Свеча зажигания а17дврм 3707. Примеры возможных обозначений отечественных изделий с расшифровкой

Все об свечах зажигания .

1. Зачем нужна свеча зажигания.

Ответ, вообще-то, очевиден. После того, как топливная смесь впрыснута в цилиндр и сжата поршнем до давления, примерно, в 14 атмосфер, эту смесь надо поджечь, чтобы она взорвалась. Когда смесь взрывается, она со страшной силой давит (ударяет) на поршень. Поршень идёт вниз и крутит коленвал. Надо иметь в виду, что при сжатии топливной смеси, она нагревается (вспомним школьный курс физики). Именно это позволяет завести двигатель на морозе.

Более того, если смесь сжать посильнее, то она загорится без всякой свечи. В дизельных двигателях именно так и происходит.

2. Условия, в которых работает свеча.

Условия довольно жёсткие. При вспышке топлива, температура горящей смеси может достигать 2000-2500°С. При частоте вращения двигателя 3000 оборотов в минуту, вспышки будут происходить примерно 25 раз в секунду. От перегрева цилиндр спасает только то, что при выпуске газ резко расширяется и, следовательно, остывает. В момент взрыва давление в цилиндре превышает 25 атмосфер и свеча испытывает сильные ударные нагрузки. И при этих высоких температурах и давлениях, на свечу воздействует довольно агрессивная среда из паров бензина и выхлопных газов.

3. "Холодные" и "горячие" свечи.

Итак, помним, что температура сгорания топливной смеси около 2000°С. Температура самого двигателя около 100°С. Если свеча сильно раскалится (900-1000°С), возникнет так называемое "калильное" зажигание. То есть смесь будет загораться просто от раскалённых электродов свечи не тогда, когда в свече проскочит искра, а тогда, когда ей вздумается. Соответственно, никакого угла опережения зажигания уже не будет со всеми вытекающими пагубными последствиями для двигателя.

Нормальная рабочая температура свечи около 800°С. Для поддержания такой температуры (а точнее, не превышение её при длительной езде на высоких оборотах двигателя) необходим отвод тепла от электродов свечи. Чем он эффективнее, тем свеча "холоднее". Эффективность теплоотвода характеризуется так называемым "калильным числом". Чем это число больше, тем эффективнее теплоотввод, тем "холоднее" свеча.

Понятие "холодная" и "горячая" свеча вовсе не эквивалентны температуре свечи. Это просто характеристика эффективности теплоотвода от электродов. Калильное число указывается производителем двигателя и обычно колеблется в диапазоне от 2(горячая) до 12 (холодная).

Надо отдавать себе отчёт, что если в двигатель установить свечи с неправильным калильным числом, в одном случае возможен перегрев свечи и калильное зажигание на высоких оборотах, в другом случае "недогрев" свечи и образование на ней нагара, состоящего в значительной части из углерода и сильно ухудшающего искрообразование.

Надо помнить, что когда вы медленно движетесь на первой передаче или стоите в пробке, свечи "недогреты" и на них интенсивно образуется (конденсируется) нагар. Именно поэтому производители рекомендуют после движения в пробке проехать пару-тройку километров на приличных оборотах двигателя, чтобы свечи прокалились и очистились от нагара.

Если у вас механическая коробка передач, то совет - лучше ехать на пониженной передаче и высоких оборотах, чем на высокой передаче и низких оборотах. Да и запас крутящего момента будет больше.

4. Устройство свечи.

Клемма, она же - терминатор

Гофры
Фирменный знак и марка
Металлический корпус
Длина резьбовой части
Диаметр резьбовой части
Изолятор
Заполнение специальным порошком
Уплотнительная прокладка специальной конструкции
Медный стержень
Искровой промежуток
Центральный и заземляющий электроды

Клемма терминатора призвана обеспечивать хороший электрический контакт центрального электрода и наконечника высоковольтного провода.

Гофры сделаны для того, чтобы увеличить расстояние (по поверхности) между электродами и, соответственно, уменьшить вероятность пробоя по поверхности изолятора (из-за грязи на изоляторе).

Про фирменный знак и маркировку проговорим позже.

Металлический корпус, обычно оцинкован для коррозионной стойкости, это основа всей конструкции и, одновременно, "массовый" контакт.

Резьбовая часть - одна из важнейших конструктивных характеристик. Длина, диаметр и тип резьбы резьбовой части могут быть различными для разных типов свечей.

Изолятор. Изготавливается из глиноземной керамики, обладает очень высокой диэлектрической проницаемостью (изоляционная характеристика), теплостойкостью и теплопроводностью.

Заполнение специальным порошком, обеспечивает хорошую герметичность и жесткость конструкции. А так же должно компенсироват разницу в коэффициентах линейного теплового расширения металла и керамики.

Искровой промежуток - это собственно то место, где проскакивает искра. В зависимости от особенности системы зажигания двигателя, может быть разным (от 0,7 до 2,0 мм).

Сами электроды изготавливают из специального сплава на основе никеля. Этот сплав позволяет сделать эффективный теплоотвод, устойчив к агрессивной среде и искровому переносу. Иногда центральный электрод делают тонким, тогда приходится делать его, например, из платины.

5. Немного о физике процесса искрообразования.

Снова вспомним школьный курс физики.

Искра - это лавинообразный электрический разряд в газе. Начинается он за счет того, что электрическим полем у молекул газа отрывает электроны, и они летят к положительному электроду, ускоряясь электрическим полем. По дороге они стукаются об молекулы газа и ионизируют их. Получаются новые электроны и положительные ионы. Они, в сою очередь, ускоряясь, ионизируют другие молекулы. Получается лавинообразный разряд, то бишь, искра.

При давлении, близком атмосферному, уравнение для расчета пробивного напряжения в воздухе выглядит примерно так:

Здесь р - давление газа в атм.; d - расстояние между электродами в см; U - в кВ.

При расстоянии между электродами в 1 см и давлении в 1 атмосферу (760 мм.рт.ст.) имеем напряжение пробоя примерно 31 кV.

Сразу оговорюсь, что всё это справедливо для однородного электрического поля. Это когда электроды строго параллельны друг другу и имеют бесконечные размеры. В нашем случае всё далеко не так.

Разрядное напряжение промежутков с резко-неоднородным полем существенно меньше, чем промежутков с однородным полем. Средняя пробивная напряженность для промежутков с резко-неоднородным полем составляет 5-7 кВ/см.

То есть напряжение пробоя у свечи должно быть около 700 V на воздухе и около 5 kV при работе в цилиндре.

На сколько я помню, катушка зажигания выдаёт импульс около 12 kV. То есть этого хватит с запасом, чтобы иметь стабильную искру в искровом промежутке до 2мм. Эсли я ошибся, знатоки меня прправят...

Мы знаем, что локальная напряжённость электрического поля на поверхности проводника пропорциональна кривизне этой поверхности. (Молния в дерево ударяет не потому, что оно высокое, а потому, что оно "острое"). Примерно так должен выглядеть идеальный исковой промежуток.

Вот отсюда и требования к электродам свечи. С одной стороны, они должны быть достаточно массивными, чтобы быстро не разрушиться искровым переносом материала электрода, с другой стороны, они должны быть достаточно малы (остры) в искровом промежутке, чтобы искра была стабильной и в одном месте.

На самом деле электроды выглядят примерно так.
Искра пролетает там, где ей вздумается в искровом промежутке. Ну или там, где расстояние чуть меньше. Зависит от выработки электродов.

Это вообще-то не очень критично, лишь бы смесь загорелась, однако может влиять на фронт распространения горения смеси в цилиндре. А это даст эффект чуть "гуляющего" угла опережения зажигания.

Для того, чтобы сделать этот процесс более стабильным, идут двумя путями. Во-первых, уменьшают размер плюсового электрода, что ведёт с усложнению и удорожанию конструкции. Электроды делают из платины и иридия. Во-вторых, делают так называемый Y-пропил на плюсовом электроде. Тогда искра проскакивает по краям искрового промежутка.

На таких свечах в маркировке присутствует буква "Y".

Ну и хватит, пожалуй про физику. Можно, конечно порассуждать на тему мощности искры (тока в искровом промежутке), однако этот ток достаточно мал. Он гасится сопротивлением высоковольтных проводов и встроенным в свечу сопротивлением. В противном случае мы получили бы очень мощный вибратор Герца, который наводил бы высокочастотные наводки на всё мыслимое электрооборудование вокруг, и в первую очередь на магнитолу, мобильные телефоны и тому подобное.

Ещё можно вспомнить про понятие "угол опережения зажигания" и вообще зачем оно (опережение) нужно, чем и как регулируется и на что влияет. Но как говорил Козьма Прутков - "Нельзя объять необъятное".

ВК - Тип ВСР с размерами, соответствующими международному стандарту (ISO). Расстояние от седла прокладки до конца клеммы короче на 2,5 мм чем тип ВСР .

P :
Свеча с платиновым наконечником

Z :
С высту-
пающим искровым проме-
жутком

PZ :
С высту-
пающим платиновым наконечником

Диаметр резьбовой части и размер шестигранника

F :
14*х 19 мм Шестигранник 16,0 мм

G :
14*х19 мм Шестигранник 20,6 мм
J:
12*х19

R :
С резистором
Тепловой номинал
Более горячий тип
5
6
7
8
Более холодный тип
A, B, C
Специальное исполнение
Искровой промежуток
7 - 0,7мм
8 - 0,8мм
11 - 1,1 мм

Как пользоваться второй таблицей, я не понял. Надеюсь, у меня никогда не будет машины, тебующей свечей с платиновыми электродами:)

В мануале на Suzuki Escudo, написано, что для двигателя G16A принменяются свечи NGK BKR6E.

Читаем BK - то же самое, что BCP, то есть:

BC - диаметр резьбовой части 14мм, шестигранник на 16мм;
P - конструкция с выступающим изолятором;
R - свеча с встроенным керамическим резистором на 5ком;
6 - тепловой номинал (калильное число).
E - длина резьбовой части составляет 19мм.

Хочу оговориться. Я вовсе не стратсный поклонник фирмы NGK и не собираюсь делать ей рекламу. Однако, заслуживает уважения тот факт, что это огромный концерн из четырёх заводов, в котором работает больше 5,5 тысяч человек. И этот концерн занимается выпуском, практически, только свечей зажигания. Наверное они на свечах собаку съели. И выпускают они свечи для двигателей от "Формулы 1" до бензопил и лодочных моторов.

7. Внешний вид свечи, вынутой из двигателя.

Свеча зажигания - уникальная деталь двигателя. По её внешнему виду можно судить о многих болезнях, которыми страдает двигатель. Боюсь показаться занудным, так как это практически всем известно и только ленивый не приводит на своих страничках эти картинки. Всё таки рискну.

Сразу оговорюсь, что если вы, перед тем как вынуть свечи, долго стояли в пробке или двигатель долго работал на холостых оборотах, то нагара на свече будет несколько больше, чем надо. В идеале, перед тем, как делать ревизию свечей, хорошо бы прокатиться километров 5-10 на приличной скорости и приличных оборотах двигателя. Для машинм с МКП модно просто минут 15-20 проехать на третьей передаче держа высокие обороты двигателя, а на машине с АКП - энергично поездить, выключив овердрайв.

Для снятия свечей потребуется свечной ключ на 16 длиной не менее 25-27 сантиметров (это я про Suzuki Esсudo, естественно). В головке ключа либо должен быть магнит, либо резиновое кольцо, надёжно зафиксированное в головке. Такие ухищрения нужны только для двигателей, в которых свечи стоят в глубоких свечных колодцах. Для двигателей, у которых свечи доступны снаружи, всё ещё проще.

Маркировка свечей зажигания

На свече зажигания российского производства должны быть указаны:
- дата изготовления (месяц или квартал и (или) две последние цифры года изготовления);
- товарный знак и (или) наименование предприятия-изготовителя;
- условное обозначение типа свечи (расшифровка приведена далее);
- надпись "Сделано в России" или RUS.

Из-за отсутствия за рубежом единой системы маркировки определить соответствие све-чей зажигания раз-личных производителей можно только при помощи каталогов или таблиц взаимозаменяемости (табл. 1).

Тенденции развития

В настоящее время все больше свечей зажигания выпускается с биметаллическим электро-дом. Это позво-ляет, помимо улучшения термо-эластичности, повысить их надежность и долговечность.

Растет объем производства свечей зажигания с выступанием теплового конуса изолятора из металлическо-го корпуса, что обеспечивает улучшенное самоочищение от нагара.

С целью увеличения срока эксплуатации, не требующего регулировки искрового зазора, выпускают свечи зажигания с несколькими электродами "массы".

Для улучшения процесса искрообразования (воспламеняющей способности искры) разра-батывают свечи с увеличенным искровым за-зором, изменяют форму и профиль электродов, а на их поверхности наносят платину.

Растет производство свечей зажигания с использованием поверхностного разряда (в ко-торых нет электрода "массы", а искра идет от центрального электрода к корпусу по поверх-ности изолятора).

Для снижение уровня помех радиоприему все больше свечей зажигания снабжаются встроен-ным помехо-подавительным резистором.

Таблица 1. Взаимозаменяемость основных типов свечей (прочерк - аналог отсутствует)

РОССИЯ BERU BOSCH BRISK CHAMPION NGK NIPPON DENSO
А11,А11-1,А11-3 14-9A W9A N19 L86 B4H W14F
А11Р 14R-9A WR9A NR19 RL86 BR4H W14FR
А14В, А14В-2 14-8B W8B N17Y L92Y BP5H W16FP
А14ВМ 14-8BU W8BC N17YC L92YC BP5HS W16FP-U
А14ВР 14R-7B WR8B NR17Y - BPR5H W14FPR
А14Д 14-8C W8C L17 N5 B5EB W17E
А14ДВ 14-8D W8D L17Y N11Y BP5E W16EX
А14ДВР 14R-8D WR8D LR17Y NR11Y BPR5E W16EXR
А14ДВРМ 14R-8DU WR8DC LR17YC RN11YC BPR5ES W16EXR-U
А17В 14-7B W7B N15Y L87Y BP6H W20FP
А17Д 14-7C W7C L15 N4 B6EM W20EA
А17ДВ, А17ДВ-1, А17ДВ-10 14-7D W7D L15Y N9Y BP6E W20EP
А17ДВМ 14-7DU W7DC L15YC N9YC BP6ES W20EP-U
А17ДВР 14R-7D WR7D LR15Y RN9Y BPR6E W20EXR
А17ДВРМ 14R-7DU WR7DC LR15YC RN9YC BPR6ES W20EPR-U
АУ17ДВРМ 14FR-7DU FR7DCU DR15YC RC9YC BCPR6ES Q20PR-U
А20Д, А20Д-1 14-6C W6C L14 N3 B7E W22ES
А23-2 14-5A W5A N12 L82 B8H W24FS
А23В 14-5B W5B N12Y L82Y BP8H W24FP
А23ДМ 14-5CU W5CC L82C N3C B8ES W24ES-U
А23ДВМ 14-5DU W5DC L12YC N6YC BP8ES W24EP-U

Гарантийный срок эксплуатации

По требованиям ОСТ 37.003.081 "Свечи зажигания искровые" изготовитель должен гаран-тировать беспе-ребойную работу свечей зажи-гания в течение 18 месяцев при условии, что пробег автомобиля с классической системой зажигания не превысил 30 тыс. км, а с элек-тронной системой - 20 тыс. км. Это справедливо только при условии соответствия свечей зажигания модели двигателя и соблюдении правил эксплуатации автомобиля, их монтажа, транспортирования и хранения. По мнению специалистов на двигателях в хорошем техническом состоянии фактический срок службы свечей может быть больше в 2 раза.

Снятие и установка

Демонтаж свечи зажигания с двигателя производят в следующей последовательности:
- снимают наконечник провода высокого напряжения (недопустимо тянуть за провод);
- отворачивают свечу на один оборот специальным ключом, затем поверхность в углублении головки цилиндра вокруг нее очищают сжа-тым воздухом или кисточкой, чтобы частицы грязи не попали в резьбу или камеру сгорания;
- выворачивают свечу;
- проверяют наличие уплотнительного кольца (для свечей с плоской опорной поверхностью);
- тщательно осматривают свечу на наличие механических повреждений изолятора, корпуса и электродов.

Установка производится в следующей последовательности:
- новые свечи, покрытые консервационной смазкой, необходимо протереть и промыть в растворителе (бензине). Допустимо прокипя-тить свечи в воде и просушить;
- внимательно осматривают свечу на нали-чие механических повреждений, уплотнительного кольца, контактной гайки;
- проверяют и при необходимости регулиру-ют искровой зазор (подгибая электрод "массы") до величины, указанной в инструкции по эксплуатации автомобиля;
- свечу заворачивают рукой в свечное от-верстие и затягивают специальным ключом с усилием 2 кгм.

Тест одноэлектродных свечей Александр ШАБАНОВ, Павел КАРИН autoreview.ru )

Да что там испытывать? Все свечи зажигания одинаковы - два электрода и изолятор между ними...

Таков был ответ специалиста, к которому мы обратились за консультацией в преддверии задуманного нами теста свечей зажигания. Вердикт был однозначен: никакой разницы между свечами нет и быть не может. Но как же так? Ведь каждому автомобилисту приходилось чувствовать, что с одними свечами двигатель работает ровно, с другими - сбоит на холостом ходу, с третьими - плохо заводится... И мы все-таки решили сравнить друг с другом несколько комплектов свечей, предназначенных для восьмиклапанных «переднеприводных» двигателей ВАЗ.

В автомагазинах мы купили двенадцать комплектов одноэлектродных свечей, которые подходят для двигателей Самар и вазовских машин «десятого» семейства. Из отечественных выбрали свечи марок ЭЗ, APS и Bosch, сделанные в Энгельсе, и Brisk из Озерска. Компанию им составили немецкие свечи Beru, Bosch Platinum и Finwhale, японские NGK и Denso, французские Eyquem. А свечи Champion, судя по пометке на упаковке, «сделаны в Евросоюзе».

Но как сравнивать свечи? Что проверять?

Открываем отраслевой стандарт ОСТ 37.003.081-87 «Свечи зажигания искровые». Оценка размеров и внешнего вида свечей зажигания - это, конечно, хорошо. Проверка бесперебойности искрообразования и калильного числа - тоже неплохо. Но об измерении влияния свечи на главные эксплуатационные характеристики двигателя - на мощность, экономичность, токсичность, - в ОСТе не сказано ни слова.

Значит, придется разрабатывать свою собственную методику!

Нам помогли специалисты исследовательской лаборатории, куда мы обратились для проведения теста. Они рассуждали так. Основная задача свечи зажигания - искрить. Проверить свечу «на искру» элементарно - подаешь напряжение и смотришь. Но в реальных условиях, в камере сгорания, свеча работает под давлением - в исправном вазовском моторе со степенью сжатия 9,9, в конце такта сжатия это 10-13 атмосфер (при полностью открытой дроссельной заслонке). Значит, нужно поместить свечу в барокамеру - и проследить за бесперебойностью искрообразования под давлением.

Но это - далеко не все. Ведь в барокамере - все-таки воздух, да и температура близка к комнатной. А в реальном моторе - топливовоздушная смесь, высокая температура, вибронагруженность...

Почему бы не использовать для сравнения настоящий, «живой» двигатель?

Идея такова. Берем абсолютно исправный восьмиклапанный двигатель ВАЗ-2111 (система впрыска топлива, лямбда-зонд, без нейтрализатора, контроллер Январь-5.1 2111-1411020-61). Устанавливаем его на специальный моторный стенд, который с помощью тормозного устройства позволяет имитировать любой режим работы - от холостого хода до номинальной нагрузки. Стенд оборудован измерительным комплексом для замеров мощности, частоты вращения, расхода воздуха, топлива и токсичности отработавших газов. Обороты можно выставить с точностью до 10 об/мин, а крутящий момент - до 0,5 Нм. Все процедуры измерений прописаны в ГОСТе 14846-81 «Двигатели автомобильные. Методы стендовых испытаний».

Вкручиваем в мотор первый комплект свечей. Запускаем, измеряем, записываем. Теперь глушим, меняем свечи на другие - и вновь повторяем те же самые тесты. Все компоненты стенда, кроме свечей, не изменились - двигатель работает на том же самом масле и бензине, температура в лаборатории под контролем. Значит, если мотор после замены свечей потеряет в мощности, если вырастет расход топлива или выброс несгоревших углеводородов - в этом будут виноваты именно свечи! И именно стендовые, лабораторные условия помогут нам добиться нужной точности испытаний.

Но сперва мы, вооружившись измерительными щупами, проверили искровые зазоры всех свечей. У всех комплектов они оказались равномерными, а регулировки потребовали свечи ЭЗ, Denso и Eyquem. Подгибаем боковой электрод, замеряем - норма. Причем, если зазоры свечей ЭЗ и Denso мы увеличивали до 1 мм по рекомендации ВАЗа, то к французским свечам Eyquem прилагалась специальная табличка, по которой зазор следует увеличить с исходных 0,65 мм до 0,8 мм.

Теперь - в барокамеру. Мы начинали проверку искрообразования при атмосферном давлении, подавая на свечу напряжение в 17 киловольт. Это пониженное напряжение по сравнению со штатным (22 кВ), но так мы имитируем самые неблагоприятные условия работы. Все свечи вроде бы искрят. Правда, по-разному. Где-то искра ровная и мощная, где-то, как у свечей ЭЗ А17ДВРМ, мечется от заусенца к заусенцу на «мохнатом», небрежно обработанном боковом электроде...

Теперь начинаем плавно повышать давление - и наблюдаем за бесперебойностью искрообразования. Первыми сдаются штатные свечи из Энгельса - при давлении воздуха 5,1 атм искра периодически пропадает. Конечно, для реальных условий в камере сгорания, заполненной топливовоздушной смесью с более высокой диэлектрической проницаемостью, это давление будет выше. Однако мы не можем для чистоты эксперимента наполнить барокамеру смесью воздуха с бензином - от искры она просто взорвется! Зато мы можем сравнить все свечи в одних и тех же «воздушных» условиях - и можем точно установить, какие из них хуже, а какие лучше.

Позже всех сдались свечи Brisk LR15YC - при давлении в 10,5 атм. Неплохие результаты и у комплектов NGK BPR6E, Bosch Platinum WR7DP и Bosch WR7DC. Аналогичная картина и с полным прекращением искробразования - свечи Brisk перестали работать позже других. А вот у комплектов APS А17ДВРМ, Finwhale F510, Champion RN9YCC4, ЭЗ А17ДВРМ и Bosch WR7DCX показатели по этому параметру невысоки.

Может быть, разница в результатах объясняется различием искровых зазоров - от 0,7 до 1,1 мм? Это так, но лишь отчасти. Например, свеча Denso W20EPR-U с большим искровым промежутком в 1,0 мм выдерживает высокое давление в 7,9 атм. А свеча APS c таким же зазором сдалась уже при 5,5 атм...

Но в любом случае испытание в барокамере - это некая условность, дополнительный тест. А основное - впереди. Стендовые моторные испытания!

Во-первых, при работе по внешней скоростной характеристике, то есть при полностью открытой дроссельной заслонке, мы замерили крутящий момент (и, соответственно, мощность) с каждым из комплектов свечей. Например, при частоте вращения 2500 об/мин двигатель со свечами ЭЗ развивает крутящий момент в 101,5 Нм, а со свечами Champion - уже 106,5 Нм. Пять ньютон-метров разницы!

Оказалось, что и с любыми другими свечами двигатель развивает больше тяги, чем со штатными свечами ЭЗ А17ДВРМ. Наименьший прирост, в 2,8%, обеспечивают свечи Denso W20EPR-U. А максимального результата помогают достичь свечи Finwhale F510 - двигатель при полном дросселе развивает на 5,9% больше мощности, чем со свечами ЭЗ.

Но каким образом замена свечей зажигания влияет на величину тяги?

Задача свечи - поджечь горючую смесь. От того, насколько свече это удается, зависит начальный очаг воспламенения - чем он больше, тем быстрее по камере сгорания распространяется фронт пламени и тем выше будет развиваемая мощность. Чтобы создать уверенный начальный очаг воспламенения, нужна «крупная», длинная искра - как говорят специалисты, с большим линейным размером. Но самое интересное, что этот размер искры не всегда равен величине зазора! Присмотритесь к фотоснимкам искр разных свечей. Например, у свечей ЭЗ искра каждый раз имеет разный размер - она буквально мечется по всей поверхности бокового электрода. То так, то эдак. Отсюда и худший результат. А у свечи Champion искра равномерно «стоит» по диагонали между центральным электродом и изгибом бокового. То есть сама искра «длиннее», чем зазор между электродами, который можно измерить щупом!

Так что все очень, очень непросто. А вы говорите - два электрода и изолятор...

Аналогичная ситуация и с измеренной экономичностью. Наименьший удельный расход топлива в режимах городского цикла показал двигатель со свечами NGK BPR6E и Finwhale F510. А вот со свечами APS А17ДВРМ и Beru Ultra 14R-7DU расход топлива в режимах частичной нагрузки был выше, чем со штатными свечами ЭЗ.

Почему? Дело в том, что скорость распространения фронта пламени зависит и от температуры в зоне воспламенения. И она тоже оказалась разной! Если у свечей NGK искра имеет бело-синий цвет, что соответствует температуре 3500-4000 К (градусов по абсолютной шкале Кельвина), то, например, искра свечей APS содержит красноватые оттенки (температура около 3000 К). А ведь температура искры влияет на начальную скорость распространения фронта пламени в квадрате!

Кроме того, по ходу теста мы оценивали качество и степень устойчивости работы двигателя в различных режимах - наличие и величину колебаний крутящего момента при неизменной подаче топлива, температуры отработавших газов. Замеры токсичности проводили на режимах холостого хода, внешней скоростной характеристики и в режиме городского цикла. Лучшие результаты по снижению содержания СО и СН в отработавших газах по сравнению с базовым комплектом (ЭЗ А17ДВРМ) показали свечи Denso W20EPR-U, Eyquem RC62LS и Bosch Platinum WR7DP. Хуже здесь выступили свечи NGK BPR6E, Bosch WR7DC и Finwhale F510.

А почему в тестах на максимальную мощность и на токсичность лидеры - разные? Это оттого, что «мощностной» тест мы проводили при максимальной нагрузке двигателя и на высоких оборотах, а замеры токсичности - на частичных нагрузках и малых оборотах. «Мозг» системы зажигания, роль которого в нашем случае выполняет контроллер Январь-5.1, в зависимости от оборотов и от нагрузки изменяет угол опережения зажигания - в соответствии с заложенной в него программой, рассчитанной на штатные свечи ЭЗ А17ДВРМ. Каждая новая свеча, установленная взамен штатной, меняет скорость сгорания горючей смеси - и, следовательно, реальный угол опережения зажигания. Поэтому одни свечи лучше работают на режимах максимальной мощности, а другие - на режимах частичных нагрузок. Но если переписать программу контроллера под конкретную «хорошую» свечу, то ее результаты будут еще лучше и стабильнее!

А свечи Bosch WR7DCX преподнесли сюрприз - с ними контроллер Январь 5.1 словно забыл об оптимальном соотношении воздуха и топлива. Временами обогащение топливовоздушной смеси достигало 20% по сравнению с базовым! Причиной стала коррекция времени впрыска топлива, которую контроллер производит по сигналам от датчика кислорода - то бишь от лямбда-зонда. Обычно эта коррекция кратковременна - она нужна на переходных режимах. Но со свечами Bosch WR7DCX коррекция была непрерывной - в выхлопных газах было слишком много кислорода, что свидетельствовало о неполном сгорании топлива. Причина - пропуски зажигания и катастрофическое ухудшение токсичности. А ведь другие свечи с таким же зазором (1,1 мм) вели себя хорошо...

Мы решили повторить тест на двигателе без обратной связи, как на моторах ВАЗ с контроллером Январь-5.1 2111-1411020-71. Откорректировать состав смеси для свечей Bosch WR7DCX «впрысковый» двигатель без обратной связи не может - нет датчика кислорода. Но ситуация повторилась - о пропуске вспышек подтвердил повышенный уровень несгоревшего топлива, то есть углеводородов (СН). По токсичности Bosch WR7DCX на этот раз выиграл у штатных свечей ЭЗ, но существенно проиграл всем остальным.

А для того, чтобы еще раз убедиться в верности и справедливости выбранной методики теста, мы «прокрутили» злополучный Bosch WR7DCX и еще несколько комплектов и на двигателе со впрыском и без обратной связи, и даже на карбюраторном моторе. Результаты совпали!

Подсчитывая итоговый рейтинг теста, мы перевели результаты всех испытаний в баллы и просуммировали их с учетом весовых коэффициентов - по отработанной методике, которую применяем и во всех остальных сравнительных тестах. Лидер - комплект японских свечей NGK, с которыми двигатель показал высокие результаты по большинству параметров. На втором месте сразу два комплекта - это немецкие свечи Bosch WR7DP и Finwhale. С последними двигатель получил максимальную прибавку в мощности при полном дросселе (5,9%). На третьем месте - французский Eyquem, лидер по снижению токсичности.

А вот штатные свечи ЭЗ, увы, по большинству параметров уступают всем остальным...

Теперь давайте вернемся к вопросу о том, одинаковы ли все свечи. Три комплекта - ЭЗ А17ДВРМ, APS и Bosch WR7DC, - сделаны на одном заводе в Энгельсе, который принадлежит корпорации Bosch. Казалось бы, куда «одинаковее»? Но если свечи марки ЭЗ делают полностью из российских комплектующих, то марка APS появилась как пробный шаг фирмы Bosch перед выходом на российский рынок - эти свечи выпускаются на более современной линии, а часть комплектующих заказывается в Германии. Свечи же с маркой Bosch в Энгельсе вообще собирают из готовых импортных «запчастей».

Сравните, например, боковые электроды свечей ЭЗ и Bosch WR7DC. У «обычных» свечей ЭЗ они очень плохо обработаны, и такой важный параметр, как искровой зазор, имеет весьма относительное значение - искра просто находит ближайший заусенец. А качество электродов свечей APS и Bosch лучше. В итоге изделия из Энгельса так и расположились - по нарастающей.

Однако «дороже» не всегда значит «лучше». Например, свечи Champion RN9YCC, купленные нами за 440 рублей, выглядят неубедительно на фоне того же российского комплекта Bosch за 160 рублей.

Правда, есть один очень важный параметр - это ресурс. Сколько прослужит та или иная свеча в одном и том же моторе? Какова ее способность к самоочищению? Насколько она сопротивляется отложениям металлосодержащих присадок на электродах и изоляторе? Проверить это очень просто. Нужно взять 12 одинаковых двигателей и заставить их молотить сутки напролет в одинаковых режимах. А лучше не 12, а все 24 или 36 моторов. Для пущей статистики. Возможно, тут бы и проявились преимущества платинового центрального электрода модели Bosch WR7DP или медного бокового - свечи Champion RN9YCC.

Жаль, что провести такой тест невозможно...

В итоге мы проверили только то, что смогли проверить. И выяснили очень важную вещь - что не все йогурты одинаково полезны. И это открытие вдохновило нас на следующий шаг - повторить тест, но с более дорогими многоэлектродными свечами, которых сейчас немало на прилавках. Результаты? Читайте в следующем номере!

NGK BPR6E
Япония
Цена: 240 рублей*
Искровой зазор: 0,8 мм

Японские свечи сделаны на совесть: аккуратно приварен боковой электрод, нанесена четкая маркировка. И в работе свечи NGK хороши - по сравнению со штатными свечами ЭЗ расход топлива уменьшается более чем на 5%! Это лучший результат среди 12 образцов. Двигатель с этими свечами работает устойчиво, прибавка в мощности достигает 4,4% при полном дросселе. Единственное замечание - невысокие результаты по «экологическим» испытаниям. А еще интересно то, что вопреки рассказу специалистов NGK о назначении V-образной выемки на центральном электроде (см. АР N 15, 2004), искра не смещается к его краям, а располагается точно по центру зазора…

Finwhale F510
Германия
Цена: 180 рублей*
Искровой зазор: 1,1 мм
Судя по данным на упаковке, свечи Finwhale сделаны в Германии. И, как показал наш тест, сделаны хорошо.

По снижению расхода топлива Finwhale уступает только свечам NGK (3,1% против 5,1%). Зато по приросту мощности Финвалы вне конкуренции - при работе на внешней скоростной характеристике двигатель получает добавку в 5,9% мощности относительно штатных свечей ЭЗ! С экологией средненько, но лучше, чем у свечей NGK.

Eyquem RC62LS
Франция
Цена: 160 рублей*
Искровой зазор: 0,8 мм

К свечам Eyquem трудно придраться. Сделаны они очень аккуратно, да и в работе хороши. Двигатель с ними работает устойчиво, а по расходу топлива занимает третье место (вслед за свечами Finwhale и NGK). Прирост мощности при полном дросселе на фоне конкурентов не так высок - 3,7%. Зато по снижению токсичности отработавших газов (относительно свечей ЭЗ) свечи Eyquem - безусловный лидер.

Bosch WR7DC
Россия, Энгельс
Цена: 160 рублей*
Искровой зазор: 0,7 мм

Пристально разглядывая свечи Bosch WR7DC и штатные ЭЗ А17ДВРМ, сделанные на одном заводе, трудно найти отличия. Но на макрофотографиях видно, что боковые электроды сделаны с совершенно разным качеством. Соответственно, в работе Bosch проявляет себя по-другому. По устойчивости работы двигатель с этими свечами делит первое место с «платиновыми» свечами Bosch WR7DP, а по «экономичности» - четвертое. Мощность двигателя относительно базовых свечей при полном дросселе увеличивается на 4,9% - это лучше, чем у лидирующих комплектов NGK и Eyquem.

Brisk LR15YС
Россия, Озерск
Цена: 120 рублей*
Искровой зазор: 0,8 мм

Свечи Brisk выступили неплохо. Мощность двигателя при работе на внешней скоростной характеристике увеличивается на 5% (лучше только Finwhale), а в экстремальных условиях, которые мы создали в барокамере, Бриску и вовсе не оказалось равных. Но на части режимов малой нагрузки двигатель со свечами Brisk работал неустойчиво. Невысокими оказались экономические и экологические показатели. Да и грамотность оформителей упаковки подкачала - там написано «свечи зажыгания»...

Champion RN9YCC4
ЕС (Европейский Союз)
Цена: 440 рублей*
Искровой зазор: 1,1 мм

Свечи Champion единственные из всех имеют медный сердечник не только у центрального, но и у бокового электрода. Но токсичность выхлопа двигателя с этими свечами - чуть лучше чем с Бриском, экономичность - на среднем уровне. Цвет искры содержит «холодные» красноватые оттенки, что приводит к неустойчивой работе двигателя на части малых и средних нагрузок. Единственная радость - пятипроцентный прирост мощности при полном дросселе (относительно свечей ЭЗ). А огорчение - вдвое большая, чем у победителя, цена.

Denso W20EPR-U
Япония
Цена: 240 рублей*
Искровой зазор: 1,0 мм

Разработчики свечей Denso пошли иным путем, нежели конкуренты из NGK, - U-образная выемка сделана не на центральном, а на боковом электроде. И цели, по заявлению фирмы, она преследует другие - позволяет сымитировать увеличенный зазор, для «активации» которого подходит штатное напряжение. Но и по мощности (при полном дросселе), и по экономичности двигатель с этими свечами показывает невысокие результаты. Зато свечи Denso лучше всех снижают токсичность отработавших газов.

Beru Ultra 14R-7DU
Германия
Цена: 220 рублей*
Искровой зазор: 0,8 мм

Немецкие свечи приятно взять в руки - аккуратная работа! И двигатель с ними работает устойчиво. Но результаты по мощности и по снижению токсичности (относительно свечей ЭЗ) невысоки. А по расходу топлива свечи Beru уступили даже штатным свечам ЭЗ. И это при двукратной разнице в стоимости...

APS А17ДВРМ
Россия, Энгельс
Цена: 100 рублей*
Искровой зазор: 1,0 мм

Свечи APS в итоге немного превзошли «земляков» ЭЗ. Прежде всего по мощности (при полном дросселе она выросла на 3,5%) и совсем немного - по устойчивости работы двигателя на всех режимах (из-за непостоянного положения искры в зазоре на части малых нагрузок наблюдалось колебание крутящего момента). В то же время на частичных нагрузках свечи APS работали похуже - например, расход топлива по сравнению со свечами ЭЗ увеличился на 0,6%.

Bosch WR7DCX
Россия, Энгельс
Цена: 235 рублей*
Искровой зазор: 1,1 мм

Свечи Bosch WR7DCX отличаются от свечей Bosch WR7DC увеличенным до 1,1 мм зазором. Информация на упаковке гласит, что они специально предназначены для «впрысковых» двигателей ВАЗа. Но на большинстве режимов двигатель работал неустойчиво, а контроллер Январь 5.1 2111-1411020-61 реагировал на пропуски зажигания постоянной коррекцией времени впрыска топлива, что привело к катастрофической токсичности отработавших газов.

ЭЗ А17ДВРМ
Россия, Энгельс
Цена: 100 рублей*
Искровой зазор: 1,0 мм

Все характеристики впрысковых двигателей ВАЗ настраиваются именно на эти свечи - ЭЗ А17ДВРМ. Но при этом свечи ЭЗ уступили всем конкурентам. «Мохнатый» боковой электрод заставляет искру метаться от заусенца к заусенцу, что вкупе с периодически проскакивающими «холодными» искрами красного цвета приводит к худшей в тесте устойчивости работы двигателя. А может, дело в стабильности качества изготовления?

I. Результаты испытаний. Одноэлектродные свечи зажигания
Влияние на общую оценку NGK BPR6E Finwhale F510 Bosch WR7DP Eyquem RC62LS Bosch WR7DC
Испытания в барокамере 10%
4% 8,5 5,3 7,5 7,1 7,8
6% 7,9 5,4 7,1 6,4 7,1
Стендовые моторные испытания 90%
Мощность 30% 8,5 9,7 9,0 7,9 8,9
Экономичность 24% 10,0 8,5 7,0 8,0 7,0
Токсичность 18% 6,4 6,7 7,8 8,5 7,1
Устойчивость работы 18% 9,2 8,6 9,8 9,6 9,8
Общая оценка 100% 8,5 8,3 8,3 8,2 8,1
II. Результаты испытаний. Одноэлектродные свечи зажигания
Влияние на общую оценку Brisk LR15YC Champion RN9YCC Denso W20EPR-U Beru 14R-7DU APS А17
ДВРМ
Bosch WR7
DCX
ЭЗ А17
ДВРМ
Испытания в барокамере 10%
Давление нарушения искрообразования 4% 10,0 5,2 7,0 6,8 5,4 5,4 5,0
Давление прекращения искрообразования 6% 9,6 5,4 6,7 6,4 5,0 5,7 5,7
Стендовые моторные испытания 90%
Мощность 30% 9,0 9,0 7,2 7,9 7,8 8,5 5,0
Экономичность 24% 6,7 6,7 6,8 6,0 5,7 7,0 6,2
Токсичность 18% 6,6 6,7 8,0 6,1 5,0 - 5,2
Устойчивость работы 18% 8,7 8,7 9,0 9,2 8,1 8,3 7,9
Общая оценка 100% 8,0 7,7 7,5 7,1 6,6 6,3 5,9
Результаты относятся только к образцам, проходившим испытания. Редакция не занималась проверкой подлинности образцов

Заворачивая свечу зажигания в двигатель, мы не думаем о том, каким образом расположится в итоге боковой электрод - к стенке цилиндра, к впускному клапану, к выпускному... А какая разница?

Боковой электрод свечи расположен
открытой частью искрового зазора
в сторону стенки камеры сгорания

Она есть, и немалая. Опыт автогонщиков подсказывает, что свеча работает лучше, когда она развернута открытой частью искрового зазора в объем камеры сгорания - в сторону клапанов. Перед тестом мы решили это проверить. Из двадцати четырех помеченных свечей APS А17ДВРМ подобрали три комплекта. Первый комплект включал свечи, которые при затягивании «отворачивались» открытой частью искрового зазора от камеры сгорания - к стенке цилиндра. Свечи второго комплекта при затяжке, наоборот, открывали искровой промежуток камере сгорания. А третий комплект был промежуточным, «боковым» - как правило, именно так в среднем и располагаются электроды свечей при «случайной» затяжке.

Искровой промежуток свечи
открыт камере сгорания

Все три комплекта прошли стендовые испытания в двигателе ВАЗ-2111. И оказалось, что ориентация бокового электрода серьезно влияет на процесс сгорания! Когда электрод «экранирует» искровой промежуток, заслоняя искру от потока топливовоздушной смеси из впускного клапана, на режимах холостого хода и малых нагрузок это вызывает резкий рост удельного расхода топлива, а в выхлопных газах растет содержание несгоревших углеводородов (СН). Более того, когда все четыре свечи встают в «закрытую» позицию, двигатель вообще отказывается работать на режимах холостого хода с оборотами менее 1200 об/мин! При малых нагрузках разница в удельных расходах топлива составила 15%, а по выбросам СН - даже до 80%.

Безразличная, или «боковая»,
ориентация бокового электрода

Но при больших оборотах влияние ориентации боковых электродов снижается - потому что процессы газообмена протекают быстрее, и турбулизация воздушного заряда в камере выше. Тем не менее мы во время проведения теста следили за тем, чтобы свечи не вставали в «закрытую» позицию - использовали безразличную, или «боковую», ориентацию искрового зазора.

Калильное число

Что такое калильное число?

Когда мы запускаем непрогретый двигатель, на пока еще холодном тепловом конусе изолятора свечи начинают скапливаться отложения из несгоревших углеводородов. Но как только температура свечи достигнет 400°С, нагар станет выгорать - свеча будет самоочищаться.

Но двигатель работает, температура свечи растет. Если она превысит 900°С, то возникнет калильное зажигание - смесь начнет воспламеняться не от искры, а от нагретых частей камеры сгорания. Одна из этих частей - сама свеча, через которую отводится часть тепла. Поэтому для каждой конкретной модели двигателя нужно подбирать свечи с определенной тепловой характеристикой - с нужным балансом способности к низкотемпературной самоочистке и устойчивости к перегреву. Этот баланс и характеризует калильное число. Чем оно меньше, тем «горячее» свеча (при меньших нагрузках достигает максимальной температуры) и тем более узок ее рабочий диапазон. Такие свечи - для низкофорсированных двигателей. Если степень форсирования двигателя высока, то его склонность к калильному зажиганию выше, поэтому нужны «холодные» свечи с высоким калильным числом.

Маркировка отечественных свечей зажигания определяется ОСТом 37.003.081 - 98.

1 - Первая буква обозначает размерность резьбы на корпусе свечи. Возможны два варианта: «А» - это резьба М14х1,25, «М» - М18х1,5

2 - Существуют два вида установки свечи зажигания в головку блока цилидров. Наиболее распространено соединение плоских опорных поверхностей (свечи и головки) через уплотнительное кольцо (в этом случае позиция «2» пуста). Другой вариант - с конической опорной поверхностью свечи зажигания (обозначается буквой «К»)

3 - Здесь указывается размер под ключ. «У» - это уменьшенный до 16,0 мм размер шестигранника, как на свечах для шестнадцатиклапанных двигателей. Буква «М» соответствует 19-миллиметровому ключу. А если буква не указана, как у большинства свечей, то размер ключа - 20,8 мм

4 - Цифры соответствуют калильным числам из ряда 8, 11, 14, 17, 20, 23, 26. Наименьшее калильное число соответствует «горячей» свече, наибольшее - «холодной»

5 - Позиция указывает длину резьбы на корпусе свечи зажигания. Для свечей с плоской опорной поверхностью буква «Д» соответствует длине в 19 мм, отсутствие буквы - 12,7 мм

6 - Тепловой конус изолятора может по-разному располагаться относительно металлического корпуса свечи. Если он выступает за корпус, то в обозначении появляется буква «В». Если позиция свободна, то выступания нет

7 - Наличие помехоподавительного резистора обозначается буквой «Р». Если резистора нет - позиция пуста

8 - Если центральный электрод выполнен из никелевого сплава, то это не указывается. А если электрод с медным сердечником - появляется буква «М»

9 - В конце может располагаться порядковый номер разработки или модернизации

Например, свечи APS и ЭЗ в нашем тесте имели обозначение А17ДВРМ. Это означает, что резьба их корпусов имеет размер М14х1,25 и длину 19 мм. Калильное число - 17. Тепловой конус изолятора выступает за корпус свечи. В свечу встроен резистор, а центральный электрод имеет медный сердечник.

Но иностранные производители свечей зажигания не придерживаются каких-либо единых правил маркировки. И шкалы калильных чисел у них другие. Если у нас с ростом числа свеча становится «холоднее», то, скажем, у фирмы Brisk все наоборот. Поэтому подбирать импортный аналог отечественным свечам следует по каталогам фирм-производителей или по таблицам взаимозаменяемости. Так, например, нашим свечам А17ДВРМ соответствуют свечи Beru 14R-7DU, Brisk LR15YC или Champion RN9YC. Но в нашем тесте участвовал другой «чемпион» - RN9YCC4. Вторая «С» указывает на то, что медный сердечник есть не только у центрального, но и у бокового электрода, а «четверка» говорит об увеличенном до 1,1 миллиметра зазоре.

Кстати, а какова ситуация с зазорами?

Те свечи, которыми тольяттинские моторы оснащаются на конвейере, имеют такие зазоры. Для классических ВАЗов это 0,5 мм, для карбюраторных «переднеприводных» моторов - 0,7 мм, а на свечах для «впрысковых» двигателей ВАЗа установлен зазор в 1,0 мм.

Каким образом конструкция свечи влияет на мощность, токсичность и экономичность работы двигателя?

Из всех факторов, определяющих эти характеристики, от свечей зажигания наиболее зависима скорость сгорания смеси. Сгорание тем эффективней, чем больше начальный очаг воспламенения (по сути, зазор) и выше температура искры. Известно, что свечи Bosch периодически дают красную «холодную» искру (ее температура - около 3000 градусов по шкале Кельвина), а бело-синий цвет «горячей» искры, например, у свечей Beru или NGK соответствует высокой температуре в 4000 К. Суть в том, что скорость сгорания смеси зависит от квадрата температуры!

Еще один параметр - это зазор. «Мощностные» лидеры, свечи Champion и Finwhale, отличаются увеличенным до 1,1 мм искровым зазором. Но у свечи Brisk Premium искровой промежуток еще больше, а по мощности они уступают свечам Finwhale и Champion. Почему? Дело в том, что искра Бриска содержит «холодные» красные оттенки, свидетельствующие о невысокой энергии, что и подтвердилось в барокамере.

Есть еще один влиятельный фактор. Взгляните на схемы распространения фронта пламени с одноэлектродной и с многоэлектродной свечой. В первом случае зарождающийся фронт ограничен поверхностью бокового электрода - его интенсивное развитие начинается лишь на выходе из межэлектродного пространства. А у многоэлектродных свечей, напротив, зазор «открыт» и развитие фронта происходит немедленно - нет гасящего влияния боковых электродов!

Для правильной работы бензинового двигателя состояние и качество свечей зажигания играют определяющую роль. К примеру, нестабильная искра даст пропуски воспламенения, которые не только выдадут себя потряхиванием на низких оборотах и езде внатяг, но и приведут к попаданию горючей смеси в катализатор – а это уже риск его перегрева и выхода из строя. Не зря уже начиная с эконорм Евро 3 в программах ЭБУ впрыска отечественных автомобилей предусмотрена диагностика неравномерности вращения коленвала и отключение подачи топлива в сбоящие цилиндры.

Конструктивные особенности свечей зажигания

  1. Калильное число характеризует скорость теплоотвода от электродов к юбке свечи. При работе свеча должна разогреваться до такой температуры, чтобы нагар на ней окислялся, не успевая нарастать, но и перегрев ей опасен: возможно возникновение калильного зажигания, сами электроды начнут ускоренно разрушаться. Проблема в том, что сама тепловая нагрузка на свечу неравномерна – при езде на низких оборотах нагрев значительно меньше, чем при езде «педаль в пол». Свечи со штатным калильным числом в обоих этих случаях будут работать на крайней точке оптимального режима – недо- и перегреваться соответственно.
  2. Искровой зазор зависит в первую очередь от мощности штатной системы зажигания и максимального давления в цилиндре в конце такта сжатия: он должен быть таким, чтобы обеспечить уверенный пробой искры даже при низком напряжении в сети (прокрутка стартером на подсевшем аккумуляторе). А разница в этом случае очевидна: обычно коэффициент трансфомации у катушек зажигания около 2000, то есть при работающем генераторе они могут выдать до 28 киловольт, при запуске же – всего 14! Следовательно, приобретаемый комплект свечей должен иметь именно тот зазор, что установлен производителем автомобиля: увеличенный означает риск пропусков зажигания (зато в пределах возможностей катушки обеспечит более мощную, лучше воспламеняющую смесь искру), уменьшенный гарантирует возможность запуска с севшей батареей, но чреват перебоями уже из-за снижения энергии искры.
  3. Вылет электродов также многое значит для работоспособности свечи в конкретном моторе. Например, на восьмиклапанных моторах, где свеча стоит сбоку камеры сгорания, увеличение вылета оптимизирует воспламенение смеси: зона, прилегающая к стенкам камеры сгорания, хуже вентилируется, в то время как вынос электродов дальше гарантирует, что в искровом зазоре будет качественная, легко воспламеняющаяся смесь. Для ВАЗовских восьмиклапанников, где вентиляция камеры сгорания ухудшена конструктивно (впускные и выпускные каналы расположены в одном направлении, а не друг напротив друга), это достаточно чувствительно. Свечи же с заглубленными внутрь электродами применяются, как правило, на многоклапанных моторах с минимальным объемом камеры сгорания, иначе они могут столкнуться с клапанами или поршнем.
  4. Количество электродов в реальной эксплуатации мало принципиально. Многоэлектродные свечи теоретически имеют увеличенный ресурс – когда эрозия разрушает один из боковых электродов, искра начинает бить в другой (в отличие от распространенного заблуждения, одновременно между несколькими электродами искра не возникает). На практике же обычно искра «плавает» (именно поэтому кажется, что их несколько) – в условиях плохого распределения смеси по цилиндру искра может переходить из рабочей зоны в «затененную», то есть загрязненную остаточными отработанными газами. Как итог вместо улучшения ресурса мы получим ухудшение работы мотора, что, опять-таки, принципиально для ВАЗовского восьмиклапанника, и так отвратительно работающего на холостом ходу с предписанной нынешними эконормами обедненной смесью.

Видео: Тест свечей зажигания на стенде.

Ещё кое-что полезное для Вас:

Благородные металлы: практический смысл применения

Как мы уже сказали в последнем пункте, большой практической пользы в увеличении ресурса свечей переход на многоэлектродную схему не принес. Фактически при этом борьбу с самой причиной естественного износа свечей, то есть эрозией контактов, заменили паллиативом – подстановкой «запасных». Для увеличения же непосредственно надежности электродов конструкцию свечей ощутимо переработали.

В «платиновых» и «иридиевых» свечах зажигания главная особенность, бросающаяся в глаза – это очень тонкий центральный электрод, точно локализующий точку возникновения искры – напротив него на боковом электроде напаяна бляшка из соответствующего металла, им же покрыт и центральный электрод.

Плюсы подобных свечей очевидны: электроды имеют срок службы, в нормальных условиях в два-три раза превосходящий таковой у обычных свечей. Тонкий центральный электрод прекрасно самоочищается, что также способствует надежности работы.

Минусы, увы, тоже существенны. Первый – это цена: комплект с надписью Platinum или Iridium обойдется минимум в два-три раза дороже обычных свечей. Второй, как ни странно, это нежность: невыгорающий нагар моментально убивает подобные свечи, а механическая чистка им противопоказана, как и дедовский прожиг горелкой. В первую очередь мы, конечно, говорим о печально известном ферроцене, нарваться на который не редкость и до сих пор.

Нетрадиционные схемы

Часть конструкторских решений в свечах зажигания нетрадиционной схемы можно называть условно рабочими – улучшая что-то одно, они ухудшают другое. Простейший пример – это серия свечей NGK V-Line: центральный электрод у них имеет канавку, соответственно, искра всегда проскакивает между краем электрода и боковым. В теории это улучшает воспламенение смеси за счет выноса искры в лучше вентилируемое пространство и стабилизации точки искрообразования, но и эрозия такого центрального электрода ускоряется.

Часть же свечей на рынке нельзя отнести никак иначе чем к «гербалайфу» от авторынка: всевозможные «форкамерные», «факельные» и так далее свечи в лучшем случае работают не лучше штатных, в худшем – ускоренно разрушается. Например, в печально известных свечах «Бугаец» напаянная юбка не только ухудшала вентиляцию искрового промежутка, но и выгорала, а иногда и уходила в «свободный полет» в камеру сгорания. Из работоспособных, но бесполезных в практике обычного автомобилиста конструкций отметим разве что свечи, не имеющие бокового электрода вообще – они изначально создавались для работы в моторах сверхвысокой форсировки, чтобы избежать перегрева выступающих боковых электродов, в обычном городском цикле на моторе «гражданской» степени форсирования они отвратительно самоочищаются и гарантируют перебои на холостом ходу даже на идеального качества бензине.

Выбираем свечи зажигания для ВАЗ

Поговорим о свечах зажигания на конкретном примере – 16-клапанном моторе ВАЗ-2110, который с завода комплектуется свечами А17ДВРМ Энгельсовского завода. Этот же завод, кстати, производит оригинальные свечи и для других российских конвейеров: маркировку «ЭЗ» можно увидеть на свечах Renault Original, к примеру. Для удобства будем ориентироваться именно на эти свечи.

ЭЗ А17ДВРМ

Главный плюс этих свечей зажигания – стабильность качества: встретить в оригинальном комплекте большой разнобой по сопротивлению или величине искрового зазора трудно. Мы не зря упомянули слово «оригинальный» — увы, рынок наводнен то ли подделками, то ли уходящей в свободную продажу отбраковкой. Свечи имеют неплохой запас по прекращению искрообразования, со штатной системой зажигания выдерживая прокрутку при падении напряжения до 6В без прекращения искрообразования. Стабильно работают они и на режимах максимальных нагрузок – пропуски воспламенения, которые можно «выловить» чувствительным газоанализатором, минимальны.

Что касается ресурса, то своей задаче – отработать от ТО до ТО – они отвечают с уверенностью. С учетом низкой цены и распространенности они явно достойны рекомендаций.

Трехэлектродная версия уже знакомых А17ДВРМ. Теоретический выигрыш в ресурсе принес тут и свой минус: параметры свечей «плавают» сильнее, а это в первую очередь нестабильный зазор, отсюда некоторое ухудшение моторных характеристик. Но надо заметить, что это ухудшение можно «выловить» только на измерительном стенде, в реальной эксплуатации нельзя сказать, что трехэлектродные свечи из Энгельса будут хуже одноэлектродных.

Отличные свечи от одного из мировых лидеров в их производстве: высокое и стабильное качество изготовления, уверенная работа в любых режимах и хороший ресурс. Свечи уверенно выдерживают просадку напряжения при запуске до 6,5 В (неожиданно проиграв отечественным!), пропуски воспламенения с ними минимальны.

В их конструкции применено то же решение, что и у NGK в серии V-Line, но с точностью до наоборот: канавка проштампована в боковом электроде. Это определенно выгоднее в плане производства, так как не нужно строго ориентировать боковой электрод относительно центрального, но вот и практической пользы от такой конструкции, очевидно, меньше.

Свечи с увеличенным вылетом центрального электрода ожидаемо не показали увеличение моторных характеристик на 16-клапанном двигателе: это решение было бы более «рабочим» на восьмиклапаннике. По всем показателям это крепкий «середняк», но вот цена ощутимо выше, чем у конкурентов с теми же самыми качествами. Отметим только хороший результат по запуску на севшем аккумуляторе: 6,2В – это отличный результат… но оригинальные свечи из Энгельса и дешевле, и, как ни странно, лучше чешских.

Маркетологи компании явно ошиблись, отнеся эти свечи к серии V-Line: центральный электрод у них лишен канавки. Скажем сразу: оригинальный комплект - это крепкий «середнячок», ничем не выделяющийся, но и не проваливающий испытания. Определенно не нравится заметная грубость изготовления – даже маркировка Made in France всегда набита неравномерно, неровно обычно напаян боковой электрод. Складывается впечатление, что технологию изготовления специально загрубили в угоду низкой себестоимости, а ведь эти свечи могли бы быть и лучше.

Главный же минус у NGK – это не они сами, а чудовищное количество подделок на рынке. Достаточно набрать в поиске на Ebay или AliExpress «spark plug» без уточнения марки, как тут же появится многостраничный список «типа NGK» из Китая.

Bosch WR7DPX

Эти свечи оставим вне рейтинга, учитывая, насколько серия Platinum дороже собратьев, не содержащих благородные металлы. Однако же именно эти свечи демонстрируют наилучшие результаты по всем моторным испытаниям – на это в первую очередь играет тоненький центральный электрод, полностью срытый в изоляторе: мотор заводится при снижении напряжения в бортсети менее 6В, что другим свечам недоступно, минимальная токсичность явно указывает на наименьшее количество пропусков воспламенения.

Перегреть центральный электрод при максимальных нагрузках придется постараться – конструкция гарантирует надежность теплопередачи от него в изолятор и далее на юбку. Значит, эту свечу можно посоветовать и владельцам разъездных автомобилей, и любителям агрессивной езды. Если, конечно, не остановит цена.

— Да что там испытывать? Все свечи зажигания одинаковы — два электрода и изолятор между ними...

Таков был ответ специалиста, к которому мы обратились за консультацией в преддверии задуманного нами теста свечей зажигания. Вердикт был однозначен: никакой разницы между свечами нет и быть не может. Но как же так? Ведь каждому автомобилисту приходилось чувствовать, что с одними свечами двигатель работает ровно, с другими — сбоит на холостом ходу, с третьими — плохо заводится... И мы все-таки решили сравнить друг с другом несколько комплектов свечей, предназначенных для восьмиклапанных «переднеприводных» двигателей ВАЗ.

В автомагазинах мы купили двенадцать комплектов одноэлектродных свечей, которые подходят для двигателей Самар и вазовских машин «десятого» семейства. Из отечественных выбрали свечи марок ЭЗ, APS и Bosch, сделанные в Энгельсе, и Brisk из Озерска. Компанию им составили немецкие свечи Beru, Bosch Platinum и Finwhale, японские NGK и Denso, французские Eyquem. А свечи Champion, судя по пометке на упаковке, «сделаны в Евросоюзе».

Но как сравнивать свечи? Что проверять?

Открываем отраслевой стандарт ОСТ 37.003.081-87 «Свечи зажигания искровые». Оценка размеров и внешнего вида свечей зажигания — это, конечно, хорошо. Проверка бесперебойности искрообразования и калильного числа — тоже неплохо. Но об измерении влияния свечи на главные эксплуатационные характеристики двигателя — на мощность, экономичность, токсичность, — в ОСТе не сказано ни слова.

Значит, придется разрабатывать свою собственную методику!

Нам помогли специалисты исследовательской лаборатории, куда мы обратились для проведения теста. Они рассуждали так. Основная задача свечи зажигания — искрить. Проверить свечу «на искру» элементарно — подаешь напряжение и смотришь. Но в реальных условиях, в камере сгорания, свеча работает под давлением — в исправном вазовском моторе со степенью сжатия 9,9, в конце такта сжатия это 10—13 атмосфер (при полностью открытой дроссельной заслонке). Значит, нужно поместить свечу в барокамеру — и проследить за бесперебойностью искрообразования под давлением.

Но это — далеко не все. Ведь в барокамере — все-таки воздух, да и температура близка к комнатной. А в реальном моторе — топливовоздушная смесь, высокая температура, вибронагруженность...

Почему бы не использовать для сравнения настоящий, «живой» двигатель?

Идея такова. Берем абсолютно исправный восьмиклапанный двигатель ВАЗ-2111 (система впрыска топлива, лямбда-зонд, без нейтрализатора, контроллер Январь-5.1 2111-1411020-61). Устанавливаем его на специальный моторный стенд, который с помощью тормозного устройства позволяет имитировать любой режим работы — от холостого хода до номинальной нагрузки. Стенд оборудован измерительным комплексом для замеров мощности, частоты вращения, расхода воздуха, топлива и токсичности отработавших газов. Обороты можно выставить с точностью до 10 об/мин, а крутящий момент — до 0,5 Нм. Все процедуры измерений прописаны в ГОСТе 14846-81 «Двигатели автомобильные. Методы стендовых испытаний».

Вкручиваем в мотор первый комплект свечей. Запускаем, измеряем, записываем. Теперь глушим, меняем свечи на другие — и вновь повторяем те же самые тесты. Все компоненты стенда, кроме свечей, не изменились — двигатель работает на том же самом масле и бензине, температура в лаборатории под контролем. Значит, если мотор после замены свечей потеряет в мощности, если вырастет расход топлива или выброс несгоревших углеводородов — в этом будут виноваты именно свечи! И именно стендовые, лабораторные условия помогут нам добиться нужной точности испытаний.

Но сперва мы, вооружившись измерительными щупами, проверили искровые зазоры всех свечей. У всех комплектов они оказались равномерными, а регулировки потребовали свечи ЭЗ, Denso и Eyquem. Подгибаем боковой электрод, замеряем — норма. Причем, если зазоры свечей ЭЗ и Denso мы увеличивали до 1 мм по рекомендации ВАЗа, то к французским свечам Eyquem прилагалась специальная табличка, по которой зазор следует увеличить с исходных 0,65 мм до 0,8 мм.

Теперь — в барокамеру. Мы начинали проверку искрообразования при атмосферном давлении, подавая на свечу напряжение в 17 киловольт. Это пониженное напряжение по сравнению со штатным (22 кВ), но так мы имитируем самые неблагоприятные условия работы. Все свечи вроде бы искрят. Правда, по-разному. Где-то искра ровная и мощная, где-то, как у свечей ЭЗ А17ДВРМ, мечется от заусенца к заусенцу на «мохнатом», небрежно обработанном боковом электроде...

Теперь начинаем плавно повышать давление — и наблюдаем за бесперебойностью искрообразования. Первыми сдаются штатные свечи из Энгельса — при давлении воздуха 5,1 атм искра периодически пропадает. Конечно, для реальных условий в камере сгорания, заполненной топливовоздушной смесью с более высокой диэлектрической проницаемостью, это давление будет выше. Однако мы не можем для чистоты эксперимента наполнить барокамеру смесью воздуха с бензином — от искры она просто взорвется! Зато мы можем сравнить все свечи в одних и тех же «воздушных» условиях — и можем точно установить, какие из них хуже, а какие лучше.

Позже всех сдались свечи Brisk LR15YC — при давлении в 10,5 атм. Неплохие результаты и у комплектов NGK BPR6E, Bosch Platinum WR7DP и Bosch WR7DC. Аналогичная картина и с полным прекращением искробразования — свечи Brisk перестали работать позже других. А вот у комплектов APS А17ДВРМ, Finwhale F510, Champion RN9YCC4, ЭЗ А17ДВРМ и Bosch WR7DCX показатели по этому параметру невысоки.

Может быть, разница в результатах объясняется различием искровых зазоров — от 0,7 до 1,1 мм? Это так, но лишь отчасти. Например, свеча Denso W20EPR-U с большим искровым промежутком в 1,0 мм выдерживает высокое давление в 7,9 атм. А свеча APS c таким же зазором сдалась уже при 5,5 атм...

Но в любом случае испытание в барокамере — это некая условность, дополнительный тест. А основное — впереди. Стендовые моторные испытания!

Во-первых, при работе по внешней скоростной характеристике, то есть при полностью открытой дроссельной заслонке, мы замерили крутящий момент (и, соответственно, мощность) с каждым из комплектов свечей. Например, при частоте вращения 2500 об/мин двигатель со свечами ЭЗ развивает крутящий момент в 101,5 Нм, а со свечами Champion — уже 106,5 Нм. Пять ньютон-метров разницы!

Оказалось, что и с любыми другими свечами двигатель развивает больше тяги, чем со штатными свечами ЭЗ А17ДВРМ. Наименьший прирост, в 2,8%, обеспечивают свечи Denso W20EPR-U. А максимального результата помогают достичь свечи Finwhale F510 — двигатель при полном дросселе развивает на 5,9% больше мощности, чем со свечами ЭЗ.

Но каким образом замена свечей зажигания влияет на величину тяги?

Задача свечи — поджечь горючую смесь. От того, насколько свече это удается, зависит начальный очаг воспламенения — чем он больше, тем быстрее по камере сгорания распространяется фронт пламени и тем выше будет развиваемая мощность. Чтобы создать уверенный начальный очаг воспламенения, нужна «крупная», длинная искра — как говорят специалисты, с большим линейным размером. Но самое интересное, что этот размер искры не всегда равен величине зазора! Присмотритесь к фотоснимкам искр разных свечей. Например, у свечей ЭЗ искра каждый раз имеет разный размер — она буквально мечется по всей поверхности бокового электрода. То так, то эдак. Отсюда и худший результат. А у свечи Champion искра равномерно «стоит» по диагонали между центральным электродом и изгибом бокового. То есть сама искра «длиннее», чем зазор между электродами, который можно измерить щупом!

Так что все очень, очень непросто. А вы говорите — два электрода и изолятор...

Аналогичная ситуация и с измеренной экономичностью. Наименьший удельный расход топлива в режимах городского цикла показал двигатель со свечами NGK BPR6E и Finwhale F510. А вот со свечами APS А17ДВРМ и Beru Ultra 14R-7DU расход топлива в режимах частичной нагрузки был выше, чем со штатными свечами ЭЗ.

Почему? Дело в том, что скорость распространения фронта пламени зависит и от температуры в зоне воспламенения. И она тоже оказалась разной! Если у свечей NGK искра имеет бело-синий цвет, что соответствует температуре 3500—4000 К (градусов по абсолютной шкале Кельвина), то, например, искра свечей APS содержит красноватые оттенки (температура около 3000 К). А ведь температура искры влияет на начальную скорость распространения фронта пламени в квадрате!

Кроме того, по ходу теста мы оценивали качество и степень устойчивости работы двигателя в различных режимах — наличие и величину колебаний крутящего момента при неизменной подаче топлива, температуры отработавших газов. Замеры токсичности проводили на режимах холостого хода, внешней скоростной характеристики и в режиме городского цикла. Лучшие результаты по снижению содержания СО и СН в отработавших газах по сравнению с базовым комплектом (ЭЗ А17ДВРМ) показали свечи Denso W20EPR-U, Eyquem RC62LS и Bosch Platinum WR7DP. Хуже здесь выступили свечи NGK BPR6E, Bosch WR7DC и Finwhale F510.

А почему в тестах на максимальную мощность и на токсичность лидеры — разные? Это оттого, что «мощностной» тест мы проводили при максимальной нагрузке двигателя и на высоких оборотах, а замеры токсичности — на частичных нагрузках и малых оборотах. «Мозг» системы зажигания, роль которого в нашем случае выполняет контроллер Январь-5.1, в зависимости от оборотов и от нагрузки изменяет угол опережения зажигания — в соответствии с заложенной в него программой, рассчитанной на штатные свечи ЭЗ А17ДВРМ. Каждая новая свеча, установленная взамен штатной, меняет скорость сгорания горючей смеси — и, следовательно, реальный угол опережения зажигания. Поэтому одни свечи лучше работают на режимах максимальной мощности, а другие — на режимах частичных нагрузок. Но если переписать программу контроллера под конкретную «хорошую» свечу, то ее результаты будут еще лучше и стабильнее!

А свечи Bosch WR7DCX преподнесли сюрприз — с ними контроллер Январь 5.1 словно забыл об оптимальном соотношении воздуха и топлива. Временами обогащение топливовоздушной смеси достигало 20% по сравнению с базовым! Причиной стала коррекция времени впрыска топлива, которую контроллер производит по сигналам от датчика кислорода — то бишь от лямбда-зонда. Обычно эта коррекция кратковременна — она нужна на переходных режимах. Но со свечами Bosch WR7DCX коррекция была непрерывной — в выхлопных газах было слишком много кислорода, что свидетельствовало о неполном сгорании топлива. Причина — пропуски зажигания и катастрофическое ухудшение токсичности. А ведь другие свечи с таким же зазором (1,1 мм) вели себя хорошо...

Мы решили повторить тест на двигателе без обратной связи, как на моторах ВАЗ с контроллером Январь-5.1 2111-1411020-71. Откорректировать состав смеси для свечей Bosch WR7DCX «впрысковый» двигатель без обратной связи не может — нет датчика кислорода. Но ситуация повторилась — о пропуске вспышек подтвердил повышенный уровень несгоревшего топлива, то есть углеводородов (СН). По токсичности Bosch WR7DCX на этот раз выиграл у штатных свечей ЭЗ, но существенно проиграл всем остальным.

А для того, чтобы еще раз убедиться в верности и справедливости выбранной методики теста, мы «прокрутили» злополучный Bosch WR7DCX и еще несколько комплектов и на двигателе со впрыском и без обратной связи, и даже на карбюраторном моторе. Результаты совпали!

Подсчитывая итоговый рейтинг теста, мы перевели результаты всех испытаний в баллы и просуммировали их с учетом весовых коэффициентов — по отработанной методике, которую применяем и во всех остальных сравнительных тестах. Лидер — комплект японских свечей NGK, с которыми двигатель показал высокие результаты по большинству параметров. На втором месте сразу два комплекта — это немецкие свечи Bosch WR7DP и Finwhale. С последними двигатель получил максимальную прибавку в мощности при полном дросселе (5,9%). На третьем месте — французский Eyquem, лидер по снижению токсичности.

А вот штатные свечи ЭЗ, увы, по большинству параметров уступают всем остальным...

Теперь давайте вернемся к вопросу о том, одинаковы ли все свечи. Три комплекта — ЭЗ А17ДВРМ, APS и Bosch WR7DC, — сделаны на одном заводе в Энгельсе, который принадлежит корпорации Bosch. Казалось бы, куда «одинаковее»? Но если свечи марки ЭЗ делают полностью из российских комплектующих, то марка APS появилась как пробный шаг фирмы Bosch перед выходом на российский рынок — эти свечи выпускаются на более современной линии, а часть комплектующих заказывается в Германии. Свечи же с маркой Bosch в Энгельсе вообще собирают из готовых импортных «запчастей».

Сравните, например, боковые электроды свечей ЭЗ и Bosch WR7DC. У «обычных» свечей ЭЗ они очень плохо обработаны, и такой важный параметр, как искровой зазор, имеет весьма относительное значение — искра просто находит ближайший заусенец. А качество электродов свечей APS и Bosch лучше. В итоге изделия из Энгельса так и расположились — по нарастающей.

Однако «дороже» не всегда значит «лучше». Например, свечи Champion RN9YCC, купленные нами за 440 рублей, выглядят неубедительно на фоне того же российского комплекта Bosch за 160 рублей.

Правда, есть один очень важный параметр — это ресурс. Сколько прослужит та или иная свеча в одном и том же моторе? Какова ее способность к самоочищению? Насколько она сопротивляется отложениям металлосодержащих присадок на электродах и изоляторе? Проверить это очень просто. Нужно взять 12 одинаковых двигателей и заставить их молотить сутки напролет в одинаковых режимах. А лучше не 12, а все 24 или 36 моторов. Для пущей статистики. Возможно, тут бы и проявились преимущества платинового центрального электрода модели Bosch WR7DP или медного бокового — свечи Champion RN9YCC.

Жаль, что провести такой тест невозможно...

В итоге мы проверили только то, что смогли проверить. И выяснили очень важную вещь — что не все йогурты одинаково полезны. И это открытие вдохновило нас на следующий шаг — повторить тест, но с более дорогими многоэлектродными свечами, которых сейчас немало на прилавках. Результаты? Читайте в следующем номере!

NGK BPR6E
Япония
Цена: 240 рублей*
Искровой зазор: 0,8 мм

Японские свечи сделаны на совесть: аккуратно приварен боковой электрод, нанесена четкая маркировка. И в работе свечи NGK хороши — по сравнению со штатными свечами ЭЗ расход топлива уменьшается более чем на 5%! Это лучший результат среди 12 образцов. Двигатель с этими свечами работает устойчиво, прибавка в мощности достигает 4,4% при полном дросселе. Единственное замечание — невысокие результаты по «экологическим» испытаниям. А еще интересно то, что вопреки рассказу специалистов NGK о назначении V-образной выемки на центральном электроде (см. АР N 15, 2004), искра не смещается к его краям, а располагается точно по центру зазора…

Finwhale F510
Германия
Цена: 180 рублей*
Искровой зазор: 1,1 мм
Судя по данным на упаковке, свечи Finwhale сделаны в Германии. И, как показал наш тест, сделаны хорошо.

По снижению расхода топлива Finwhale уступает только свечам NGK (3,1% против 5,1%). Зато по приросту мощности Финвалы вне конкуренции — при работе на внешней скоростной характеристике двигатель получает добавку в 5,9% мощности относительно штатных свечей ЭЗ! С экологией средненько, но лучше, чем у свечей NGK.

Eyquem RC62LS
Франция
Цена: 160 рублей*
Искровой зазор: 0,8 мм

К свечам Eyquem трудно придраться. Сделаны они очень аккуратно, да и в работе хороши. Двигатель с ними работает устойчиво, а по расходу топлива занимает третье место (вслед за свечами Finwhale и NGK). Прирост мощности при полном дросселе на фоне конкурентов не так высок — 3,7%. Зато по снижению токсичности отработавших газов (относительно свечей ЭЗ) свечи Eyquem — безусловный лидер.

Bosch WR7DC
Россия, Энгельс
Цена: 160 рублей*
Искровой зазор: 0,7 мм

Пристально разглядывая свечи Bosch WR7DC и штатные ЭЗ А17ДВРМ, сделанные на одном заводе, трудно найти отличия. Но на макрофотографиях видно, что боковые электроды сделаны с совершенно разным качеством. Соответственно, в работе Bosch проявляет себя по-другому. По устойчивости работы двигатель с этими свечами делит первое место с «платиновыми» свечами Bosch WR7DP, а по «экономичности» — четвертое. Мощность двигателя относительно базовых свечей при полном дросселе увеличивается на 4,9% — это лучше, чем у лидирующих комплектов NGK и Eyquem.

Brisk LR15YС
Россия, Озерск
Цена: 120 рублей*
Искровой зазор: 0,8 мм

Свечи Brisk выступили неплохо. Мощность двигателя при работе на внешней скоростной характеристике увеличивается на 5% (лучше только Finwhale), а в экстремальных условиях, которые мы создали в барокамере, Бриску и вовсе не оказалось равных. Но на части режимов малой нагрузки двигатель со свечами Brisk работал неустойчиво. Невысокими оказались экономические и экологические показатели. Да и грамотность оформителей упаковки подкачала — там написано «свечи зажыгания»...

Champion RN9YCC4
ЕС (Европейский Союз)
Цена: 440 рублей*
Искровой зазор: 1,1 мм

Свечи Champion единственные из всех имеют медный сердечник не только у центрального, но и у бокового электрода. Но токсичность выхлопа двигателя с этими свечами — чуть лучше чем с Бриском, экономичность — на среднем уровне. Цвет искры содержит «холодные» красноватые оттенки, что приводит к неустойчивой работе двигателя на части малых и средних нагрузок. Единственная радость — пятипроцентный прирост мощности при полном дросселе (относительно свечей ЭЗ). А огорчение — вдвое большая, чем у победителя, цена.


Denso W20EPR-U
Япония
Цена: 240 рублей*
Искровой зазор: 1,0 мм

Разработчики свечей Denso пошли иным путем, нежели конкуренты из NGK, — U-образная выемка сделана не на центральном, а на боковом электроде. И цели, по заявлению фирмы, она преследует другие — позволяет сымитировать увеличенный зазор, для «активации» которого подходит штатное напряжение. Но и по мощности (при полном дросселе), и по экономичности двигатель с этими свечами показывает невысокие результаты. Зато свечи Denso лучше всех снижают токсичность отработавших газов.

Beru Ultra 14R-7DU
Германия
Цена: 220 рублей*
Искровой зазор: 0,8 мм

Немецкие свечи приятно взять в руки — аккуратная работа! И двигатель с ними работает устойчиво. Но результаты по мощности и по снижению токсичности (относительно свечей ЭЗ) невысоки. А по расходу топлива свечи Beru уступили даже штатным свечам ЭЗ. И это при двукратной разнице в стоимости...

APS А17ДВРМ
Россия, Энгельс
Цена: 100 рублей*
Искровой зазор: 1,0 мм

Свечи APS в итоге немного превзошли «земляков» ЭЗ. Прежде всего по мощности (при полном дросселе она выросла на 3,5%) и совсем немного — по устойчивости работы двигателя на всех режимах (из-за непостоянного положения искры в зазоре на части малых нагрузок наблюдалось колебание крутящего момента). В то же время на частичных нагрузках свечи APS работали похуже — например, расход топлива по сравнению со свечами ЭЗ увеличился на 0,6%.

Bosch WR7DCX
Россия, Энгельс
Цена: 235 рублей*
Искровой зазор: 1,1 мм

Свечи Bosch WR7DCX отличаются от свечей Bosch WR7DC увеличенным до 1,1 мм зазором. Информация на упаковке гласит, что они специально предназначены для «впрысковых» двигателей ВАЗа. Но на большинстве режимов двигатель работал неустойчиво, а контроллер Январь 5.1 2111-1411020-61 реагировал на пропуски зажигания постоянной коррекцией времени впрыска топлива, что привело к катастрофической токсичности отработавших газов.

ЭЗ А17ДВРМ
Россия, Энгельс
Цена: 100 рублей*
Искровой зазор: 1,0 мм

Все характеристики впрысковых двигателей ВАЗ настраиваются именно на эти свечи — ЭЗ А17ДВРМ. Но при этом свечи ЭЗ уступили всем конкурентам. «Мохнатый» боковой электрод заставляет искру метаться от заусенца к заусенцу, что вкупе с периодически проскакивающими «холодными» искрами красного цвета приводит к худшей в тесте устойчивости работы двигателя. А может, дело в стабильности качества изготовления?

I. Результаты испытаний. Одноэлектродные свечи зажигания
Влияние на общую оценку NGK BPR6E Finwhale F510 Bosch WR7DP Eyquem RC62LS Bosch WR7DC
Испытания в барокамере 10%
4% 8,5 5,3 7,5 7,1 7,8
6% 7,9 5,4 7,1 6,4 7,1
Стендовые моторные испытания 90%
Мощность 30% 8,5 9,7 9,0 7,9 8,9
Экономичность 24% 10,0 8,5 7,0 8,0 7,0
Токсичность 18% 6,4 6,7 7,8 8,5 7,1
Устойчивость работы 18% 9,2 8,6 9,8 9,6 9,8
Общая оценка 100% 8,5 8,3 8,3 8,2 8,1
II. Результаты испытаний. Одноэлектродные свечи зажигания
Влияние на общую оценку Brisk LR15YC Champion RN9YCC Denso W20EPR-U Beru 14R-7DU APS А17
ДВРМ
Bosch WR7
DCX
ЭЗ А17
ДВРМ
Испытания в барокамере 10%
Давление нарушения искрообразования 4% 10,0 5,2 7,0 6,8 5,4 5,4 5,0
Давление прекращения искрообразования 6% 9,6 5,4 6,7 6,4 5,0 5,7 5,7
Стендовые моторные испытания 90%
Мощность 30% 9,0 9,0 7,2 7,9 7,8 8,5 5,0
Экономичность 24% 6,7 6,7 6,8 6,0 5,7 7,0 6,2
Токсичность 18% 6,6 6,7 8,0 6,1 5,0 5,2
Устойчивость работы 18% 8,7 8,7 9,0 9,2 8,1 8,3 7,9
Общая оценка 100% 8,0 7,7 7,5 7,1 6,6 6,3 5,9
Результаты относятся только к образцам, проходившим испытания. Редакция не занималась проверкой подлинности образцов

Заворачивая свечу зажигания в двигатель, мы не думаем о том, каким образом расположится в итоге боковой электрод — к стенке цилиндра, к впускному клапану, к выпускному... А какая разница?

Боковой электрод свечи расположен
открытой частью искрового зазора
в сторону стенки камеры сгорания

Она есть, и немалая. Опыт автогонщиков подсказывает, что свеча работает лучше, когда она развернута открытой частью искрового зазора в объем камеры сгорания — в сторону клапанов. Перед тестом мы решили это проверить. Из двадцати четырех помеченных свечей APS А17ДВРМ подобрали три комплекта. Первый комплект включал свечи, которые при затягивании «отворачивались» открытой частью искрового зазора от камеры сгорания — к стенке цилиндра. Свечи второго комплекта при затяжке, наоборот, открывали искровой промежуток камере сгорания. А третий комплект был промежуточным, «боковым» — как правило, именно так в среднем и располагаются электроды свечей при «случайной» затяжке.

Искровой промежуток свечи
открыт камере сгорания

Все три комплекта прошли стендовые испытания в двигателе ВАЗ-2111. И оказалось, что ориентация бокового электрода серьезно влияет на процесс сгорания! Когда электрод «экранирует» искровой промежуток, заслоняя искру от потока топливовоздушной смеси из впускного клапана, на режимах холостого хода и малых нагрузок это вызывает резкий рост удельного расхода топлива, а в выхлопных газах растет содержание несгоревших углеводородов (СН). Более того, когда все четыре свечи встают в «закрытую» позицию, двигатель вообще отказывается работать на режимах холостого хода с оборотами менее 1200 об/мин! При малых нагрузках разница в удельных расходах топлива составила 15%, а по выбросам СН — даже до 80%.

Безразличная, или «боковая»,
ориентация бокового электрода

Но при больших оборотах влияние ориентации боковых электродов снижается — потому что процессы газообмена протекают быстрее, и турбулизация воздушного заряда в камере выше. Тем не менее мы во время проведения теста следили за тем, чтобы свечи не вставали в «закрытую» позицию — использовали безразличную, или «боковую», ориентацию искрового зазора.

Калильное число

Что такое калильное число?

Когда мы запускаем непрогретый двигатель, на пока еще холодном тепловом конусе изолятора свечи начинают скапливаться отложения из несгоревших углеводородов. Но как только температура свечи достигнет 400°С, нагар станет выгорать — свеча будет самоочищаться.

Но двигатель работает, температура свечи растет. Если она превысит 900°С, то возникнет калильное зажигание — смесь начнет воспламеняться не от искры, а от нагретых частей камеры сгорания. Одна из этих частей — сама свеча, через которую отводится часть тепла. Поэтому для каждой конкретной модели двигателя нужно подбирать свечи с определенной тепловой характеристикой — с нужным балансом способности к низкотемпературной самоочистке и устойчивости к перегреву. Этот баланс и характеризует калильное число. Чем оно меньше, тем «горячее» свеча (при меньших нагрузках достигает максимальной температуры) и тем более узок ее рабочий диапазон. Такие свечи — для низкофорсированных двигателей. Если степень форсирования двигателя высока, то его склонность к калильному зажиганию выше, поэтому нужны «холодные» свечи с высоким калильным числом.

Маркировка отечественных свечей зажигания определяется ОСТом 37.003.081 — 98.

1 — Первая буква обозначает размерность резьбы на корпусе свечи. Возможны два варианта: «А» — это резьба М14х1,25, «М» — М18х1,5

2 — Существуют два вида установки свечи зажигания в головку блока цилидров. Наиболее распространено соединение плоских опорных поверхностей (свечи и головки) через уплотнительное кольцо (в этом случае позиция «2» пуста). Другой вариант — с конической опорной поверхностью свечи зажигания (обозначается буквой «К»)

3 — Здесь указывается размер под ключ. «У» — это уменьшенный до 16,0 мм размер шестигранника, как на свечах для шестнадцатиклапанных двигателей. Буква «М» соответствует 19-миллиметровому ключу. А если буква не указана, как у большинства свечей, то размер ключа — 20,8 мм

4 — Цифры соответствуют калильным числам из ряда 8, 11, 14, 17, 20, 23, 26. Наименьшее калильное число соответствует «горячей» свече, наибольшее — «холодной»

5 — Позиция указывает длину резьбы на корпусе свечи зажигания. Для свечей с плоской опорной поверхностью буква «Д» соответствует длине в 19 мм, отсутствие буквы — 12,7 мм

6 — Тепловой конус изолятора может по-разному располагаться относительно металлического корпуса свечи. Если он выступает за корпус, то в обозначении появляется буква «В». Если позиция свободна, то выступания нет

7 — Наличие помехоподавительного резистора обозначается буквой «Р». Если резистора нет — позиция пуста

8 — Если центральный электрод выполнен из никелевого сплава, то это не указывается. А если электрод с медным сердечником — появляется буква «М»

9 — В конце может располагаться порядковый номер разработки или модернизации

Например, свечи APS и ЭЗ в нашем тесте имели обозначение А17ДВРМ. Это означает, что резьба их корпусов имеет размер М14х1,25 и длину 19 мм. Калильное число — 17. Тепловой конус изолятора выступает за корпус свечи. В свечу встроен резистор, а центральный электрод имеет медный сердечник.

Но иностранные производители свечей зажигания не придерживаются каких-либо единых правил маркировки. И шкалы калильных чисел у них другие. Если у нас с ростом числа свеча становится «холоднее», то, скажем, у фирмы Brisk все наоборот. Поэтому подбирать импортный аналог отечественным свечам следует по каталогам фирм-производителей или по таблицам взаимозаменяемости. Так, например, нашим свечам А17ДВРМ соответствуют свечи Beru 14R-7DU, Brisk LR15YC или Champion RN9YC. Но в нашем тесте участвовал другой «чемпион» — RN9YCC4. Вторая «С» указывает на то, что медный сердечник есть не только у центрального, но и у бокового электрода, а «четверка» говорит об увеличенном до 1,1 миллиметра зазоре.

Кстати, а какова ситуация с зазорами?

Те свечи, которыми тольяттинские моторы оснащаются на конвейере, имеют такие зазоры. Для классических ВАЗов это 0,5 мм, для карбюраторных «переднеприводных» моторов — 0,7 мм, а на свечах для «впрысковых» двигателей ВАЗа установлен зазор в 1,0 мм.

Работодатель пушкинского Балды серьезно пострадал в погоне за дешевизной. И все же очередную экспертизу свечей зажигания мы решили посвятить недорогим изделиям, аналогам наших А17ДВРМ. Ведь именно такие свечи с шестигранником «на 21» поджигают смесь семейству вазовских восьмиклапанных моторов, а также множеству иномарок не первой свежести. А покупать на такие авто что-то утонченно-иридиевое нерационально. Поэтому решили ограничить расходы круглой суммой: не больше 100 рублей за свечу.

Удивило разнообразие в этом ценовом сегменте - множество не только брендов, но и вариантов конструкции. Да и стоимость покупки, даже при жестком ограничении сверху, различалась почти втрое. Что ж, так даже интереснее.

Классика и оригинальность

Мы закупили по два комплекта каждого типа. Основную массу составили классические одноэлектродные свечи: отечественные - марки Tsitron, «японцы» NGK и Denso и «европейцы» (судя по надписям на упаковке) BERU, Ween, HOLA. Но под наш ценовой критерий подошли и несколько не совсем обычных конструкций.

Во-первых, это чуть ли не единственная российская многоэлектродка - «ЭЗ-Standard Т17ДВРМ» Энгельсского завода, с тремя боковыми электродами. Во-вторых, за означенную сумму мы умудрились купить даже свечи с платиновыми электродами - Bosch Platinum WR7 DPX, причем самой интересной схемы: с тонким центральным электродом, полностью утопленным в корпус изолятора. В эту компанию вошел и чешский иттриевый Brisk - с заточенным на конус боковым электродом.

Насколько такие свечи лучше обычных (да и лучше ли?), покажет эксперимент. В качестве планки отсчета при проведении моторных испытаний мы взяли «классику жанра» - одноэлектродные «ЭЗ-Standard Т17ДВРМ». Сравнение проведем по четырем показателям: стабильность конструктивных параметров, результат комплексных моторных испытаний, экология, работа в нештатных ситуациях.

Зазоры и сопротивления

Для начала свечи обмерили, получив величины предустановленных искровых зазоров и электрических сопротивлений. Зачем? Чтобы сразу отсеять изначально негодные образцы. Таких на сей раз не оказалось (хотя прежде брак попадался). Кроме того, интересно оценить неравномерность конструктивных параметров по каждому бренду: чем она ниже, тем выше уровень производства.

Лучшими оказались NGK, Denso, а также Bosch. К сожалению, Tsitron показал невысокую стабильность, особенно на фоне лидеров.

Закончив с щупами и омметрами, мы перетасовали свечи и сформировали для каждого бренда новые комплекты: назовем их условно «хороший» и «обычный». Первый - из тех свечей, параметры которых наиболее близки к средним по выборке. Второй - из того, что осталось. Задавать уровень отсчета при моторных испытаниях будут два комплекта одноэлектродных свечей «ЭЗ-Standard А17ДВРМ».

Мощность, расход, токсичность

В какой мере качество и особенности свечей способны повлиять на характеристики двигателя? Отлавливать придется считаные проценты, поэтому нужны стендовые условия, чтобы полученные эффекты не съела погрешность измерений. Последовательно ставим каждый комплект на инжекторный мотор ВАЗ-2111 и в фиксированных режимах оцениваем изменение мощности, расхода топлива и токсичности отработавших газов относительно «ЭЗ-Standard А17ДВРМ».

Сначала прогнали на моторе «хорошие» комплекты, затем «обычные». Итоговый результат складывался из достижений обоих наборов. А разброс результатов должен был показать степень зависимости показателей двигателя от стабильности параметров свечей.

Среди классических свечей из «хороших» комплектов разброс по мощности и экономичности сравнительно невелик - до 2…3%, по экологии - чуть больше: до 7…9%. А вот «оригиналы» дали заметное улучшение параметров. Наиболее эффективными оказались платиновые Bosch, вторыми пришли на финиш - внимание! - отечественные трехэлектродные «ЭЗ-Standard»! Тут явно сработал принцип открытой искры, реализуемый в многоэлектродных схемах, о чем мы неоднократно писали (например, ЗР, 2006, № 10 ).

Brisk оказался только седьмым по моторным показателям.

Изюминка этих свечей - иттриевый сплав, но он в основном продлевает ресурс, не оказывая особого влияния на качество искрообразования. Заточив боковой электрод на конус, конструкторы, по нашему мнению, ошиблись. Подобная форма целесообразна, когда он заканчивается над центральным электродом (так у NGK и Denso). В этом случае образуется зона локального повышения интенсивности электрического поля и, стало быть, меняются условия искрообразования. А в варианте, предложенном Brisk, боковой электрод далеко выступает за центральный - и поэтому условия образования искры здесь практически не меняются.

Кстати, обратите внимание: при проверке «обычных» комплектов преимущество лидеров выражено сильнее! Потому совет: даже экономя, приглядитесь повнимательнее к лидерам. Чем меньше различаются параметры свечей, тем лучше поедет ваша машина!

Когда гаснут свечи…

Следующие два испытания. Мы всегда подчеркиваем, что за ограниченное время смоделировать в полном объеме все беды реального двигателя - отложения, износ свечей, холодные пуски и т. п. - почти невозможно. Но можно косвенно оценить устойчивость работы свечей в экстремальных условиях по тому, как они поведут себя при пониженном напряжении в бортовой сети. Например, при 9 В вместо привычных четырнадцати. Само собой, над топливным насосом и электроникой издеваться не будем: нас интересует только разница в поведении свечей. Потому переходим на стенд с карбюраторным мотором.

Таблицы открываются в полный размер по клику:

В этих испытаниях участвуют «лучшие». Итоги подтвердили результаты предыдущей серии - удачнее других выступили платиновые тонкоэлектродные свечи Bosch и отечественные трехэлектродки. Причем разброс между лидерами и аутсайдерами заметно вырос, особенно по токсичности отработавших газов.

Последний тест. Проверяем, при каком минимальном напряжении питания свечи продолжают искрить. Стендовый двигатель выводим на стабильные температурные параметры, а потом плавно понижаем напряжение до полного прекращения искрообразования. Лучший показатель по этому параметру вновь выдал Bosch, сдавшийся только на рубеже 5,88 В. А первым капитулировал Tsitron: 7,88 В.

Балда не совсем прав!

Итоги - в таблицах. Неожиданность, причем приятная, одна: давненько российские изделия не выигрывали наших тестов. А здесь трехэлектродные и при этом недорогие свечи заняли второе место, вклинившись в группу признанных мэтров между Bosch и «японцами».

Даже недорогие свечи способны изменять поведение автомобиля.

А Балда, представьте себе, был не вполне прав! В погоне за дешевизной иногда удается отыскать и нечто достойное…

Терминология и методика

Внешняя скоростная характеристика. Характеризует изменение мощности (или крутящего момента) двигателя в зависимости от числа оборотов его коленчатого вала при полностью открытой дроссельной заслонке (для бензинового мотора).

Параметр мощности. Рассчитывается как среднее увеличение (уменьшение) мощности на всех замеренных точках внешней скоростной характеристики по отношению к базовому комплекту.

Параметр токсичности (отдельно по компонентам СО, СН, NОx). Рассчитывается как средние увеличения (уменьшения) содержания указанных токсических компонентов по отношению к базовому на всех точках нагрузочных характеристик.

Параметр экономичности. Рассчитывается как среднее увеличение (уменьшение) удельного расхода топлива на всех замеренных точках нагрузочных характеристик по отношению к базовому комплекту.

Усредненный моторный показатель аварийный. Принимается равным параметру экономичности.

Усредненный моторный показатель. Рассчитывается как взвешенная сумма параметров мощности и экономичности.

Усредненный показатель токсичности. Рассчитывается как взвешенная сумма параметров токсичности по всем компонентам.

В качестве базового был выбран комплект «ЭЗ-Standard А17ДВРМ». Перед расчетом итоговых показателей качества были приведены к стандартным условиям данные замеров и построены аппроксимации зависимостей, позволяющие использовать одни и те же точки сопоставления по нагрузке.

В каждом виде испытаний участники получали коэффициенты по пятибалльной шкале: 5 баллов за лучший результат и 1 балл - за худший. Остальные оценивались пропорционально положению в таблице. По итогам четырех видов испытаний определяли сумму коэффициентов (конструктивный, моторный, экологический, аварийный), которая и учитывалась при распределении мест.

Сами испытуемые

9 место: TSN, TSITRON , страна не указана

А17ДВРМ

Зазор - не указан

140 руб.

Свечи, продающиеся в полиэтиленовых пакетиках, то есть практически россыпью, - такое сейчас не везде встретишь! Низкий шестигранник, нечеткая маркировка, большой разброс по сопротивлениям и зазорам сразу вызвали опасения за результат. Применяемость указана на бумажке, прилепленной на пакетике. Итог - увы, явный аутсайдер…

Мотор работает, цена самая низкая.

Проиграли всем и во всем.

8 место: HOLA, Нидерланды

Зазор - 1,1 мм

Ориентировочная цена (за 4 свечи) - 175 руб.

Самые дешевые среди импортных свечей. Подробное описание, куча сертификатов - все это хорошо. Особо не блеснули, но будут в самый раз, если хочется порадовать машинку чем-нибудь импортным и недорогим.

Низкая цена, аккуратное исполнение.

Не самая высокая стабильность конструктивных параметров.

7 место: BRISK A-LINE, Чехия

13 LR15YCY-1

Зазор - не указан

Ориентировочная цена - 230 руб.

Иттриевые свечи с заточенным на конус боковым электродом и увеличенным выступом центрального электрода. Должны прослужить долго, но в наших испытаниях ничего «эдакого» не показали. Да и цена не самая привлекательная.

Известный бренд, аккуратное изготовление.

Отсутствие каких-либо ощутимых преимуществ.

6 место: BERU, Германия

14R-7DUX

Зазор - 1,1 мм

Ориентировочная цена (за 4 свечи) - 280 руб.

Нормальные свечи классической конструкции с громким именем, при этом - не самая высокая цена. Результаты как бы в тени: ни провалов, ни лидерства ни в одной из номинаций. Честно говоря, бренд приучил видеть его в призерах, но мы же специально выискивали, что подешевле.

Ровное выступление на всех этапах.

Хотелось бы подешевле…

5 место: WEEN, Нидерланды

121–1370

Зазор - 1,1 мм

Ориентировочная цена (за 4 свечи) - 210 руб.

Малоизвестные нашим покупателям голландские свечи оказались ровно посередине таблицы, обогнав куда более известные имена. По стабильности конструктивных параметров эти свечи - четвертые.

Неплохое соотношение цена/качество.

Ни слова по-русски на блистере.

4 место: DENSO, Япония

W20EPR-U11

Зазор - не указан

Ориентировочная цена (за 4 свечи) - 380 руб.

Японские свечи проявили себя лидерами в группе классических коллег. Впрочем, определенная оригинальность есть и в них: на боковом электроде есть U-образная выемка, которая, по мнению фирмы, стабилизирует разряд. Похоже, так оно и есть.

Высокая стабильность конструктивных параметров.

Дороже только Bosch.

3 место: NGK V-LINE, Франция

№13 BPR6ES-11

Зазор - не указан

Ориентировочная цена (за 4 свечи) - 360 руб.

Французский «японец» повел себя хорошо. Первое место по конструктивной стабильности параметров, третье - во всех остальных номинациях. Вот только вопрос: зачем относить обычные, классические свечи к категории V-Line: там мы привыкли видеть канавку в центральном электроде…

Высокие результаты во всех номинациях.

Одни из самых дорогих среди классических свечей.

2 место: ЭЗ STANDARD, Россия

Т17ДВРМ 1.0

Зазор - 1,0 мм

Ориентировочная цена (за 4 свечи) - 230 руб.

Единственный представитель многоэлектродных свечей, попавший в установленный ценовой предел, оказался российским. За вполне доступную цену проявил свои лучшие стороны, заняв вторые места в трех номинациях из четырех!

Устойчивое место в первой тройке.

Если бы не разброс параметров, оказались бы лидерами.

1 место: BOSCH PLATINUM, Германия

Зазор - 1,1 мм

Ориентировочная цена (за 4 свечи) - 400 руб.

Эта фирма всегда умела делать достойные свечи. Лучшие в трех номинациях из четырех - в итоге золото! Немножко удивило только одно: почему по стабильности параметров «немцы» оказались лишь третьими? Но не будем цепляться к победителям.

Лидирующие позиции по всем моторным номинациям.

Самые дорогие. Увы, не самые стабильные по параметрам.

В соответствии с требованиями ОСТ 37.003 081-98, свеча зажигания имеет следующие условные обозначения (см. рис. 13).

1. Резьба на корпусе М 14x1.25 - «А»: М 18x1,5 (по ТУ) - «М»

2. Размер шестигранника под ключ: 16,0 мм - «У»; 19,0 мм - «М».

Если маркировка не содержит букв «У« или «М», размер шестигранника под ключ 20,8 мм.

3. Коническая опорная поверхность: «К».

4 Длина резьбовой части корпуса для свечей с коническим посадочным местом: 7.8 мм - «М»: 17,5 мм - «Д»: 25.0 мм - «С» Если маркировка не содержит букв «М». «Д» или «С» перед обозначением калильного числа, длина резьбовой части корпуса 11,2 мм.

5. Калильное число: 8: 11: 14; 17; 20; 23 или 26.

6. Длина резьбовой части корпуса для свечей с плоской опорной поверхностью: 19,0 мм - «Д». Если маркировка не содержит буквы -Д», длина резьбовой части корпуса 12.7 мм, за исключением свечей зажигания с размером шестигранника под ключ 19,0 мм. для которых этот размер один - 9,5 мм.

7. Выступание теплового конуса изолятора за торец корпуса: «В».

8. Наличие встроенного резистора: «Р».

9. Биметаллический центральный электрод: «М> (с медным сердечником).

10. Порядковый номер разработки или модернизации (кроме базовых конструкций): одна или две цифры в конце маркировки.

Пример условного обозначения свечи с резьбой на корпусе М 14x1,25, калильным числом 17, длиной резьбовой части корпуса 19,0 мм, имеющей выступание теплового конуса изолятора за торец корпуса, со встроенным помехоподавительным резистором, с биметаллическим центральным электродом и имеющей базовую конструкцию: А17ДВРМ

Кроме условного обозначения типа, на каждой свече должны быть указаны: дата изготовления (месяц или квартал, или две последние цифры года изготовления);

наименование или товарный знак изготовителя; страна изготовления.

Отличительные признаки сечей производимых в России

ОАО Роберт Бош Саратов

Отличительные признаки свечей:

один из токарных знаков ЭЗ. APS) на изоляторе;

изолятор белого цвета имеет в верхней части три канавки;

на изоляторе изображение товарного знака, условное обозначение типа свечи и дата изготовления изолятора, зашифрованная трехзначным числом; на металлическом корпусе выдавлена надпись «Россия», с двух сторон надписи нанесено по одному ромбу, далее римскими цифрами квартал изготовления и арабскими цифрами последние две цифры года изготовления, затем рифление, состоящее из вертикальных черточек, расположенное от надписи до даты изготовления.

«УЗЭТИ» «РГУП «УАПО»

Уфимский завод электротехнических изделий, входящий в состав ФГУЛ «"Уфимское агрегатное производственное объединение»

ФГУП -УАПО» начало производство свечей зажигания в 1966 г. с выпуска свечи А7.5СС для двигателя М-412 автомобиля «Москвич*.

В связи с расширением номенклатуры и ростом производства возникла потребность в специализации, был образован Уфимский завод электротехнических изделий -УЗЭТИ- в составе ФГУП «УАПО- УЗЭТИ производит свечи зажигания At 1-1; А11-3: А14В; А14В-2; А14ВР; А14Д; А14ДВ; А14ДВРМ; А17В. А17Д; А17ДВ-1; А17ДВ-10. А17ДВРМ. АУ17ДВРМ. А20Д-1; А23В: А23ДМ; А23ДВРМ; АУ23ДВРМ и СИ-12РТ. Производство осуществляется по полному производственному циклу от подготовки сырья до готовой продукции, так как завод имеет собственное керамическое производство изоляторов методом изостатического прессования.

УЗЭТИ отличается системой контроля технологических процессов и качества готовой продукции, во многом заимствованной от базового производства авиационных свечей.

Подготавливается производство перспективных конструкций свечей с уменьшенным шестигранником, со встроенным резистором и биметаллическим центральным электродом. Осуществляется переход от корпусов свечей с оксидным покрытием черного цвета на никелированные.

Отличительные признаки свечей «УЗЭТИ»: товарный знак ФГУП «УАПО» на изоляторе; изолятор белого цвета без ребер или с оребрением в верхней части в виде от одной до трех радиусных канавок; на изоляторе условное обозначение типа свечи и в некоторых случаях надпись «Уфа»; на металлическом корпусе выдавлена дата изготовления.

ООО НПФ «ГРАН-ЛТД»

ООО Научно-производственная фирма «ГРАН-ЛТД», г. Энгельс

Является специализированным предприятием, с 1991 г. производящим свечи АЮН. All: А14В; А17В. А14ДВ; А17ДВ: А17ДВ-10; А17ДВМ; А17ДВW; А20Д; А23В и СИ 12. Осуществляет сборку свечей по наиболее распространенной в отечественной промышленности технологии с использованием деталей, поставляемых конверсионными предприятиями.

Отличительные признаки свечей ООО НПФ.ГРАН-ЛТД..:

товарный знак ООО НПФ "ГРАН-ЛТД. на изоляторе;

изолятор боз ребер или с оребрением в верхней части;

покрытие корпуса: химическое оксидирование, цинкование или никелирование. Иногда на корпусе нанесена звездочка или надпись - RU.

ООО «элис-эз»

ООО «ЭЛИС-ЭЗ», г. Саратов

ООО «Элис-ЭЗ - основано в 1990 г. и производит свечи: А10Н; А11-5: А14В; А14ДВ: А17В; А17ДВ; А17ДВ-10; А17ДВМ; А20Д; А23В, СИ-12 и М-8Т из комплектующих деталей, изготовляемых совместно с предприятиями ВПК

Отличительные признаки свечей ООО «Элис-ЭЗ»:

товарный знак ООО *Элис-ЭЗ" на изоляторе белого или серо-голубого цвета; изолятор без ребер или с оребрением в верхней части;

на корпусе декоративное рифление в виде вертикальных черточек, в промежутке дата выпуска, пятиконечная звездочка и надпись -RU".