Почему водород называют топливом будущего. Каким должно быть топливо будущего

Водородо-кислородную смесь, как самую энергетически емкую, предлагал использовать в двигателях К.Э. Циолковский еще в 1903 году. Водород уже применяют как топливо: для автомобилей (от полуторки до Тойоты "Мирай"), реактивных самолётов (от «Хейнкель» до Ту-155), торпед (от GT 1200A до "Шквала"), ракет (от "Сатурна" до "Бурана"). Новые аспекты открывает получение металлического водорода и практическое применение реактора Росси. В недалеком будущем развитие технологий получения дешевого водорода из сероводорода Чёрного моря и непосредственно из источников дегазации Земли. Не смотря на противодействие нефтяного лобби, мы неумолимо вступаем в водородную эру!

Изменяя своё потребление - мы вместе изменяем Мир!

«Плюсы» и «минусы» водородного топлива

Водородное топливо имеет ряд особенностей:

  • Теплоотдача водорода на 250% выше, чем у топливно-воздушной смеси.
  • После сжигания водородной смеси на выходе образуется только пар.
  • Реакция воспламенения происходит быстрее, чем с другими видами топлива.
  • Благодаря детонационной устойчивости, удается поднять степень сжатия.
  • Хранение такого топлива происходит в жидкой или сжатой форме. В случае пробоя бака водород испаряется.
  • Нижний уровень пропорции газа для вхождения в реакцию с кислородом составляет 4%. Благодаря этой особенности, удается настроить режимы работы двигателя путем дозирования консистенции.
  • КПД водородного двигателя достигает 90 процентов. Для сравнения, дизельный мотор имеет коэффициент полезного действия на уровне 50%, а обычный ДВС - 35%.
  • Водород - летучий газ, поэтому он попадает в мельчайшие зазоры и полости. По этой причине немногие металлы способны перенести его разрушительное влияние.
  • Возникает меньший уровень шума при работе двигателя.

Первый двигатель на водороде заработал в СССР в 1941 году!

Будете удивлены, но первый двигатель обычной «полуторки» заработал на водороде в блокадном Ленинграде в сентябре 1941 года! Молодому младшему техник-лейтенанту Борису Щелищу, руководившему подъемом аэростата заграждения, было приказано в отсутствии бензина и электричества наладить работу лебёдок. Поскольку аэростаты заполнялись водородом, ему пришла мысль использовать его как топливо.

Во время опасных опытов сгорели два аэростата, взорвался газгольдер, сам Борис Исаакович получил контузию. После этого для безопасной эксплуатации воздушно-водородной «гремучей» смеси он придумал специальный водяной затвор, исключавший воспламенение при вспышке во всасывающей трубе двигателя. Когда все наконец получилось, приехали военачальники, убедились, что система работает нормально, и приказали за 10 дней перевести все аэростатные лебедки на новый вид горючего. В виду ограниченности ресурсов и времени, Щелищ остроумно применил для изготовления гидрозатвора списанные огнетушители. И задача подъёма аэростатов заграждения была успешно решена!

Бориса Исааковича наградили орденом "Красной звезды" и командировали в Москву, его опыт использовали в частях ПВО столицы - 300 двигателей перевели на «грязный водород», было оформлено авторское свидетельство №64209 на изобретение. Таким образом был обеспечен приоритет СССР в развитии энергетики будущего. В 1942 году необычный автомобиль демонстрировался на выставке техники, приспособленной к условиям блокады. При этом его двигатель проработал 200 часов без остановки в закрытом помещении. Отработанные газы - обыкновенный пар - не загрязняли воздух.

В 1979 году под научным руководством Шатрова Е.В. творческим коллективом работников НАМИ в составе Кузнецова В.М. Раменского А.Ю., Козлова Ю.А. был разработан и испытан опытный образец микроавтобуса РАФ, работающий на водороде и бензине.


Испытания РАФ 22031 (1979 г.)

Подводные аппараты на перекиси водорода

В 1938-1942 годах на Кильских верфях под руководством инженера Вальтера построили опытную лодку У-80 работавшую на перекиси водорода. На испытаниях корабль показал скорость полного подводного хода 28,1 узла. Полученные в результате разложения перекиси пары воды и кислорода использовали в качестве рабочего тела в турбине, после чего удаляли их за борт.


На рисунке условно показано устройство подводной лодки с двигателем на перекиси водорода

Всего немцы успели построить 11 лодок с ПГТУ.

После разгрома гитлеровской Германии в Англии, США, Швеции и СССР проводились работы с целью довести замысел Вальтера до практической реализации. Была построена советская подлодка (проект 617) с двигателем Вальтера в конструкторском бюро Антипина.

«Это была первая подводная лодка СССР, перешагнувшая 18-узловую величину подводной скорости: в течение 6 часов её подводная скорость составляла более 20 узлов! Корпус обеспечивал увеличение глубины погружения вдвое, то есть до глубины 200 метров. Но главным достоинством новой подводной лодки была её энергетическая установка, явившаяся удивительным по тем временам новшеством. И не случайно было посещение этой лодки академиками И. В. Курчатовым и А. П. Александровым - готовясь к созданию атомных подводных лодок, они не могли не познакомиться с первой в СССР подводной лодкой, имевшей турбинную установку. Впоследствии, многие конструктивные решения были заимствованы при разработке атомных энергетических установок…» - писал Александр Тыклин.


Знаменитая ПОДВОДНАЯ РАКЕТО-ТОРПЕДА ВА-111 «ШКВАЛ».

Тем временем успехи атомной энергетики позволили более удачно решить проблему мощных подводных двигателей. И эти идеи успешно применили в торпедных двигателях. Walter HWK 573. (работающий под водой двигатель первой в мире управляемой противокорабельной ракеты «воздух-поверхность» GT 1200A для поражения корабля ниже ватерлинии). Планирующая торпеда (УАБ) GT 1200A имела подводную скорость 230 км/ч, являясь прототипом высокоскоростной торпеды СССР «Шквал». Торпеда ДБТ принята на вооружение в декабре 1957 года, работала на перекиси водорода и развивала скорость 45 узлов при дальности хода до 18 км.

Газогенератором через кавитационную головку создается воздушный пузырь вокруг корпуса объекта (парогазовый пузырь) и, вследствие падения гидродинамического сопротивления (сопротивления воды) и применения реактивных двигателей, достигается требуемая подводная скорость движения (100 м/с), превышающая в разы скорость самой быстрой обычной торпеды. Для работы используется гидрореагирующее топливо (щелочные металлы при взаимодействии с водой выделяют водород).

Ту-155 на водороде установил 14 мировых рекордов!

Во время ВОВ Фирма «Хейнкель» создала под двигатель Вальтера Walter HWK-109-509 с тягой 2000 кгс., работавший на перекиси водорода, целую линейку реактивных самолетов.

Вполне успешный, но, к сожалению, не ставший серийным опыт создания «экологических» самолетов у России был уже в конце 80-х годов прошлого столетия. Миру был представлен Ту-155 (экспериментальная модель Ту-154), работающий на сжиженном водороде, а затем и на сжиженном природном газе. 15 апреля 1988 года самолет был впервые поднят в небо. Он установил 14 мировых рекордов и выполнил порядка ста рейсов. Однако затем проект ушел «на полку».

В конце 1990-х по заказу «Газпрома» был построен Ту-156 с двигателями на сжиженном газе и традиционном авиационном керосине. Этот самолет постигла та же участь, что и Ту-155. Представляете, насколько тяжело бороться с нефтяным лобби даже Газпрому!

Водородомобили

Автомобили с двигателями, работающими на водороде, делятся на несколько групп:

  • Транспортные средства, работающие на чистом водороде или топливно-воздушной смеси. Особенность таких двигателей заключается в чистом выхлопе и увеличении КПД до 90%.
  • Машины с гибридным двигателем. Они обладают экономичным мотором, способным работать на чистом водороде или бензиновой смеси. Такие транспортные средства соответствуют стандарту Евро-4.
  • Автомобили со встроенным электродвигателем, питающим водородный элемент на борту транспортного средства.

Главной особенностью водородомобилей является способ подачи горючего в камеру сгорания и его воспламенения.

Уже выпускаются серийно такие модели водородомобилей, как:

  • Ford Focus FCV;
  • Mazda RX-8 hydrogen;
  • Mercedes-Benz A-Class;
  • Honda FCX;
  • Toyota Mirai;
  • Автобусы MAN Lion City Bus и Ford E-450;
  • гибридный автомобиль на два вида топлива BMW Hydrogen 7.

Серийный водородомобиль Тойота "Мирай".

Этот автомобиль может разогнаться до 179 км/ч, причем до 100 км/ч машина разгоняется за 9,6 секунды и, самое главное, она способна проехать без дополнительной дозаправки 482 км

Концерн БМВ представил свой вариант автомобиля Hydrogen . Новая модель протестирована известными деятелями культуры, бизнесменами, политиками и другими популярными личностями. Испытания показали, что переход на новое топливо не влияет на комфортабельность, безопасность и динамику транспортного средства. При необходимости виды горючего можно переключать с одного на другой. Скорость Hydrogen7 - до 229 км/час.

Honda Clarity - автомобиль от концерна Хонда, который поражает запасом хода. Он составляет 589 км, чем не может похвастаться ни одно транспортное средство с низким уровнем выбросов. На дозаправку уходит от трех до пяти минут.

Home Energy Station III - это компактный блок, включающий в себя топливные элементы, баллон для хранения водорода и риформер природного газа, извлекающий H2 из газовой трубы.

Метан из бытовой сети превращается этим аппаратом в водород. А он - в электричество для дома. Мощность топливных элементов в Home Energy Station составляет 5 киловатт. Кроме того, встроенные баллоны с газом служат своеобразными аккумуляторами энергии. Станция использует этот водород при пике нагрузки на домашнюю электросеть. Вырабатывает 5 кВт электроэнергии и до 2 м3 водорода в час.

К недостаткам водородомобилей можно отнести:

  • громоздкость силовой установки при использовании топливных элементов, снижающей маневренность автомобиля;
  • пока высокую стоимость самих водородных элементов из-за входящих в их состав палладия или платины;
  • несовершенство конструкции и неопределённость в материале изготовления баков для топлива не позволяющих долго хранить водород;
  • отсутствие заправок водородом, инфраструктура которых очень слабо развита во всём мире.

По мере серийного производства большинство этих конструктивных и технологических недостатков будут преодолены, а по мере развития добычи водорода, как полезного ископаемого, и сети заправок, существенно понизится его стоимость.

В 2016 году появился первый поезд на водородном топливе, являющийся детищем немецкой компании Alstom. Планируется, что новый состав Coranda iLint начнет движение по маршруту из Букстехуде в Куксхавен (Нижняя Саксония).

В будущем планируется заменить такими поездами 4000 дизельных составов Германии, перемещающихся по участкам дорог без электрификации.

Во Франции выпустили оригинальную модель велосипеда на водороде. (Французский Pragma). Заливаешь всего 45 грамм водорода и в путь! Расход топлива - примерно 1 грамм на 3 километра.

Водород в космонавтике

Как горючее в паре с жидким кислородом (ЖК) жидкий водород (ЖВ) был предложен в 1903 г. К. Э. Циолковским. Он является горючим, с самым большим удельным импульсом (при любом окислителе), что позволяет при равной стартовой массе ракеты выводить в космос гораздо большую массу полезного груза. Однако на пути применения водородного топлива стояли объективные трудности.

Первая - сложность его сжижения (получение 1 кг ЖВ обходится в 20-100 раз дороже 1 кг керосина).

Вторая - неудовлетворительные физические параметры - чрезвычайно низкая температура кипения (-243°С) и очень малая плотность (ЖВ в 14 раз легче воды), что отрицательно сказывается на возможности хранения этого компонента.

В 1959 г. НАСА выдало крупный заказ на проектирование кислородно-водородного блока "Центавр". Он использовался в качестве верхних ступеней таких РН, как "Атлас", "Титан" и тяжелой ракеты "Сатурн".

Из-за крайне низкой плотности водорода, первые (самые большие) ступени ракет-носителей использовали другие (менее эффективные, но более плотные) виды горючего, например керосин, что позволяло уменьшить размеры до приемлемых. Пример такой «тактики» - ракета «Сатурн-5», в первой ступени которой применялись компоненты кислород/керосин, а во 2-й и 3-й ступени - кислородно-водородные двигатели J-2, тягой по 92104 т каждый.

Термический реактор Росси

Итальянский изобретатель Андреа Росси при поддержке научного консультанта физика Серджо Фокарди, провели эксперимент:

В герметичную трубку поместили насколько грамм никеля (Ni) добавили 10% алюмогидрида лития, катализатор и заполнили капсулу водородом (Н2). После нагрева до температуры порядка 1100-1300оС, парадоксально, но трубка оставалась в горячем состоянии на протяжении целого месяца, а выделенная тепловая энергия, в несколько раз превышала затраченную на нагрев!

На семинаре в Российском университете дружбы народов (РУДН) в декабре 2014 года, было доложено об успешном повторении этого процесса в России:

По аналогии выполнена трубка с топливом:

Выводы по эксперименту: выделение энергии в 2,58 раза больше затраченной электрической энергии.

В Советском Союзе работы по ХЯС велись с 1960 года в некоторых КБ и НИИ по заказу государства, но с "перестройкой" финансирование прекратилось. На сегодняшний день эксперименты успешно проводятся независимыми исследователями – энтузиастами. Финансирование осуществляется на личные средства коллективов граждан России. Одна из групп энтузиастов, под руководством Самсоненко Н.В., работает в здании «Инженерного корпуса» РУДН.

Ими был проведен ряд калибровочных тестов с электронагревательными приборами и реактором без топлива. В этом случае, как и следовало ожидать, выделяемая тепловая мощность равна подводимой электрической мощности.

Основная проблема – спекание порошка и локальный перегрев реактора, из-за чего нагревательная спираль перегорает и даже сам реактор может прогореть насквозь.

Но А.Г. Пархомову, удалось сделать длительно работающий реактор. Мощность нагревателя 300 Вт, КПД=300%.

Реакция синтеза 28Ni + 1H (ион) = 29Cu + Q согревает Землю изнутри!

Внутреннее ядро Земли содержит никель и водород, при температуре 5000К и давлении 1,36 Мбар, поэтому есть все условия для протекания реакции синтеза в недрах Земли, экспериментально воспроизведённой в реакторе Росси! В результате этой реакции получается медь, соединения которой находят в «черных курильщиках» зонах расширения Земли (срединно-океанических хребтах) в потоке богатом водородом.

Темный водород

В 2016 году учёные из США и Великобритании, создав при мгновенном сжатии давление 1,5 млн. атмосфер и температуру в несколько тысяч градусов, смогли получить третье промежуточное состояние водорода, при котором он одновременно имеет свойства и газа, и металла. Он получил название «тёмный водород», так как в этом состоянии он не пропускает видимый свет, в отличие от инфракрасного излучения. "Тёмный водород", в отличие от металлического, идеально вписывается в модель строения планет-гигантов. Он объясняет, почему их верхние слои атмосферы значительно теплее, чем должны быть, перенося энергию от ядра, а поскольку он обладает значительной электропроводностью, то играет ту же роль, что и внешнее ядро на Земле, формируя магнитное поле планеты!

Генерация водорода из глубин Черного моря

Бог одарил землю Крыма не только красивейшей и разнообразной природой, но и достаточными запасами различных ископаемых, в том числе и углеводородов. Но наш полуостров буквально "купается" в самом большом на планете водном хранилище природных газов, коим является Чёрное море.

Глубинные слои - ниже 150м, состоят из водородосодержащих соединений, основную часть которых составляет сероводород. По приблизительным оценкам, общее содержание сероводорода в Черном море может достигать 4.6 млрд. т, что, в свою очередь, служит потенциальным источником 270 млн. т водорода!

Запатентованы несколько способов разложения сероводорода с получением водорода и серы (H2S <=> H2 + S – Q), включающий контактирование сероводородсодержащего газа через слой твердого материала, способного разлагать его с выделением водорода и образованием серосодержащих соединений на поверхности материала, при давлении 15 атмосфер и температуре 400oС.

Наиболее перспективным, представляется разработка специальных гидрофобных мембран-фильтров, отделяющих водород от других газов прямо на глубине. Ведь мельчайшие из молекул легко просачиваются через металлы и даже в гранитных массивах живут колонии бактерий питающихся водородом!

Давайте помечтаем... Представим себе, что лет через десять на одном из мысов южного побережья Крыма, где морское дно резко понижается до глубин более 200 метров, будет построена небольшая станция. Из моря к ней протянутся рукава труб, на концах которых будут находиться сепараторы сероводорода. Водород после очистки поступит в сеть заправок автотранспорта и на когенераторную теплоэлектростанцию. Рядом с заводом разместиться ферма, где в водородной атмосфере будут выращивать анаэробные микроорганизмы, митоз которых происходит на порядок быстрее их обычных собратьев. Из их биомассы будут производить корм для скота и удобрения.

Мир неумолимо вступает в водородную эру!

Советник президента РФ академик РАН Сергей Глазьев подчеркивал: "Каждый из экономических циклов Кондратьева характеризуется своим энергоносителем: сначала дрова (органический углерод), уголь (углерод), потом нефть и мазут (тяжелые углеводороды), затем бензин и керосин (средние углеводороды), сейчас газ (легкие углеводороды), а основным энергоносителем следующего экономического цикла должен стать чистый водород!"

Применения водорода обширны, многогранны, энергетически выгодны, экологичны, и очень перспективны. Уже наши дети будут ездить на серийных автомобилях на водороде, использовать алмазные микропроцессоры, сделанные по водородной технологии, металлический водород совершит революцию в космонавтике, а развитие реакторов Росси - в энергетике!

Признание теории изначально гидридной Земли (В.Н.Ларина) приведёт к открытию ископаемых месторождений Н2, что сильно удешевит его получение. И не смотря на сопротивление "удушающих" Землю вредными выбросами нефтяных лоббистов, мы неизбежно вступаем в водородную эру!

Сывороткин В.Л., МГУ

С ейчас автопроизводители только и говорят о водородных разработках. Что же такое водород? Рассмотрим его немного подробнее.

Водород – первый элемент химической таблицы, его атомные вес равен 1. Это одно из самых распространенных веществ во вселенной, например из 100 атомов из которых состоит наша планета 17 – водород.

Водород — топливо будущего. Он имеет массу преимуществ по сравнению с другими видами топлива и имеет огромные перспективы его заменить. Он может быть использован абсолютно во всех отраслях современного производства и транспорта, даже газ, на котором готовиться пища, можно запросто, без каких либо переделок, заменить на водород.

Почему же водород не получил до сих пор широкого внедрения? Одна из проблем заключается в технологиях его получения. Пожалуй, единственным эффективным на данный момент способом его получения является электролитический способ – получение из вещества воздействием сильного электрического тока. Но на данный момент, большая часть электричества получается на теплоэлектростанциях, и поэтому возникает вопрос «А стоит ли игра свеч?». Но внедрение в производство электричества атомной энергии, энергии ветра и солнца, наверное, исправит эти проблемы.

Это вещество содержится практически во всех веществах, но больше всего его в воде. Как сказал писатель-фантаст Жюль Верн: «Вода – это уголь будущих веков». Это высказывание можно отнести к разряду предсказаний. Этого «угля» на поверхности больше чем чего либо еще, так что водородом мы будем обеспечены на долгие годы.

Об экологической чистоте водорода можно сказать только одно: при его сгорании и реакциях в топливных элементах образуется вода и ничего кроме воды.

Топливный элемент – пожалуй, самый эффективный способ получения энергии из водорода. Он работает по принципу батарейки: в топливном элементе имеется два электрода, между ними движется водород, происходит химическая реакция, на электродах появляется электрический ток, а вещество превращается в воду.

Поговорим о применении водорода в автомобилях. Идея замены обычного шумного и дымного бензина на абсолютно чистый газ возникла много лет назад, причем как в Европе так и в СССР. Но разработки в этой сфере велись с переменным успехом. А сейчас наступил апогей желания автопроизводителей получить независимость от нефти. Каждая, уважающая себя, компания имеет разработки в этой сфере.

Hydrogen в автомобиле может быть использован двумя способами: или сжигаться в двигателе внутреннего сгорания, или использоваться в топливных элементах. Основное количество новых концепткаров используют технологии топливных элементов. Но такие компании как Mazda и BMW пошли по второму пути и на это есть веские причины.

Автомобиль на топливных элементах – простая и чрезвычайно надежная система, но ее широкому распространению мешает инфраструктура. Например, если купить автомобиль на топливных элементах и использовать его в нашей стране, то на заправку придется ездить в Германию. А инженеры BMW пошли другим путем. Они построили автомобиль, использующий водород как горючее топливо, причем этот автомобиль может использовать как бензин, так и водород, как многие современные автомобили, оснащенные системой питания газ-бензин. Таким образом, если в вашем городе появилась хотя бы одна заправка, торгующая таким топливом – вы смело можете покупать водородный BMW Hydrogen 7.

Еще одной проблемой внедрения водорода — является его способ хранения. Вся сложность заключается в том, что атом водорода – самый маленький по размерам в химической таблице, а это значит, что он может проникать практически сквозь любое вещество. Это значит, что даже самые толстые стальные стенки будут медленно, но верно его пропускать. Эта проблема сейчас решается химиками.

Еще одна загвоздка – сам бак. 10 кг водорода могут заменить 40 кг бензина, но дело в том, 10 кг вещества занимают объем 8000 л.! А это целый олимпийский бассейн! Для уменьшения объема газа его нужно сжижать, а сжиженный водород надо безопасно и удобно хранить. Баки современных водородных автомобилей весят около 120 кг, что почти в два раза больше стандартных баков. Но и эта проблема скоро будет решена.

Преимуществ у водородного топлива намного больше чем недостатков. Водород сгорает намного эффективнее, не имеет вредных веществ выхлопе, не производит сажи, а это значительно увеличивает ресурс автомобилей. Водород – легко возобновляемое топливо, поэтому природа не получит практически никакого вреда.

Основным препятствием водородных технологий является инфраструктура. Очень немногие в мире заправки на данный момент готовы заправить автомобиль водородом, хотя серийные автомобили на водороде уже производит Honda и готовиться к производству BMW. В странах бывшего советского союза о водородном автомобиле вообще можно пока и не мечтать. До появления водородных заправок пройдет еще не один год, а может и десяток лет. Остается ждать, когда же и мы вместе со всем миром начнем спасать планету от экологической катастрофы.

Русские учёные придумали новое топливо, которое в 100 раз дешевле солярки, эффективней и проще в производстве… Вы думаете, кто-то этому обрадовался? Ничуть не бывало! Московские министры уже 3 года гоняют воздух по кабинетам – видимо ещё думают, как же лучше воплотить в жизнь прямой приказ о внедрении, поступивший им для исполнения. А те, кто отдал этот приказ, тоже получается не заинтересован в его скорейшей реализации, т.к. не мешают министрам безнаказанно саботировать решение жизненно важных для России и всего остального мира задач. Вот и думайте теперь: на кого в действительности работают эти министры?.. Юрий Иванович Краснов и Евгений Гурьевич Антонов из НПО им. Лавочкина придумали принципиально новый вид топлива на основе структурированной воды. Но, получается, их изобретение сегодняшним царькам не нужно! Оно даже мешает им гнать нас бегом к полному истощению углеводородных видов топлива и экологической катастрофе на некогда прекрасной планете Земля…

Мы живём в 21 веке, человечество развивается, строит заводы, ведёт активный образ жизни. Однако для полноценного развития и существования нам нужна энергия! Сейчас такой энергией является нефть. Из неё делается топливо для всех отраслей. Мы используем ее буквально повсюду: от маленьких авто, до огромных заводов.

Однако нефть не является бесконечным ресурсом, с каждым годом мы движемся к полному её уничтожению. Учёные говорят, что мы находимся на той стадии, когда нам нужно искать эффективную замену бензину, ведь уже сейчас цена на него очень высокая, а с каждым годом нефти будет всё меньше, а цены всё выше, и в скором времени, когда нефть закончится (а с существуюшем образом жизни человечества это произойдёт через 60 лет), наше развитие и полноценное существование попросту закончится.

Всем понятно, что нужно искать альтернативные виды топлива. Но какая замена самая эффективная? Ответ прост: водород! Вот, что заменит привычный всем бензин.

Кто придумал водородный двигатель?

Как и многие высокие технологии, данная идея пришла к нам с запада. Первый водородный двигатель разработал и создал американский инженер и учёный Браун. Первая компания, которая использовала данный двигатель, была японская «Honda». Но этой автомобильной компании пришлось на многое пойти ради воплощения в жизнь «автомобиля будущего». Во время создания авто были задействованы на несколько лет все лучшие инженеры и умы компании! Им всем пришлось приостановить производство некоторых автомобилей. И что самое главное, они отказались от участия в Формуле 1, так как все работники, которые были задействованы в создании болидов, стали разрабатывать автомобиль на водороде.

Плюсы водорода как топлива

  • Водород является самым распространенным элементом во вселенной, абсолютно всё в нашей жизни состоит из него, все окружающие нас предметы имеют хоть маленькую, но частицу водорода. Именно этот факт очень приятный для человечества, ведь в отличие от нефти, водород не закончится никогда, и нам не придётся экономить на топливе.
  • Он является абсолютно экологически чистым! В отличие от бензинового, водородный двигатель не выделяет вредных газов, которые негативно влияли бы на экологию. Выхлопами, которые выделяет такой силовой агрегат, является обычная пара.
  • Водород, который используется в двигателях, очень воспламеняем, и автомобиль будет хорошо заводиться и передвигаться, независимо от погоды. То есть нам больше не потребуется зимой прогревать автомобиль перед поездкой.
  • На водороде даже маленькие двигатели будут очень мощными и чтобы создать самый быстрый автомобиль, больше не потребуется строить агрегат размером с танк.

Конечно есть и минусы в этом топливе:

  • Дело в том, что вопреки тому, что это безграничный материал, и он имеется повсюду, его очень тяжело добывать. Хотя для человечества это не проблема. Научились добывать нефть среди океана, пробурив его дно, научимся и водород брать с земли.
  • Вторым минусом является недовольство нефтяных магнатов. Зразу после начала прогрессивного развития данной технологии, большинство проектов были закрыты. По слухам, всё это связано с тем, что если заменить бензин водородом, то самые богатые люди планеты останутся без дохода, а они этого позволить не могут.

Способы добычи водорода в качестве использования в виде энергии

Водород не является чистым ископаемым вроде нефти и угля, нельзя так просто взять выкопать и использовать его. Для того, чтобы он стал энергией, его нужно раздобыть и испоьлзовать некоторую энергию для его переработки, после чего этот самый распространенный химический элемент станет топливом.

Практикуемым на данный день способом добычи водородного топлива является так называемый «паровой риформинг». Чтобы переработать обычный водород в топливо, используются углеводы, которые состоят из водорода и углерода. При химических реакциях, при определенной температуре выделяется огромное количество водорода, который и можно использовать в качестве топлива. Данное топливо не будет выделять вредных веществ в атмосферу во время эксплуатации, однако во время его добычи выделяется огромное количество углекислого газа, который плохо влияет на экологию. Поэтому данный метод хоть и является эффективным, он не должен браться в основу по добыче альтернативного топлива.

Есть двигатели, для которых подойдёт и чистый водород, они сами перерабатывают данный элемент в топливо, однако, как и при предыдущем способе, здесь также наблюдается огромное количество выбросов углекислого газа в атмосферу.

Очень эффективным способом добычи альтернативного топлива в виде водорода является электролиз. Электрический ток пускают в воду, вследствии чего она распадается на водород и кислород. Данный метод является дорогим и хлопотным, однако экологически чистым. Единственным отходом от получения и эксплуатации топлива является кислород, который лишь позитивно повлияет на атмосферу нашей планеты.

А самым перспективным и дешёвым способом получения водородного топлива является переработка аммиака. При необходимой химической реакции аммиак распадается на азот и водород, при чём водорода получается в трижды больше, ежели азота. Данный метод лучше тем, что он немного дешевле и менее затратный. Кроме того, аммиак легче и безопаснее транспортировать, а по прибытию к месту доставки, следует запустить химическую реакцию, выделить азот и топливо готово.

Искусственный шум

Двигатели на водородном топливе практически бесшумны, поэтому на автомобилях, которые эксплуатируются или будут входить в эксплуатацию, устанавливается так называемый «искусственный шум автомобиля», - для предотвращения аварий на дорогах.

Ну что же, друзья, мы с вами стоим на пороге грандиозного перехода от бензина, который уничтожает всю нашу экосистему, до водорода, который наоборот её восстанавливает!

Современное автомобилестроение развивается с акцентом на производство более экологичных транспортных средств. Это обусловлено развернувшейся во всём мире борьбой за чистоту атмосферного воздуха путём снижения выбросов углекислого газа. Постоянный рост цен на бензин также заставляет производителей искать другие источники энергии. Многие ведущие автостроительные концерны постепенно переходят к серийному производству машин, работающих на альтернативном топливе, что уже в самом ближайшем будущем приведёт к появлению на автодорогах мира достаточного количества не только электрокаров, но также авто с двигателями, работающими от водородного топлива.

Принцип работы водородных автомобилей

Авто, работающее на водороде, призвано снизить атмосферные выбросы углекислого газа, а также других вредных примесей. Использование водорода для приведения в движение колёсного транспортного средства, возможно двумя различными способами:

  • применением водородного двигателя внутреннего сгорания (ВДВС);
  • установкой силового электрического агрегата, работающего от водородных элементов (ВЭ).

В то время, как мы привыкли заполнять бензином или дизельным топливом свой автомобиль, новое чудо – работает на наиболее распространенном элементе во вселенной - водороде

ВДВС представляет собой аналог широко используемых сегодня двигателей, топливом для которых является пропан. Именно эту модель движка проще всего перенастроить для работы от водорода. Принцип его действия тот же, что у бензинового двигателя, только в камеру сгорания вместо бензина поступает сжиженный водород. Авто с ВЭ – это, фактически, электрокар. Водород здесь выступает лишь сырьём для выработки электроэнергии, необходимой, чтобы привести в действие электрический мотор.

Водородный элемент состоит из следующих частей:

  • корпуса;
  • мембраны, пропускающей только протоны – она делит ёмкость на две части: анодную и катодную;
  • анода, покрытого катализатором (палладием или платиной);
  • катода с тем же катализатором.

Принцип действия ВЭ построен на физико-химической реакции, состоящей в следующем:


Таким образом, при движении автомобиля не выделяется углекислый газ, а лишь водяной пар, электричество и окись азота.

Основные характеристики водородных автомобилей

Главные игроки автомобилестроительного рынка уже имеют опытные образцы своей продукции, использующие водород в качестве топлива. Можно уже определённо выделить отдельные технические характеристики таких машин:

  • максимально развиваемую скорость до 140 км/час;
  • средний пробег от одной заправки 300 км (некоторые производители, например, Тойота или Хонда заявляют вдвое большую цифру – 650 или 700 км, соответственно, на одном лишь водороде);
  • время разгона до 100 км/час с нуля – 9 секунд;
  • мощность силовой установки до 153 лошадиных сил.

Этот автомобиль может разогнаться до 179 км/ч, причем до 100 км/ч машина разгоняется за 9.6 секунд и, самое главное, она способна проехать без дополнительной дозаправки 482 км

Совсем неплохие параметры даже для бензиновых двигателей. Пока ещё не наметился крен в сторону ВДВС, использующего сжиженный Н2 или машин на ВЭ, и непонятно, какой из этих типов двигателей достигнет лучших технических характеристик и экономических показателей. Но сегодня больше выпущено моделей машин с электроприводом, работающих от ВЭ, которые дают больший КПД. Хотя расход водорода для получения 1 кВт энергии меньше в ВДВС.

К тому же переоснащение ДВС под водород для увеличения КПД требует изменения системы зажигания установки. Не решена пока проблема быстрого прогорания поршней и клапанов из-за более высокой температуры горения водорода. Здесь всё решит дальнейшее развитие обеих технологий, а также динамика цен при переходе к серийному производству.

Плюсы и минусы авто, работающих на водороде

Среди основных преимуществ водородомобилей можно отметить:

  • высокую экологичность, заключающуюся в отсутствии большинства вредных веществ в выхлопах, характерных для работы бензинового двигателя, – углекислого и угарного газа, окиси и диоксидов серы, альдегидов, ароматических углеводородов;
  • более высокий КПД, по сравнению с бензиновыми авто;

В целом авто имеет амбиции покорить весь мир
  • меньший уровень шума от работы двигателя;
  • отсутствие сложных, ненадёжных систем топливоподачи и охлаждения;
  • возможность использования двух видов топлива.

Кроме того, машины, работающие на ВДВС, имеют меньший вес и больше полезного объёма, несмотря на необходимость установки баллонов для топлива.

К недостаткам водородомобилей можно отнести:

  • громоздкость силовой установки при использовании топливных элементов, снижающей маневренность автомобиля;
  • высокую стоимость самих водородных элементов из-за входящих в их состав палладия или платины;
  • несовершенство конструкции и неопределённость в материале изготовления баков для водородного топлива;
  • отсутствие технологии хранения водорода;
  • отсутствие заправок водородом, инфраструктура которых очень слабо развита во всём мире.

Однако, с переходом к массовому выпуску авто, оснащённых водородными силовыми установками, большая часть этих недостатков наверняка будет устранена.

Какие автомобили, использующие водород, уже выпускаются

Производством машин на водородном топливе занимаются такие ведущие мировые автомобилестроительные компании, как BMW, Mazda, Mercedes, Honda, MAN и Toyota, Daimler AG и General Motors. Среди опытных моделей, а у некоторых производителей уже и мелкосерийных, имеются автомобили, функционирующие только на водороде, или с возможностью использования двух видов топлива, так называемые гибриды.

Уже выпускаются такие модели водородомобилей, как:

  • Ford Focus FCV;
  • Mazda RX-8 hydrogen;
  • Mercedes-Benz A-Class;
  • Honda FCX;
  • Toyota Mirai;
  • Автобусы MAN Lion City Bus и Ford E-450;
  • гибридный автомобиль на два вида топлива BMW Hydrogen 7.

Сегодня можно сказать определённо, что, несмотря на имеющиеся трудности (новое всегда с трудом пробивает себе дорогу), будущее принадлежит более экологичным автомобилям. Автокары, работающие на водородном топливе, составят достойную конкуренцию электромобилям.

Введение

Исследования Солнца, звёзд, межзвёздного пространства показывают, что самым распространённым элементом Вселенной является водород (в космосе в виде раскалённой плазмы он составляет 70 % массы Солнца и звёзд).

По некоторым расчётам, каждую секунду в глубинах Солнца примерно 564 млн. тонн водорода в результате термоядерного синтеза превращаются в 560 млн. тонн гелия, а 4 млн. тонн водорода превращаются в мощное излучение, которое уходит в космическое пространство. Нет опасений, что на Солнце скоро иссякнут запасы водорода. Оно существует миллиарды лет, а запас водорода в нём достаточен для того, чтобы обеспечить ещё столько же лет горения.

Человек живёт в водородно-гелиевой вселенной.

Поэтому водород представляет для нас очень большой интерес.

Влияние и польза водорода в наши дни очень велика. Практически все известные сейчас виды топлива, за исключением, разумеется, водорода, загрязняют окружающую среду. В городах нашей страны ежегодно проходит озеленение, но этого, как видно, недостаточно. В миллионы новых моделей автомобилей, которые сейчас выпускаются, заливают такое топливо, которое выпускает в атмосферу углекислый (СО 2) и угарный (СО) газы. Дышать таким воздухом и постоянно находиться в такой атмосфере представляет очень большую опасность для здоровья. От этого происходят различные заболевания, многие из которых практически не поддаются лечению, а уж тем более невозможно лечить их, продолжая находиться в можно сказать «заражённой» выхлопными газами атмосфере. Мы хотим быть здоровыми, и разумеется, хотим, чтобы поколения, которые пойдут за нами, тоже не жаловались и не страдали от постоянного загрязняемого воздуха, а наоборот, помнили и доверяли пословице: «Солнце, воздух и вода – наши лучшие друзья».

А пока я не могу сказать, что эти слова оправдывают себя. На воду нам уже вообще приходится закрывать глаза, поскольку сейчас, если даже брать конкретно наш город, известны факты, что из кранов течёт загрязнённая вода, и пить её ни в коем случае нельзя.

Что касается воздуха, то здесь на повестке дня уже много лет стоит не менее важная проблема. И если представить, хотя бы на секунду, что все современные двигатели будут работать на экологически чистом топливе, коим, разумеется, является водород, то наша планета встанет на путь, ведущий к экологическому раю. Но это всё фантазии и представления, которые, к великому нашему сожалению ещё не скоро станут реальностью.

Несмотря на то, что наш мир приближается к экологическому кризису, все страны, даже те, которые в большей степени загрязняют своей промышленностью окружающую среду, (ФРГ, Япония, США, и как это не прискорбно – Россия) не торопятся паниковать и начинать экстренную политику по её очищению.

Сколько бы мы не говорили о положительном влиянии водорода, на практике это можно увидеть довольно таки не часто. Но всё же разрабатывается множество проектов, и целью моей работы явился не только рассказ о самом чудесном топливе, но и о его применении. Эта тема очень актуальна, поскольку сейчас жителей не только нашей страны, но и всего мира, волнует проблема экологии и возможные пути решения этой проблемы.

Водород на Земле

Водород – один из наиболее распространённых элементов и на Земле. В земной коре из каждых 100 атомов 17 – атомы водорода. Он составляет примерно 0,88 % от массы земного шара (включая атмосферу, литосферу и гидросферу). Если вспомнить, что воды на земной поверхности более

1,5∙10 18 м 3 и что массовая доля водорода в воде составляет 11,19 %, то становится ясно, что сырья для получения водорода на Земле – неограниченное количество. Водород входит в состав нефти (10,9 – 13,8 %), древесины (6 %), угля (бурый уголь – 5,5%), природного газа (25,13 %). Водород входит в состав всех животных и растительных организмов. Он содержится и в вулканических газах. Основная масса водорода попадает в атмосферу в результате биологических процессов. При разложении в анаэробных условиях миллиардов тонн растительных остатков в воздух выделяется значительное количество водорода. Этот водород в атмосфере быстро рассеивается и диффундирует в верхние слои атмосферы. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство. Концентрация водорода в верхних слоях атмосферы составляет 1∙10 -4 %.

Что такое водородная технология?

Под водородной технологией подразумевается совокупность промышленных методов и средств для получения, транспортировки и хранения водорода, а также средств и методов его безопасного использования на основе неисчерпаемых источников сырья и энергии.

В чём же привлекательность водорода и водородной технологии?

Переход транспорта, промышленности, быта на сжигание водорода – это путь к радикальному решению проблемы охраны воздушного бассейна от загрязнения оксидами углерода, азота, серы, углеводородами.

Переход на водородную технологию и использование воды в качестве единственного источника сырья для получения водорода не может изменить не только водного баланса планеты, но и водного баланса отдельных её регионов. Так, годовая энергетическая потребность такой высокоиндустриальной страны, как ФРГ, может быть обеспечена за счёт водорода, полученного из такого количества воды, которое соответствует 1,5% среднего стока реки Рейн (2180 л воды дают 1 тут в виде H 2). Отметим попутно, что на наших глазах становится реальной одна из гениальных догадок великого фантаста Жюля Верна, который устами героя рома «Таинственный остров» (гл. XVII) заявляет: «Вода – это уголь будущих веков».

Водород, получаемый из воды, - один из наиболее энергонасыщенных носителей энергии. Ведь теплота сгорания 1 кг H 2 составляет (по низшему пределу) 120 МДж/кг, в то время как теплота сгорания бензина или лучшего углеводородного авиационного топлива – 46 – 50 МДж/кг, т.е. в 2,5 раза меньше 1 т водорода соответствует по своему энергетическому эквиваленту 4,1 тут, к тому же водород – легковозобновляемое топливо.

Чтобы накопить ископаемое горючее на нашей планете, нужны миллионы лет, а чтобы в цикле получения и использования водорода из воды получить воду, нужны дни, недели, а иногда часы и минуты.

Но водород как топливо и химическое сырьё обладает и рядом других ценнейших качеств. Универсальность водорода заключается в том, что он может заменить любой вид горючего в самых разных областях энергетики, транспорта, промышленности, в быту. Он заменяет бензин а автомобильных двигателях, керосин в реактивных авиационных двигателях, ацетилен в процессах сварки и резки металлов, природный газ для бытовых и иных целей, метан в топливных элементах, кокс в металлургических процессах (прямое восстановление руд), углеводороды в ряде микробиологических процессов. Водород легко транспортируется по трубам и распределяется по мелким потребителям, его можно получать и хранить в любых количествах. В то же время водород – сырьё для ряда важнейших химических синтезов (аммиака, метанола, гидразина), для получения синтетических углеводородов.

Как и из чего в настоящее время получают водород?

В распоряжении современных технологов имеются сотни технических методов получения водородного топлива, углеводородных газов, жидких углеводородов, воды. Выбор того или иного метода диктуется экономическими соображениями, наличием соответствующих сырьевых и энергетических ресурсов. В разных странах могут быть различные ситуации. Например, в странах, где имеется дешёвая избыточная электроэнергия, вырабатываемая на гидроэлектростанциях, можно получать водород электролизом воды (Норвегия); где много твёрдого топлива и дороги углеводороды, можно получать водород газификацией твёрдого топлива (Китай); где дешёвая нефть, можно получать водород из жидких углеводородов (Ближний Восток). Однако больше всего водорода получают в настоящее время из углеводородных газов конверсией метана и его гомологов (США, Россия).

В процессе конверсии метана водяным паром, диоксидом углерода, кислородом и оксида углерода водяным паром протекают следующие каталитические реакции. Рассмотрим процесс получения водорода конверсией природного газа (метана).

Получение водорода осуществляется в три стадии. Первая стадия – конверсия метана в трубчатой печи:

CH 4 + H 2 O = CO + 3H 2 – 206,4 кДж/моль

CH 4 +CO 2 = 2CO + 2H 2 – 248, 3 кДж/моль.

Вторая стадия связана с доконверсией остаточного метана первой стадии кислородом воздуха и введением в газовую смесь азота, если водород используется для синтеза аммиака. (Если получается чистый водород, второй стадии принципиально может и не быть).

CH 4 + 0,5O 2 = CO + 2H 2 + 35,6 кДж/моль.

И, наконец, третья стадия – конверсия оксида углерода водяным паром:

CO + H 2 O = СO 2 + H 2 + 41,0 кДж/моль.

Для всех указанных стадий требуется водяной пар, а для первой стадии – много тепла, поэтому процесс в энерготехнологическом плане проводится таким образом, чтобы трубчатые печи снаружи обогревались сжигаемым в печах метаном, а остаточное тепло дымовых использовалось для получения водяного пара.

Рассмотрим, как это происходит в промышленных условиях (схема 1). Природный газ, содержащий в основном метан, предварительно очищают от серы, которая является ядом ля катализатора конверсии, подогревают до температуры 350 – 370 o С и под давлением 4,15 – 4,2 МПа смешивают с водяным паром в соотношении объёмов пар: газ = 3,0: 4,0. Давление газа перед трубчатой печью, точное соотношение пар: газ поддерживаются автоматическими регуляторами.

Образующаяся парогазовая смесь при 350 – 370 o C поступает в подогреватель, где за счёт дымовых газов нагревается до 510 – 525 o С. Затем парогазовую смесь направляют на первую ступень конверсии метана – в трубчатую печь, в которой она равномерно распределяется по вертикально расположенными реакционным трубам (8). Температура конвертированного газа на выходе из реакционных труб достигает 790 – 820 o С. Остаточное содержание метана после трубчатой печи 9 – 11 % (объёмн.). Трубы заполнены катализатором.