Самый простой ветряк из шагового двигателя. Ветряк из шагового моторчика

Вы, хоть понимаете, что пишете? Или пишете для того, чтобы человека поддержать в его начинаниях и он, потратив деньги на комплектующие для своей системы, в конечном итоге получил абсолютно неработоспособную вещь? Вы отвечаете: "Двигатель, как генер подойдет" - да, подойдет, но откуда вы взяли 1,1-1,5А? Это при каком напряжении? При какой скорости вращения ротора? Далее пишете: "Стандарт мощности 1м ленты, вроде, 5Вт..." - стандарта мощности тут нет, а ленты бывают и около 5Вт и около 14Вт, и около 7Вт на метр и др., а это очень большой разброс. Продолжаем: "Так как вы столько накрутили то вполне может хватить для заряда аккумулятора" - это, вообще, что означает? То, что чем сложнее, навороченнее и запутаннее схема, тем больше ее отдача и эффективность? Полная ерунда. Для зарядки 12В мотоаккума нужно около 14-15В при токе примерно 0,6-0,7А (для емкости примерно 7А/ч). Вы уверены, что система способна долговременно выдавать такие параметры? Ведь, чтобы зарядить разряженный аккум мотоцикла, 2-3-х часов не хватит. Считаете, также, что заряжать можно и от 18В? Да, можно, но электролит выкипит через неделю, если не раньше, и пластины посыпятся. Хороша рекомендация! Неприхотливы в зарядке - это не означает, что их можно заряжать любым напряжением. Далее Вы пишете: "Будет очень даже отлично, ведь вдруг забыл выключить свет и аккумулятор сел еще до того как успеет подзарядится" - говорите так, будто зарядка аккума происходит только в светлое время суток))) Это ветряк, а не солнечная батарея. При правильно работающей системе, при постоянном ветре, аккум вообще не должен разряжаться, если даже забыли выключить свет. Но идея фотоэлемента сама по себе хороша с точки зрения автоматизации. Далее: светодиодная лента, наверное, будет работать, как Вы говорите, и при 30 вольтах, однако, долго ли? Сопротивления ограничивают ток, да, но он же будет расти пропорционально повышению напряжения, а не оставаться постоянным! Диоды очень не любят превышения рабочего тока. Так, что результат известен: перегрев диодов и, как следствие, резкое снижение срока эксплуатации, либо выход их из строя крайне быстрый. Следом пишете: "Емкость также не критична, добавьте еще 1 пленочный конденсатор на 1 мкф" - для чего? Это что, фильтр помех? Почему тогда 1мкФ? И зачем там вообще фильтр? А, если не фильтр, а сглаживающий пульсации элемент, то тут как раз его емкость критична! Емкость - это основной параметр конденсатора вообще-то. А 1мкФ - это пустое место для описанной человеком системы, ничего он не сгладит. Даже 1000мкФ, которую хотел установить автор вопросов - очень мало для его задумки. Я бы понял, если бы это было 5000-7000 или даже 10000мкФ, а то и больше. В конце человек спрашивает, хватит ли мотоаккума, чтобы лента светилась всю ночь, и Вы отвечаете, что, мол, конечно, хватит. Вы изучали физику в школе? Или еще изучаете? Это было Ваше предположение пальцем в небо или хоть какой-нибудь элементарный расчет? Давайте прикинем очень грубо: человек писал, что хочет установить 10-15м ленты. Даже, если взять минимальные значения, т.е. 10м ленты мощностью 5Вт/м, то путем нехитрых подсчетов получаем 50Вт мощности. Поделив мощность ленты на напряжение аккума (примерно 12,8В) получим ток: 50/12,8=3,9А. Емкость обычного мотоаккума примерно равна 7А/ч. Т.о. можно прикинуть, сколько времени проработает лента от полностью заряженного аккума: 7/3,9=1,79ч=1ч 47мин., т.е. почти два часа. Это далеко не вся ночь. К тому же, в расчет взяты минимальные параметры и, если длина ленты или/и ее мощность будут больше, соответственно время работы от аккума пропорционально уменьшится. Вот, как-то так.
Я бы не стал всего этого писать, но дело в том, что лента стоит денег, аккум и фотореле тоже... И деньги это немалые, а чел, получивший одобрение и поддержку своей идеи в комментах людей, не понимающих сути и нюансов процесса, радостно побежит в магаз, потратит деньги на комплектующие, а в итоге получит систему, неработоспособную в принципе, изначально. Не надо давать советы, не разбираясь в вопросе!

Создание ветрогенератора не обязательно означает изготовление крупного и мощного комплекса, способного обеспечивать электроэнергией целый дом или группу потребителей. Можно изготовить , представляющий собой, по сути, действующую модель серьезной установки. Целью такого мероприятия может быть:

  • Ознакомление с основами ветроэнергетики.
  • Совместные обучающие занятия с детьми.
  • Экспериментальный образец, предваряющий строительство крупной установки.

Создание такого ветряка не потребует использования большого количества материалов или инструментов, можно обойтись подручными средствами. Рассчитывать на выработку серьезных объемов энергии не приходится, но для питания небольшого светильника на светодиодах может хватить. Основная проблема, существующая при создании - это генератор. Его сложно создать самостоятельно, поскольку размеры устройства невелики. Проще всего использовать , позволяющий использовать его в режиме генератора.

Самодельный ветряк на основе шагового двигателя

Чаще всего, при изготовлении маломощных ветрогенераторов используют шаговые электродвигатели. Особенность их конструкции состоит в наличии нескольких обмоток. Обычно, в зависимости от размера и назначения, изготавливают двигатели с 2, 4 или 8 обмотками (фазами). При подаче напряжения на них по очереди вал соответственно поворачивается на определенный угол (шаг).

Преимущество шаговых двигателей заключается в способности производить достаточно большой ток при низких скоростях вращения. На генератор из шагового двигателя можно установить крыльчатку без всяких промежуточных устройств - передач, редукторов и т.п. Выработка электроэнергии будет производиться с такой же эффективностью, как и на устройствах другой конструкции с использование повышающих передач.

Разница в скоростях весьма существенная - для получения такого же результата, например, на коллекторном двигателе, потребуется скорость вращения в 10 или 15 раз больше.

Считается, что с помощью генератора из шагового двигателя можно заряжать аккумуляторы или батареи мобильных телефонов, но на практике положительные результаты отмечаются крайне редко. В основном, получаются источники питания для небольших светильников.

К недостаткам шаговых двигателей можно отнести значительное усилие, необходимое для начала вращения. Это обстоятельство снижает чувствительность всей , что можно несколько скорректировать путем увеличения площади и размаха лопастей.

Отыскать такие двигатели можно в старых дисководах для гибких носителей, в сканерах или принтерах. Как вариант, можно приобрести новый двигатель, если в запасе нужного устройства не окажется. Для большего эффекта следует выбирать более крупные двигатели, они способны выдавать достаточно большое напряжение, чтобы его можно было как-то использовать.

Ветрогенератор из деталей от принтера

Один из подходящих вариантов - использование шагового двигателя от принтера. Его можно извлечь из вышедшего из строя старого устройства, в каждом принтере как минимум два таких двигателя. Как вариант, можно приобрести новый, не бывший в эксплуатации. Он способен вырабатывать мощность около 3 ватт даже при слабом ветре, типичном для большинства регионов России. Напряжение, которое может быть достигнуто, составляет 12 и более В, что позволяет рассматривать устройство как возможность зарядки аккумуляторов.

Шаговый двигатель выдает переменное напряжение. Для пользователя необходимо прежде всего выпрямить его. Потребуется создать диодный выпрямитель, для чего потребуется по 2 диода на каждую катушку. Можно и напрямую подключить светодиод к выводам катушки, при достаточной скорости вращения этого хватит.

Крыльчатку ротора проще всего установить прямо на вал двигателя. Для этого надо изготовить центральную часть, способную плотно усаживаться на вал. Доя усиления фиксации крыльчатки необходимо просверлить отверстие и нарезать в нем резьбу. Впоследствии в него буде завинчиваться стопорный винт.

Для изготовления лопастей обычно используют полипропиленовые канализационные трубы или иные подходящие материалы. Главным условием является малый вес и достаточная прочность, поскольку лопасти иногда набирают вполне приличную скорость. Использование ненадежных материалов может создать нежелательную ситуацию, когда крыльчатка разваливается на ходу.

Лопасти

Обычно изготавливают по 2 лопасти, но можно сделать и большее количество. Необходимо помнить, что большая площадь лопастей повышает КИЭВ ветряка , но параллельно с этим увеличивается фронтальная нагрузка на крыльчатку, передающаяся валу двигателя. Изготовление маленьких лопастей также не рекомендуется, поскольку они не смогут преодолеть залипание вала при старте вращения.

Для возможности вращения ветряка вокруг вертикальной оси надо сделать специальный узел. Сложность в этом заключается в необходимости обеспечить неподвижность кабеля, идущего от генератора. Поскольку устройство имеет, скорее, декоративное назначение, обычно подходят к вопросу проще - устанавливают потребитель прямо на корпусе генератора, исключая присутствие длинного кабеля. В противном случае придется монтировать систему наподобие щеточного коллектора, что нерационально и требует большого количества времени.

Мачта

Собранный ветряк необходимо установить на высотой как минимум 3 метра. Потоки ветра у поверхности земли имеют нестабильное направление, вызванное турбулентностью. Подъем на некоторую высоту поможет получить более равномерные потоки. Для самостоятельной установки на ветер по оси вращения устанавливают хвостовой стабилизатор, играющий роль флюгера. Он делается из любого куска пластмассы, алюминиевой пластинки или иного подручного материала.

В качестве генератора на ветряк подойдет шаговый двигатель (ШД) для принтера. Даже при небольшой скорости вращения он вырабатывает мощность около 3 Вт. Напряжение может подниматься выше 12 В, что дает возможность заряжать небольшой аккумулятор.

Принципы использования

Характерная для российского климата турбулентность ветра в приземных слоях приводит к постоянным изменениям его направления и интенсивности. Ветрогенераторы больших размеров, мощность которых превышает 1 Квт будут инерционными. В результате они не успеют полностью раскрутиться при смене направления ветра. Этому также мешает момент инерции в плоскости вращения. Когда боковой ветер действует на работающий ветряк, он испытывает огромные нагрузки, которые могут привести к его быстрому выходу из строя.

Целесообразно применять ветрогенератор малой мощности, изготовленный своими руками, имеющий незначительную инерционность. С их помощью можно заряжать маломощные аккумуляторы мобильных телефонов или использовать для освещения дачи светодиодами.

В дальнейшем лучше ориентироваться на потребителей, нетребующих преобразования вырабатываемой энергии, например, для подогрева воды. Нескольких десятков ватт энергии вполне может хватить для поддерживания температуры горячей воды или для дополнительного подогрева системы отопления, чтобы она не перемерзала зимой.

Электрическая часть

Генератором в ветряк можно устанавливать шаговый двигатель (ШД) для принтера.

Даже при небольшой скорости вращения он вырабатывает мощность около 3 Вт. Напряжение может подниматься выше 12 В, что дает возможность заряжать небольшой аккумулятор. Остальные генераторы эффективно работают при скорости вращения более 1000 об./мин, но они не подойдут, поскольку ветряк вращается со скоростью 200-300 об./мин. Здесь необходим редуктор, но он создает дополнительное сопротивление и к тому же имеет высокую стоимость.

В генераторном режиме у шагового двигателя вырабатывается переменный ток, который легко преобразовать в постоянный, используя пару диодных мостов и конденсаторы. Схему легко собрать своими руками.

Установив за мостами стабилизатор, получим постоянное выходное напряжение. Для визуального контроля можно еще подключить светодиод. Чтобы уменьшить потери напряжения для его выпрямления применяются диоды Шоттки.

В дальнейшем можно будет создать ветряк с более мощным ШД. Такой ветрогенератор будет обладать большим моментом трогания. Проблему можно устранить, отключая нагрузку во время пуска и при малых оборотах.

Как сделать ветрогенератор

Лопасти можно изготовить своими руками из трубы ПВХ. Нужная кривизна подбирается, если взять ее с определенным диаметром. Заготовку лопасти рисуют на трубе, а затем вырезают отрезным диском. Размах винта составляет около 50 см, а ширина лопастей - 10 см. После следует выточить втулку с фланцем под размер вала ШД.

Она насаживается на вал двигателя и крепится дополнительно винтами, а к фланцам крепятся пластиковые лопасти. На фото изображено две лопасти, но можно сделать четыре, прикрутив еще две аналогичные под углом 90º. Для большей жесткости под головки винтов следует установить общую пластину. Она плотней прижмет лопасти к фланцу.

Изделия из пластика долго не служат. Продолжительный ветер со скоростью более 20 м/с такие лопасти не выдержат.

Генератор вставляется в кусок трубы, к которому он крепится болтами.

К трубе с торца крепится флюгер, представляющий собой ажурную и легкую конструкцию из дюралюминия. Ветрогенератор держится на приваренной вертикальной оси, которая вставляется в трубу мачты с возможностью вращения. Под фланец можно установить упорный подшипник или полимерные шайбы, снижающие трение.

У большей части конструкций ветряк содержит выпрямитель, который крепится к подвижной части. Это делать нецелесообразно из-за увеличения инерционности. Электрическую плату вполне можно разместить внизу, а к ней вывести вниз провода от генератора. Обычно с шагового двигателя выходит до 6 проводов, соответствующих двум катушкам. Для них нужны токосъемные кольца для передачи электроэнергии от подвижной части. На них довольно сложно установить щетки. Механизм токосъема может оказаться сложней, чем сам ветрогенератор. Еще было бы лучше разместить ветряк так, чтобы вал генератора располагался вертикально. Тогда провода не будут заплетаться вокруг мачты. Такие ветрогенераторы сложней, но зато уменьшается инерционность. Коническая передача здесь будет в самый раз. При этом можно увеличить обороты вала генератора, подобрав необходимые шестерни своими руками.

Закрепив ветряк на высоте 5-8 м, можно начинать проводить испытания и собирать данные о его возможностях, чтобы в дальнейшем установить более совершенную конструкцию.

В настоящее время становятся популярными вертикально-осевые ветрогенераторы.

Некоторые конструкции хорошо выдерживают даже ураганы. Хорошо себя зарекомендовали комбинированные конструкции, работающие при любом ветре.

Заключение

Маломощный ветрогенератор надежно работает из-за малой инерционности. Его легко изготавливают в домашних условиях и используют преимущественно для подзарядки небольших аккумуляторов. Он может пригодиться в загородном доме, на даче, в походе, когда возникают проблемы с электричеством.




Проезжая на велосипеде мимо дачных участков, я увидел работающий ветрогенератор. Большие лопасти медленно, но верно вращались, флюгер ориентировал устройство по направлению ветра.

Мне захотелось реализовать подобную конструкцию, пусть и не способную вырабатывать мощность, достаточную для обеспечения “серьезных” потребителей, но все-таки работающую и, например, заряжающую аккумуляторы или питающую светодиоды.

Одним из наиболее эффективных вариантов небольшого самодельного ветроэлектрогенератора является использование шагового двигателя (ШД) (англ. stepping (stepper, step) motor ) – в таком моторе вращение вала состоит из небольших шагов. Обмотки шагового двигателя объединены в фазы. При подаче тока в одну из фаз происходит перемещение вала на один шаг.

Эти двигатели являются низкооборотными и генератор с таким двигателем может быть без редуктора подключен к ветряной турбине, двигателю Стирлинга или другому низкооборотному источнику мощности. При использовании в качестве генератора обычного (коллекторного) двигателя постоянного тока для достижения таких же результатов потребовалась бы в 10-15 раз более высокая частота вращения.

Особенностью шаговика является достаточно высокий момент трогания (даже без подключенной к генератору электрической нагрузки), достигающий 40 грамм силы на сантиметр.

Коэффициент полезного действия генератора с ШД достигает 40 %.

Для проверки работоспособности шагового двигателя можно подключить, например, красный светодиод. Вращая вал двигателя, можно наблюдать свечение светодиода. Полярность подключения светодиода не имеет значения, так как двигатель вырабатывает переменный ток.

Кладезем таких достаточно мощных двигателей являются пятидюймовые дисководы гибких дисков, а также старые принтеры и сканеры.

Например, я располагаю ШД из старого 5.25″ дисковода, работавшего еще в составе ZX Spectrum – совместимого компьютера “Байт”.

Такой дисковод содержит две обмотки, от концов и середины которых сделаны выводы – итого из двигателя выведено шесть проводов:

первая обмотка (англ. coil 1 ) – синий (англ. blue ) и желтый (англ. yellow );

вторая обмотка (англ. coil 2 ) – красный (англ. red ) и белый (англ. white );

коричневые (англ. brown ) провода – выводы от средних точек каждой обмотки (англ. center taps ).

разобранный шаговый мотор

Слева виден ротор двигателя, на котором видны “полосатые” магнитные полюсы – северный и южный. Правее видна обмотка статора, состоящая из восьми катушек.

Сопротивление половины обмотки составляет

Я использовал этот двигатель в первоначальной конструкции моего ветрогенератора.

Находящийся в моем распоряжении менее мощный шаговый двигатель T1319635 фирмы Epoch Electronics Corp. из сканера HP Scanjet 2400 имеет пять выводов (униполярный мотор):

первая обмотка (англ. coil 1 ) – оранжевый (англ. orange ) и черный (англ. black );

вторая обмотка (англ. coil 2 ) – коричневый (англ. brown ) и желтый (англ. yellow );

красный (англ. red ) провод – соединенные вместе выводы от средней точки каждой обмотки (англ. center taps ).

Сопротивление половины обмотки составляет 58 Ом, которое указано на корпусе двигателя.

В улучшенном варианте ветрогенератора я использовал шаговый двигатель Robotron SPA 42/100-558 , произведенный в ГДР и рассчитанный на напряжение 12 В:

Возможны два варианта расположения оси крыльчатки (турбины) ветрогенератора – горизонтальное и вертикальное.

Преимуществом горизонтального (наиболее популярного) расположения оси, располагающейся по направлению ветра, является более эффективное использование энергии ветра, недостаток – усложнение конструкции.

Я выбрал вертикальное расположение оси – VAWT (vertical axis wind turbine ), что существенно упрощает конструкцию и не требует ориентации по ветру . Такой вариант более пригоден для монтирования на крышу, он намного эффективнее в условиях быстрого и частого изменения направления ветра.

Я использовал тип ветротурбины, называемый ветротурбина Савониуса (англ. Savonius wind turbine ). Она была изобретена в 1922 году Сигурдом Йоханнесом Савониусом (Sigurd Johannes Savonius ) из Финляндии.

Сигурд Йоханнес Савониус

Работа ветротурбины Савониуса основана на том, что сопротивление (англ. drag ) набегающему потоку воздуха – ветру вогнутой поверхности цилиндра (лопасти) больше, чем выпуклой.

Коэффициенты аэродинамического сопротивления (англ. drag coefficients) $C_D$

вогнутая половина цилиндра (1) – 2,30

выпуклая половина цилиндра (2) – 1,20

плоская квадратная пластина – 1,17

вогнутая полая полусфера (3) – 1,42

выпуклая полая полусфера (4) – 0,38

Указанные значения приведены для чисел Рейнольдса (англ. Reynolds numbers ) в диапазоне $10^4 – 10^6$. Число Рейнольдса характеризует поведение тела в среде.

Сила сопротивления тела воздушному потоку $ = <<1 \over 2> S \rho > $, где $\rho$ – плотность воздуха, $v$ – скорость воздушного потока, $S$ – площадь сечения тела.

Такая ветротурбина вращается в одну и ту же сторону, независимо от направления ветра:

Подобный принцип работы используется в чашечном анемометре (англ. cup anemometer) – приборе для измерения скорости ветра:

Такой анемометр был изобретен в 1846 году ирландским астрономом Джоном Томасом Ромни Робинсоном (John Thomas Romney Robinson ):

Робинсон полагал, что чашки в его четырехчашечном анемометре перемещаются со скоростью, равной одной трети скорости ветра. В реальности это значение колеблется от двух до немногим более трех.

В настоящее время для измерения скорости ветра используются трехчашечные анемометры, разработанные канадским метеорологом Джоном Паттерсоном (John Patterson ) в 1926 году:

Генераторы на коллекторных двигателях постоянного тока с вертикальной микротурбиной продаются на eBay по цене около $5:

Такая турбина содержит четыре лопасти, расположенные вдоль двух перпендикулярных осей, с диаметром крыльчатки 100 мм, высотой лопасти 60 мм, длиной хорды 30 мм и высотой сегмента 11 мм. Крыльчатка насажена на вал коллекторного микродвигателя постоянного тока с маркировкой JQ24-125p70 . Номинальное напряжение питания такого двигателя составляет 3 . 12 В.

Энергии, вырабатываемой таким генератором, хватает для свечения “белого” светодиода.

Скорость вращения ветротурбины Савониуса не может превышать скорость ветра , но при этом такая конструкция характеризуется высоким крутящим моментом (англ. torque ).

Эффективность ветротурбины можно оценить, сравнив вырабатываемую ветрогенератором мощность с мощностью, заключенной в ветре, обдувающем турбину:

$P = <1\over 2>\rho S $ , где $\rho$ – плотность воздуха (около 1,225 кг/м 3 на уровне моря), $S$ – ометаемая площадь турбины (англ. swept area ), $v$ – скорость ветра.

Первоначально в крыльчатке моего генератора использованы четыре лопасти в виде сегментов (половинок) цилиндров, вырезанных из пластиковых труб :

длина сегмента – 14 см;

высота сегмента – 2 см;

длина хорды сегмента – 4 см;

Я установил собранную конструкцию на достаточно высокой (6 м 70 см) деревянной мачте из бруса, прикрепленную саморезами к металлическому каркасу:

Недостатком генератора была достаточно высокая скорость ветра, требуемая для раскрутки лопастей. Для увеличения площади поверхности я использовал лопасти, вырезанные из пластиковых бутылок :

длина сегмента – 18 см;

высота сегмента – 5 см;

длина хорды сегмента – 7 см;

расстояние от начала сегмента до центра оси вращения – 3 см.

Проблемой оказалась прочность держателей лопастей. Сначала я использовал перфорированные алюминиевые планки от советского детского конструктора толщиной 1 мм. Через несколько суток эксплуатации сильные порывы ветра привели к излому планок (1). После этой неудачи я решил вырезать держатели лопастей из фольгированного текстолита (2) толщиной 1,8 мм:

Прочность текстолита на изгиб перпендикулярно пластине составляет 204 МПа и сравним с прочностью на изгиб алюминия – 275 МПа. Но модуль упругости алюминия $E$ (70000 МПа) намного больше, чем у текстолита (10000 МПа), т.е. тексолит намного эластичнее алюминия. Это, по моему мнению, с учетом большей толщины текстолитовых держателей, обеспечит гораздо большую надежность крепления лопастей ветрогенератора.

Ветрогенератор смонтирован на мачте:

Опытная эксплуатация нового варианта ветрогенератора показала его надежность даже при сильных порывах ветра.

Недостатком турбины Савониуса является невысокая эффективность – только около 15 % энергии ветра преобразуется в энергию вращения вала (это намного меньше, чем может быть достигнуто с ветротурбиной Дарье (англ. Darrieus wind turbine )), использующей подъемную силу (англ. lift ). Этот вид ветротурбины был изобретен французским авиаконструктором Жоржем Дарье (Georges Jean Marie Darrieus) – патент США от 1931 года № 1,835,018.

Недостатком турбины Дарье является то, что у нее очень плохой самозапуск (для выработки крутящего момента от ветра турбины уже должна быть раскручена).

Преобразование электроэнергии, вырабатываемой шаговым двигателем

Выводы шагового двигателя могут быть подключены к двум мостовым выпрямителям, собранным из диодов Шоттки для снижения падения напряжения на диодах.

Можно применить популярные диоды Шоттки 1N5817 с максимальным обратным напряжением 20 В, 1N5819 – 40 В и максимальным прямым средним выпрямленным током 1 А. Я соединил выходы выпрямителей последовательно с целью увеличения выходного напряжения.

Также можно использовать два выпрямителя со средней точкой. Такой выпрямитель требует в два раза меньше диодов, но при этом и выходное напряжение снижается в два раза.

Затем пульсирующее напряжение сглаживается с помощью емкостного фильтра – конденсатора 1000 мкФ на 25 В. Для защиты от повышенного генерируемого напряжения параллельно конденсатору включен стабилитрон на 25 В.

схема моего ветрогенератора

электронный блок моего ветрогенератора

В ветреную погоду напряжение холостого хода на выходе электронного блока ветрогенератора достигает 10 В, а ток короткого замыкания – 10 мА.

ПОДКЛЮЧЕНИЕ К JOULE THIEF

Затем сглаженное напряжение с конденсатора может подаваться на Joule Thief – низковольтный DC-DC преобразователь. Я собрал такой преобразователь на базе германиевого pnp -транзистора ГТ308В (VT ) и импульсного трансформатора МИТ-4В (катушка L1 – выводы 2-3, L2 – выводы 5-6) :

Значение сопротивления резистора R подбирается экспериментально (в зависимости от типа транзистора) – целесообразно использовать переменный резистор на 4,7 кОм и постепенно уменьшать его сопротивление, добиваясь стабильной работы преобразователя.

мой преобразователь Joule Thief

ЗАРЯД ИОНИСТОРОВ (СУПЕРКОНДЕНСАТОРОВ)

Ионистор (суперконденсатор, англ. supercapacitor ) представляет собой гибрид конденсатора и химического источника тока.

Ионистор – неполярный элемент, но один из выводов может быть помечен “стрелкой” – для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе.

Для первоначальных исследований я использовал ионистор 5R5D11F22H емкостью 0,22 Ф на напряжение 5,5 В (диаметр 11,5 мм, высота 3,5 мм):

Я подключил его через диод к выходу Joule Thief через германиевый диод Д310.

Для ограничения максимального напряжения зарядки ионистора можно использовать стабилитрон или цепочку светодиодов – я использую цепочку из двух красных светодиодов:

Для предотвращения разряда уже заряженного ионистора через ограничительные светодиоды HL1 и HL2 я добавил еще один диод – VD2 .

Мой самодельный ветрогенератор на шаговом двигателе, Мои увлекательные и опасные эксперименты


Мой самодельный ветрогенератор на шаговом двигателе Проезжая на велосипеде мимо дачных участков, я увидел работающий ветрогенератор. Большие лопасти медленно, но верно вращались, флюгер

Шаговый двигатель в качестве генератора?

Валялся у меня шаговый двигатель и, решил я его попробовать использовать в качестве генератора. Двигатель был снят со старого матричного принтера, надписи на нем следующие: EPM-142 EPM-4260 7410. Двигатель попался униполярный, это означает что у этого двигателя 2 обмотки с отводом от середины, сопротивление обмоток составило 2х6ом.

Для теста нужен другой двигатель, чтобы раскрутить шаговый. Конструкция и крепление двигателей показаны на рисунках ниже:

Плавно запускаем двигатель, чтобы резинка не слетела. Надо сказать что на высоких оборотах она все же слетает, по этому напряжение выше 6 вольт не поднимал.

Подключаем вольтметр и начинаем тестировать, для начала меряем напряжение.

Думаю ничего объяснять не нужно и все понятно по фотографии ниже. Напряжение составило 16 вольт, обороты раскручивающего двигатели не большие, думаю если сильнее раскрутить то, можно и все 20 вольт выжать.

Выставляем напряжение чуть меньше 5 вольт, так, чтобы шаговый двигатель после моста выдавал около 12 вольт.

Светит! Напряжение при этом с 12 вольт просело до 8 и двигатель стал раскручивать чуть медленнее. Ток КЗ без светодиодной ленты составил 0.08А – напомню, что раскручивающий двигатель работал НЕ на полную мощность, и не забываем про вторую обмотку шагового двигателя, просто параллелить их нельзя, а собирать схему мне не хотелось.

Думаю, из шагового двигателя можно изготовить неплохой генератор, прицепить его на велосипед, или сделать на его основе ветрогенератор.

Шаговый двигатель в качестве генератора? Меандр - занимательная электроника


Шаговый двигатель в качестве генератора? Валялся у меня шаговый двигатель и, решил я его попробовать использовать в качестве генератора. Двигатель был снят со старого матричного принтера, надписи

Обычно дует лёгенький ветерок но мой мини ветрячёк периодически раскручивается до очень больших оборотов, винт вращается с такой скоростью, что его практически не видно, правда при таких оборотах доносится едва слышное рокатание лопастей. Сейчас этот ветрячёк поддерживает в рабочем состоянии старенький, но рабочий аккумулятор, чтобы тот не разряжался. Максимальная мощность ветрячка всего до 100мА, возможно он может выдать и больше, но у нас обычно дует небольшой ветер, и замерял на обычном ветерке.

Конструкцию подобных ветрячков подсмотрел на одном заморском сайте и решил повторить, так и родился этот малыш. В качестве генератора использовал шаговый моторчик от давно нерабочего и пылившегося у меня струйного принтера. Разобрав его выкрутил маторчик. Далее посмотрел, повертел, покрутил руками, померил сколько даёт, давал очень мало, но вольты поднимались выше 12-ти, а значит он теоретически мог заряжать аккумулятор.

Далее из транзистора сделал крепление для лопастей. Транзистор просверлил по диаметру вала на котором стаяла зубчатая насадка, в общем под её размеры. Надел на вал транзистор, капнул клея и покрутил убедившись что всё ровно. Потом окончательно зафиксировал с помощъю эпоксидки. Развёл немного и залил отверстие транзистора, дополнительно защитил моторчик от непогоды замазав дырочки в моторчике. Ниже фотография сего генератора.

Далее из отрезка ПВХ трубы, диаметром 110мм, вырезал лопасти, на трубе нарисовал заготовку, которую вырезал отрезной машинкой. Размеры взял примерные ширина получилась 9см, а размах винта 48см. Просверлил отверстия и прикрутил винт к моторчику-генератору с помощъю маленьких болтиков.

За основу использовал отрезок 55-той ПВХ трубы, далее вырезал хвост из фанерки, и добавил кусочек от 110-той.Моторчик вклеил внутри трубы. После сборки получилась вот такая ветроэлектростанция. Сразу собрал выпрямитель.Так как этот мотор не хотел давать много вольт на малых оборотах, то собрал по схеме удвоения и включил последовательно.

Диоды взял HER307, конденсаторы — 3300мкф

Схему укутал в полиэтилен и вставил в трубу выпрямитель, потом мотор и привязал его проволокой сквозь просверленные дырочки, пространство замазал силиконом. Так-же силиконом потом замазал все дырдочки сверху, а снизу просверлил одно отверстие на всякий случай, чтобы если что вода стекла, и испарялся конденсат.

Хвост закрепил насквозь болтом, полукруглый хвост вставил и привязал проволокой, он и так прочно держится. Нашёл центр тяжести, просверлил (диам. 9мм.) Ещё просверлил диам. 6мм два болта М10, насквозь, под ось. (Болты М10 здесь служат «подшипником» оси) Ввернул сверху и снизу болты М10 в трубу, смазал длинный болт М6 солидолом и всё скрутил, получилось довольно жёстко. Болт-ось (М6) прикрутил к уголку, а его к палке. Сверху на болт М10 одел на силиконе пробку, теперь ось воды не боится. Всё ветрогенератор изготовлен.


Для мачты взял несколько брусочков. которые скрутил саморезами, закрепил ветряк и поднял на ветер. Подключил к аккумулятору, зарядка идёт, но очень слабенькая, поддерживает аккумулятор от естественного разряда. Так как верячок крутиться, то остался доволен, по крайней мере буду знать откуда ветер дует.Этот вариант — как сказано на том сайте — little weekend project, то-есть маленький проект для выходных, для удовольствия что-нить поковырять, тем более я не потратил ни копейки… клей не в счёт. Так по идее может пару маленьких светодиодов зажечь, или мобильный телефон за пару суток зарядить, но скорее всего такой слабый ток телефон примет за плохой контакт и отключит, написав на дисплее плохое соединение.

В будущем если будет время и желание может сделаю на освещение двора, вот только второй такой-же соберу и аккумулятор небольшой поставлю, или несколько аккумуляторных батареек. Для этого остался ещё один шаговый, только этот выдаёт под 2х20вольт от прокручивания рукой, но ток маленький. А второй — на щётках, сразу постоянка. От руки 10 вольт, КЗ — 0,5 Ампера. А ещё всё-же буду мучить автогенератор, вот только магниты дождусь.