крышка корпуса, 2 – штуцер для подвода и отвода воздуха, 3 – диафрагма, 4 – корпус, 5 – шток, 6 – рычаг, 7 – червяк, 8 – фиксатор червяка, 9 – червячная шестерня, 10 – вал разжимного кулака тормозного механизма, 11 – пружины диафрагмы.

Шток повертывает рычаг 6, а вместе с ним и вал 10 разжимного кулака тормозного механизма колеса, прижимающего колодки к тормозному барабану. После отпускания педали тормоза колодки возвращаются в исходное положение, тормозной кран 8 разобщает с ресиверами тормозные камеры и соединяет их с атмосферой. Воздух из камер выходит, пружины 11 возвращают диафрагму в первоначальное положение и торможение прекращается. Вмонтированные в рычаг 6 червяк 7 и червячная шестерня 9 позволяют поворачивать вал 10 относительно рычага и этим регулировать зазор между колодками и барабаном тормозного механизма. Компрессор является источником сжатого воздуха, питающим все агрегаты пневматической системы. На грузовых автомобилях и автобусах применяют одноступенчатые двухцилиндровые компрессоры одностороннего действия . Компрессор нагнетает воздух в воздушные баллоны.

Рис. Схема компрессора. 1 – поршень, 2 – нагнетательный клапан, 3 – трубопровод подачи воздуха в воздушный баллон, 4 – впускной клапан, 5 – воздухопровод от воздушного фильтра, 6 – регулировочный колпак, 7 – шток, 8 – блок шариковых клапанов, 9 – трубопровод от воздушного баллона, 10 – разгрузочный канал, 11 – плунжер разгрузочного устройства, А – блок цилиндров, Б – регулятор давления, В – отверстие.

При ходе поршня вниз, в цилиндре компрессора создается вакуум, открывается впускной клапан и через воздушный фильтр двигателя поступает воздух. При ходе поршня вверх, впускной клапан закрывается, сжатый воздух через открытый нагнетательный клапан 2, поступает через трубопроводы в головку и воздушные баллоны.

Регулятор давления Б поддерживает заданное давление воздуха в пневмосистеме автоматически. Конструкция регулятора включает в себя корпус и блок из восьми шариковых клапанов. При давлении в системе ниже 0,6 МПа шариковые клапаны опущены и нижний шарик закрывает отверстие, сообщающееся с воздушными баллонами. Через наклонные каналы штуцера и отверстие В в разгрузочное устройство попадает воздух из атмосферы.

Шариковые клапана поднимаются, когда давление в системе достигнет 0,75МПа, верхний шарик закроет наклонные канал штуцера, перекрыв доступ воздуха из атмосферы, в разгрузочное устройство начинает поступать воздух из баллонов. Сжатый воздух выключает впускные клапаны компрессора из работы. Верхний клапан открывается при давлении в системе 0,75МПа, а нижний при давлении менее 0, 6 МПа.

Регулировочным колпаком 6 можно регулировать затяжку пружины и устанавливать давление, при котором компрессор будет выключаться.

Воздушные баллоны необходимы для хранения сжатого воздуха. На баллонах имеются кран для слива конденсата, и на правом баллоне кран отбора воздуха. Объема воздушных баллонов хватает до 10 торможений.

Чтобы исключить повышения давления в системе пневматических тормозов, при неисправном регуляторе давления, на воздушном баллоне установлен предохранительный клапан, который открывается если давление в системе превысит 0,95 МПа.

Рис. Масловлагоотделитель.

Масловлагоотделитель – устанавливается перед баллонами и предназначен для очистки сжатого воздуха, поступающего из компрессора от масла и влаги. Масло оказывает вредное действие на резиновые детали пневматической системы, а пары воды, конденсируясь в узлах системы при отрицательных температурах замерзают, что приводит к нарушению работы основных элементов пневматической системы автомобиля.

В корпусе 1 установлен обратный клапан 2, прижимаемый к гнезду пружиной 3. Сверху корпус закрыт пробкой 4. Для уплотнения корпуса и стакана 7 установлено резиновое кольцо 8 (уплотнение происходит при затяжке конусного наконечника стяжного стержня 6). Воздух из компрессора поступает в отверстие А, проходит через латунную сетку элемента 5, отделяясь от масла и влаги, поступает в отверстие стержня, и, отжимая обратный клапан, выходит в трубопровод, связанный с баллоном.

Оставшееся на сетке масло и влага стекают в стакан 7. Для выпуска конденсата в нижней части стакана устанавливают сливной краник.

Рис. Сливной кран

Сливные краны предназначены для периодического слива конденсата из всех баллонов и масловлагоотделителя. Выпуск конденсата осуществляется наклоном клапана 3 с помощью кольца 5. Пружина 2 прижимает клапан к седлу 4 в нормальном состоянии. С помощью штуцера 1 кран вворачивается в баллон.

Для повышения надежности работы пневматической системы и исключения замерзания конденсата применяют антифризный насос, который устанавливают между масловлагоотделителем и регулятором давления. Он служит для подачи в пневматическую систему порции морозостойкой жидкости, которая находится в специальном бачке.

Антифризный насос должен работать только в холодное время года. В теплое время его снимают. Он заполняется смесью этилового (300 см3) и изоамилового (2 см3) спиртов.

Разгрузочное устройство . Работает от регулятора давления и расположено в блоке цилиндров компрессора. Когда давление сжатого воздуха в системе достигает 0,75 МПа срабатывает регулятор давления Б. Поступление воздуха в систему тормозов прекращается, так как открываются впускные клапаны 4 обоих цилиндров под действием воздуха попадающего из баллона через трубопровод в разгрузочный канал и поднимают плунжеры, которые в свою очередь открывают клапаны.

При снижении давления происходит обратный процесс. Плунжеры опускаются и на клапаны перестает действовать разгрузочное устройство.

Сжатый воздух поступает в баллоны, до тех пор, пока давление в них не достигнет 0,75 МПа.

Блок цилиндров и головку блока во время работы охлаждают жидкостью, поступающей из системы охлаждения в водяную рубашку блока цилиндров компрессора. По маслопроводу поступает масло, которое смазывает трущиеся детали компрессора.

Тормозной кран . Тормозной кран предназначен для управления колесными тормозами автомобиля и прицепа. Тормозной кран служит для управления тормозами автомобиля в результате регулировки подачи сжатого воздуха из баллонов к тормозным камерам.

Рис. Тормозной кран автомобиля ЗИЛ

1 – корпус рычагов, 2 – двойной рычаг, 3 – болт, 4 – кулачок, 5 – тяга, 6 – нлаправляющая, 7 – шток секции торможения прицепа, 8 – диафрагма, 9 и 12 – седла клапанов, 10 – впускной клапан, 11 – выпускной клапан, 13 – включатель стоп-сигнала, 14 – диафрагма стоп-сигнала, 15 – шток секции торможения автомобиля, 16 – корпус тормозного крана.

Тормозной кран обеспечивает постоянное тормозное усилие при неизменном положении тормозной педали и быстром растормаживание при прекращении нажатия на педаль.

Корпус тормозного крана разделен на две секции – нижняя управляет тормозами автомобиля, а верхняя – тормозами прицепа. В каждой секции между крышкой и корпусом закреплена диафрагма из прорезиненной ткани с гнездом выпуклого клапана. Крышки секций снабжены двойными клапанами, расположенными на одном стрежне и имеющих общую пружину. В корпусе тормозного крана расположены два штока с пружинами 7 и 15.

К корпусу тормозного крана прикреплен корпус рычагов, в котором, в свою очередь, находятся двойной рычаг 2 и тяга 5. Двойной рычаг состоит из двух половин, соединенных между собой подвижной осью.

Если нажать на педаль тормоза, то тяга5 смешается влево, увлекая за собой верхний рычаг 2, перемещает шток 7 верхней секции влево. Когда верхний шток 7 упрется в ограничительный болт 3, нижний конец верхней половины рычага отводит нижнюю половину рычага вправо вместе со штоком нижней секции. Тормоза прицепа включаются несколько раньше, чем тормоза автомобиля, что исключает столкновение прицепа с автомобилем.

Рис. Схемы действия тормозов: а – при растормаживании, б – при торможении. 1 – компрессор, 2 – тормозной кран, 3 и 13 – выпускные клапаны, 4 и 5 – впускные клапаны, 6 – разобщающий кран, 7 – воздухораспределитель, 8 – воздушный баллон прицепа, 9 – тормозная камера колеса прицепа, 10 – воздушный баллон автомобиля, 11 – тормозная камера колеса автомобиля, 12 – пружина впускного клапана, 14 – тяга.

верхней секции открыт в расторможенном состоянии, и сжатый воздух из баллонов проходит в воздухораспределитель и заряжает баллон прицепа.

Выпускной клапан 3 открыт и сообщает тормозные камеры автомобиля с атмосферой, при закрытом впускном клапане 4.

При нажатии на педаль тормоза, тяга 14 перемещается влево вместе со штоком и верхним концом рычага 2, отводя за собой седло клапана 13. Под действием пружины 12 впускной клапан верхней секции закрывается, а выпускной открывается. Сжатый воздух из баллона прицепа поступает в тормозные камеры 9, а воздух из воздухораспределителя выходит в атмосферу. Колеса прицепа будут заторможены.

Торможение на стоянке осуществляется механизмом ручного привода тормозов прицепа, соединенного с центральным тормозом автомобиля.

Манометр позволяет проверять давление воздуха как в воздушных баллонах, так и в тормозных камерах системы пневматического привода. Для этого он имеет две стрелки и две шкалы. По нижней шкале проверяет давление в тормозных камерах, по верхней – в воздушных баллонах.

Воздушный фильтр предназначен для очистки воздуха, поступающего от компрессора в пневматическую систему от влаги и от масла. Он установлен на поперечной балке крепления воздушных баллонов. Из книги Занимательная анатомия роботов автора Мацкевич Вадим Викторович

Двоичная система счисления – идеальная система для ЭВМ Мы уже говорили о том. что в нервных сетях действуют законы двоичного счисления: О или 1, ДА или НЕТ. Какими особенностями отличается двоичная система? Почему именно её избрали для ЭВМ?Мы принимаем как должное счёт до

Из книги Процессы жизненного цикла программных средств автора Автор неизвестен

5.4.3 Эксплуатация система Данная работа состоит из следующей задачи:5.4.3.1 Система должна эксплуатироваться в установленной для нее эксплуатационной среде в соответствии с документацией

Из книги ОБЩИЕ ТРЕБОВАНИЯ К КОМПЕТЕНТНОСТИ ИСПЫТАТЕЛЬНЫХ И КАЛИБРОВОЧНЫХ ЛАБОРАТОРИЙ автора Автор неизвестен

4.2 Система качества 4.2.1 Лаборатория должна установить, внедрить и поддерживать систему качества в соответствии с областью ее деятельности. Лаборатория должна документально оформить свою политику, системы, программы, процедуры и инструкции в объеме, необходимом для

Из книги Компьютерная лингвистика для всех: Мифы. Алгоритмы. Язык автора Анисимов Анатолий Васильевич

МИФ КАК СИСТЕМА Человек всегда стремился познать истоки своего бытия, пытался понять свой путь, найти начало начал. Почему «в начале было слово», почему по всему миру повторяются сходные предания, почему в этом повторяющемся мире возникают все новые и новые литературные

Из книги Управление качеством автора Шевчук Денис Александрович

3.4.2. Система «ДЖИТ» Это новая форма организации «just in time», буквально означающая «производство точно в срок». Ее фундаментальный смысл: ноль запасов, ноль отказов, ноль дефектов. Подробнее ДЖИТ представляет собой технологию, которая подразумевает снижение запаса

Из книги О станках и калибрах автора Перля Зигмунд Наумович

Метрическая система Французская комиссия мер и весов во времена Французской революции так отзывалась о новой системе: «Определение этих мер и весов, взятое из природы и тем самым освобожденное от всякого произвола, будет ныне устойчивым, непоколебимым и

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Система радиоуправления Система радиоуправления специально создана для подобных дирижаблей (см. рис. 14.5). Она имеет исключительно малый вес. Блок движителя представляет собой сдвоенный турбовентилятор, закрепленный к нижней части дирижабля. Каждый вентилятор может

Из книги Феномен науки [Кибернетический подход к эволюции] автора Турчин Валентин Фёдорович

9.4. Позиционная система Основы позиционной системы заложили вавилоняне. В системе счисления, которую они заимствовали от своих предшественников - шумерийцев, мы с самого начала (т. е. в древнейших дошедших до нас глиняных табличках, относящихся к началу третьего

Из книги Сертификация сложных технических систем автора Смирнов Владимир

4.4. Система «Оборонсертифика» По инициативе Министерства оборонной промышленности РФ создана и зарегистрирована в Госстандарте России система добровольной сертификации продукции и систем качества предприятий оборонных отраслей промышленности –

Из книги Такова торпедная жизнь автора Гаврилов Дмитрий Анатольевич

Система смазки Система смазки достаточно проста. Основные части этой системы: поддон картера (резервуар для масла), масляный насос с маслоприемником и сетчатым фильтром, масляные фильтры грубой и тонкой очистки, редукционный, перепускной и предохранительный клапаны,

Из книги Руководство слесаря по замкам автора Филипс Билл

Стояночная тормозная система Тормозные колодки автомобиля ГАЗ имеют фрикционные накладки для увеличения коэффициента трения. Разжимным приспособлением служит гидравлический рабочий тормозной цилиндр 5 колеса.Принцип действия тормозной системы заключается в

Из книги автора

Система противоречий Довольно редко бывает так, что некий объект возникает как результат разрешения одного-единственного противоречия, обычно накапливается целый комплект противоречий и ограничений.Скажем, создание водородной энергетики обусловлено следующими

Одним из самых совершенных изобретений человечества можно назвать автомобили. Их особенности эксплуатации обуславливают то, что все системы должны работать максимально эффективно, все возможные случаи во время эксплуатации предусматриваются на момент конструирования каждой модели. Все это связано с тем, что во время движения на высокой скорости возникает опасность для тех, кто находится внутри транспортного средства, и для тех, кто снаружи. К системам, которые предназначены увеличить безопасность движения, можно назвать тормозной механизм. Ему уделяется большое внимание.

Предназначение тормозной системы

Тормозная система применяется для регулирования скорости движения или для фиксации автомобиля во время покоя. Особые навыки управления позволяют использовать тормоза для резких, сложных маневров, которые не связаны со снижением скорости движения.

Если двигатель и другие системы позволяют набирать скорость, то тормоза проводят ее сброс. Естественно, чем они надежнее и совершеннее, тем лучше происходит торможение.

История создания

Для того чтобы понять принцип работы системы, которая способна снизить скорость за несколько секунд, следует обратить внимание на историю ее создания. Столь совершенная система была получена не сразу, а путем проб и ошибок, которые определили как название систем, так и их эксплуатационные качества.

История создания первых механизмов, которые позволяли снизить скорость, начинается с гужевого транспорта. При больших скоростях лошадь не могла сама остановить повозку быстро, поэтому стали использовать системы рычагов, когда к ободу прижималась колодка. До 1920 года подобная система применялась и на первых автомобилях.

Тогда за одну поездку приходилось несколько раз менять кожаную накладку, так как она быстро истиралась. Подобная, но усовершенствованная система по сей день используется на скоростных велосипедах.

В начале 20 века автомобили стали разгоняться до скорости выше 100 км/час. Именно тогда стало ясно, что именно тормозная система не позволяет совершенствовать автомобиль. Интересным фактом можно назвать, что именно дисковые тормоза появились первыми. Однако используемые материалы при изготовлении определяли сильный скрежет на момент движения. Поэтому большой популярностью стали пользоваться барабанные системы. На тот момент их хватало всего на 2 тысячи пройденного пути.

До 1953 года проводилось совершенствование барабанных тормозных систем. И только после этого года была разработана иная система, которая основывалась на применении дисков. После этого конструкция усовершенствуется и при создании современных автомобилей.

Классификация тормозных систем

Существует довольно много вариантов исполнения тормозных систем. Не все они используются при конструировании автомобилей. По предназначению можно выделить следующую классификацию:

  • Механизм рабочего предназначения необходим для регулирования скорости машины во время движения. Этот вариант исполнения самый востребованный, так как применяется на протяжении всего движения. В последнее время конструкция подобной системы значительно усложняется путем включения в систему различных устройств по контролю усилия, проскальзывания колес и так далее.
  • Тормоз стояночного типа применяется на момент стоянки или кратковременной остановки. Согласно установленным правилам именно стояночный тормоз стоит использовать на момент остановки под горку, на светофоре и в других подобных случаях. Зачастую задействовать системы можно при помочи специального рычага, современные автомобили имеют электрический включатель. На легковых автомобилях от рычага проложен трос, которые сразу идет к задним колесам. Грузовые имеют воздушную систему с установленными энергоаккумуляторами.

Также можно отметить вспомогательную тормозную систему, которую зачастую включают в конструкцию грузовых автомобилей, автобусов. Ее работа основана перекрытии выпускного трубопровода, который подает топливо в двигатель. Используют систему при длительном спуске, так как рабочая может перегреться и потерять свою эффективность. Также проведем рассмотрение того, какие тормоза еще бывают по типу привода.

Важным показателем также можно назвать то, какой тип системы приводит в движение исполнительный механизм, который непосредственно выполняет торможение. По данному показателю можно выделить:

  • Механический привод. Использовался на старых автомобилях. Имеет высокую надежность, но при этом малую эффективность работы. Механические привод основывался на использовании системы тяг для приведения исполнительного органа в движение, при нажатии на педаль.
  • Гидравлический получил широкое применение при создании современных легковых автомобилей. Его работа основана на не сжимаемости используемой рабочей жидкости. Система представлена несколькими исполнительными органами, а давление передается при помощи жидкости.
  • Пневматическая система работает на основе сжатого воздуха. Как и жидкость, газообразные вещества имеют предел сжимаемости. Именно поэтому газообразные вещества, зачастую именно воздух, используются для передачи усилия.
  • Существует также комбинированный вариант исполнения, когда в системе используется как воздух, так и жидкость. Зачастую подобную систему можно встретить на грузовых автомобилях и автобусах.
  • Электронный вариант исполнения используется крайне редко, так как надежность подобной системы находится на относительно низком уровне. Ак правило, чем проще система, тем она надежнее. Именно поэтому довольно редко проводится установка электрической тормозной системы, когда команда на исполнительный орган передается при помощи электричества.

Тип привода в большей степени определяет особенности работы тормозной системы.

Кроме вышеприведенных особенностей также следует отметить тип исполнительного органа. По данному показателю можно выделить нижеприведенные системы:

  • Сочетание барабана и прижимного механизма с колодками – ранее наиболее распространенный исполнительный механизм, который зачастую устанавливается автобусы и автомобили категории «С». Ее особенность можно назвать то, что сила трения возникает внутри барабана.
  • Тормозная система на основе диска и прижимного суппорта используется при создании всех современных автомобилей. Особенностью данной системы можно назвать сочетание диска, которые вращается вместе с колесом, и суппорта, который проводит сжимание колодок для торможения.

Наиболее эффективной системой считается сочетание диска и суппорта. Применение новых материалов при изготовлении накладок, которые создают силу трения, позволяет значительно увеличить надежность рассматриваемой системы.

Преимущества дисковых тормозов

При рассмотрении практически всех современных легковых автомобилей следует отметить, что они имеют дисковую систему. Это связано с нижеприведенными нюансами:

  • Конструкция намного проще, а значит дешевле и надежнее.
  • Проводится автоматическое регулирование зазора при стирании накладок.
  • Конструкция компактнее и легче, что позволяет создавать быстрые спортивные автомобили.
  • Несмотря на уменьшение площади колодок эффективность подобной системы значительно выше. Это связано с тем, что диск и колодки имеют ровную поверхность, а это обеспечивает равномерное прижимание.
  • Проще провести обслуживание. Проводить ограничение прижимной силы не нужно.
  • Лучшее охлаждение, так как воздух свободно циркулирует. Стоит отметить, что перегрев зачастую приводит к значительному ухудшению работы тормозов. Поэтому для повышения эффективность охлаждения используют специальные колесные диски.
  • Продукты загрязнения легко удаляются. В барабане зачастую накапливается большое количество грязи, что обуславливает снижение эффективности работы системы.

Однако при создании подобной конструкции также были выявлены некоторые трудности. Примером можно назвать необходимость воздействия большого усилия, что возможно стало при использовании только гидравлического привода. Также устанавливается механизм, который позволяет уменьшить необходимое усилие при нажатии на педаль.

Необходима для быстрого изменения скорости или полной остановки автомобиля и удержания его на месте при стоянке.

Для этого на автомобиле есть такие виды тормозных систем, как — рабочая, стояночная, запасная и вспомогательная система (тормоз-замедлитель).

Рабочая тормозная система всегда используется при любой скорости автомобиля для полной остановки или для снижения скорости. Рабочая тормозная система начинает работать при нажатии на педаль тормоза. Эта система самая эффективная при сравнении с другими видами.

Запасная тормозная система применяется при неисправности основной системы. Запасная тормозная система бывает в виде автономной системы или её функции выполняет часть исправной рабочей тормозной системы.

Стояночная тормозная система необходима для удержания автомобиля определенное время на одном месте. Стояночная система полностью исключает движение автомобиля самопроизвольно.

Вспомогательная тормозная система применяется на автомобилях с повышенной массой. Вспомогательная система используется для торможения на спусках. Часто бывает, что на автомобилях роль вспомогательной системы выполняет двигатель, где выпускной трубопровод перекрывается заслонкой.

Тормозная система — это важное средство автомобиля для обеспечения активной безопасности. На автомобилях применяются разные системы и устройства, повышающие эффективность системы при торможении — это антиблокировочная система, усилитель экстренного торможения, усилитель тормозов.

Тормозная система включает в себя тормозной привод и тормозной механизм.

Схема гидропривода тормозов:
1 — трубопровод контура «левый передний-правый задний тормоз»; 2-сигнальное устройство; 3 — трубопровод контура «правый передний — левый задний тормоз»; 4 — бачок главного цилиндра; 5 — главный цилиндр гидропривода тормозов; 6 — вакуумный усилитель; 7 — педаль тормоза; 8 — регулятор давления задних тормозов; 9 — трос стояночного тормоза; 10 — тормозной механизм заднего колеса; 11 — регулировочный наконечник стояночного тормоза; 12 — рычаг привода стояночного тормоза; 13 — тормозной механизм переднего колеса.

Тормозной механизм блокирует вращение колес и как результат появление тормозной силы, которая останавливает транспортное средство. Тормозные механизмы находятся на задних и передних колесах.

По идее — все тормозные механизмы логично называть колодочными. И уже в свою очередь, их можно разделить по трению — дисковые и барабанные. Тормозные механизмы основной системы монтируются в колесе, а механизм стояночной системы находится за раздаточной коробкой или коробкой передач.

О барабанных и дисковых тормозных механизмах

Тормозной механизм обычно состоит из двух частей, из вращающейся и неподвижной. Вращающаяся часть барабанного механизма — это тормозной барабан, а неподвижная часть – тормозные колодки.

Барабанные тормозные механизмы обычно стоят на задних колесах. В процессе износа зазор между барабаном и колодкой увеличивается и для его устранения есть механические регуляторы.

Барабанный тормозной механизм заднего колеса:
1 – чашка; 2 – прижимная пружина; 3 – приводной рычаг; 4 – тормозная колодка; 5 – верхняя стяжная пружина; 6 – распорная планка; 7 – регулировочный клин; 8 – колесный тормозной цилиндр; 9 – тормозной щит; 10 – болт; 11 – стержень; 12 – эксцентрик; 13 – нажимная пружина; 14 – нижняя стяжная пружина; 15 – прижимная пружина распорной планки.

На автомобилях тормозные механизмы могут иметь разные сочетания:

  • два дисковых передних, два барабанных задних;
  • четыре дисковых;
  • четыре барабанных.

В тормозном дисковом механизме — диск вращается, а две колодки стоят неподвижно, они установлены внутри суппорта. В суппорте стоят рабочие цилиндры, они при торможении прижимают к диску тормозные колодки, а сам суппорт хорошо закреплен на кронштейне. Для улучшения отвода тепла из рабочей зоны часто применяют вентилируемые диски.

Схема дискового тормозного механизма:
1 — колесная шпилька; 2 — направляющий палец; 3 — смотровое отверстие; 4 — суппорт; 5 — клапан; 6 — рабочий цилиндр; 7 — тормозной шланг; 8 — тормозная колодка; 9 — вентиляционное отверстие; 10 — тормозной диск; 11 — ступица колеса; 12 — грязезащитный колпачок.

О тормозных приводах

В автомобильных тормозных системах нашли применение вот эти типы тормозных приводов:

  • гидравлический;
  • пневматический;
  • комбинированный.
  • механический;

Гидравлический привод получил самое широкое распространение в рабочей тормозной системе автомобиля. В него входят:

  • главный тормозной цилиндр;
  • тормозная педаль;
  • колесные цилиндры;
  • усилитель тормозов
  • шланги и трубопроводы (рабочие контура).

При усилии на тормозную педаль водителем, та передает усилие от ноги на главный тормозной цилиндр. Усилитель тормозов дополнительно создает усилие, облегчая тем самым жизнь водителя. Широкое применение на машинах приобрел вакуумный усилитель тормозов.

Главный тормозной цилиндр нагнетает тормозную жидкость к тормозным цилиндрам. Обычно над главным цилиндром стоит расширительный бачок, в нем содержится тормозная жидкость.

Колесный цилиндр прижимает тормозные колодки к тормозному барабану или диску.

Рабочий контур сейчас представляет из себя основной и вспомогательный. Например, вся система исправна, то значит работают оба, но при неисправности одного из них — другой будет работать.

Широко распространены три основные компоновки разделения рабочих контуров:

  • 2 + 2 подключенных параллельно — задние + передние;
  • 2 + 2 подключенных диагонально — правый передний + левый задний и так далее;
  • 4 + 2 в один контур подключены два передних, а в другой тормозные механизмы всех колес.

Схема компоновки гидропривода:
1 — главный тормозной цилиндр с вакуумным усилителем; 2 — регулятор давления жидкости в задних тормозных механизмах; 3-4 — рабочие контуры.

Прогресс не стоит на месте и сейчас в состав гидравлического тормозного привода добавляются разные электронные компоненты:

  • усилитель экстренного торможения
  • антиблокировочная система тормозов;
  • антипробуксовочная система;
  • система распределения тормозных усилий;
  • электронная блокировка дифференциала.

Пневматический привод применяется в тормозной системе большегрузных автомобилей.

Комбинированный тормозной привод — это комбинация разных типов привода.

Механический привод применяется в стояночной тормозной системе. Он включает в себя систему тяг и тросов, с помощью которых объединяет систему в одно целое, обычно на задние колеса имеет привод. Рычаг тормоза соединен при помощи тонкого троса с тормозными механизмами, где есть устройство, которое приводит в действие основные или стояночные колодки.

Есть автомобили, где стояночная система работает от ножной педали. Сейчас всё чаще стали применять в стояночной системе электропривод, который получил название — электромеханический стояночный тормоз .

Итак, как работает гидравлическая тормозная система

Осталось рассмотреть работу тормозной системы, что мы сделаем на примере гидравлической системы.

Когда водитель нажимает на педаль тормоза, то передается нагрузка к усилителю и тот создает усилие на главном тормозном цилиндре. А в свою очередь поршень через трубопроводы нагнетает жидкость к колесным цилиндрам. Поршни колесных цилиндров от давления жидкости передвигают тормозные колодки к дискам или барабанам и происходит торможение автомобиля.

Когда водитель убирает ногу с педали тормоза, то педаль от действия возвратной пружины возвращается в начальное положение. Также, в свое положение возвращается и поршень главного тормозного цилиндра, а пружины отводят колодки от барабанов или дисков.