Что такое obd 2 в машине. Что такое OBD2? Чтение кодов неисправностей

Здравствуйте, дорогие читатели и просто случайно зашедшие на сайт сайт. Если вы попали на эту страницу, значит вас определенно интересует, что такое OBD коррекция ГБО , в чем ее суть и как это работает. Именно эти вопросы чаще всего возникают у людей, когда они слышат незнакомые им термины. Сегодня в рубрике " ", я постараюсь как можно более полно ответить на эти, интересующие вас вопросы.Что такое OBD?

OBD (On-Board Diagnostics ) переводится, как бортовая диагностика. На самом деле это вовсе не " ", скорее, термин, который был позаимствован разработчиками OBD коррекции ГБО. Эта диагностика позволяет автомобильным "мозгам" выполнять самодиагностику всех систем автомобиля. Объем данных, которые собираются OBD новых и старых автомобилей имеет существенные отличия. Первые версии OBD, обнаружив неисправность, сигнализировали о ней при помощи лампочки-индикатора MIL (Malfunction Indicator Lamp - индикационная лампа неисправности), однако кроме такого сообщения никакой информации о самой неисправности OBD не сообщал. Современные версии системы самодиагностики имеют стандартный цифровой разъем, при помощи которого можно получить исчерпывающие данные об автомобиле и каждой его системе в отдельности, как в реальном так и прошедшем времени. Кроме того, существуют специальные стандартизированные коды неисправностей DTC (Diagnostic Trouble Codes ), при помощи которых диагност может безошибочно установить причину неисправности автомобиля.

Прежде чем рассказать, как происходит коррекция, хочу сделать небольшое отступление, которое позволит понять необходимость OBD коррекции на ГБО .

Как вы знаете, "мозги" двигателя - ЭБУ (Электронный Блок Управления) настроены на работу двигателя на бензине. Для этого существует ряд настроек, которыми руководствуется ЭБУ, дозируя воздух и бензин, которые необходимы для горения топливно-воздушной смеси. Когда мотор работает на "родном" топливе, происходит точная регулировка, дозирование воздуха и бензина, однако после того как вы , ЭБУ начинает "врать". Точнее не совсем "врать", просто он не знает, как работать с этим типом топлива и "по привычке" дозирует его как бензин.

Проблема, как видите, заключается в том, что по своим физическим характеристикам бензин и газ сильно отличаются друг от друга. Поэтому взаимозаменяемости нет и не может быть, после перехода на газ "бензиновые мозги" не знают о том, что , от чего снижается КПД мотора и .

В цилиндры поступает много газа, часть которого в прямом смысле улетает в трубу, а . Более того, кроме больших расходов на газ, работа двигателя на бедной смеси со временем дает о себе знать. Из-за повышенной температуры сгорания топливной смеси, существенно снижается моторесурс двигателя, и его "смерть" медленно, но верно приближается с каждым километром.

Если на относительно старых авто, не имевших "продвинутой" электроники и OBD, можно было всего лишь с дозатором мощности и смеситель, после чего вся настройка заканчивалась, то на современных моделях такой фокус не пройдет. Как видите, ЭБУ двигателя необходим "переводчик", который сможет объяснить ему как работать с газом. Именно эту функцию и выполняет OBD коррекция ГБО .

Как работает OBD коррекция газового оборудования?


Как работает OBD коррекция ГБО? Если своими словами, то выглядит это примерно так: ЭБУ посылает сигнал системе впрыска, руководствуясь программой, которая вшита в его "мозг". Это сигнал на выходе перехватывается модулем OBD коррекции и корректируется с учетом того, что мотор работает на газе, после чего преобразованный, адаптированный для ГБО сигнал посылается системе впрыска. В результате: ЭБУ уверен в том, что все окей, мотор работает ровно, все датчики сообщают о нормальной работе двигателя.

Главной задачей OBD коррекции газобаллонного оборудования является оптимизация газовоздушной смеси и поддержка в ней правильного соотношения воздуха и газа.

Многолетний опыт в области ГБО показывает, что с блоками OBD, которые корректируют работу штатного OBD на двигателях стандарта Евро-4 и Евро-5, имеет высокую эффективность. Даже при агрессивном стиле вождения автоматическая калибровка позволяет избежать ошибок и загорающихся ламп неисправности. При этом двигатель полностью соответствует вышеуказанным евростандартам, что немаловажно.

Есть правда одно "но". Все вышеуказанные "плюсы" возможны лишь при условии полной исправности двигателя, а также правильной установки газобаллонного оборудования квалифицированными специалистами. В случае нарушения того или иного условия, работа ГБО может быть еще более некорректной, нежели при полном отсутствии OBD коррекции газового оборудования . Также хочу отметить, что в большинстве случаев функцию OBD коррекции можно отключить, однако делать это рекомендуется лишь после диагностики и консультации со специалистами. Если же вы изначально не заинтересованы в OBD коррекции ГБО, советую об этом сообщить установщикам заранее, так как стоимость газового оборудования с данной функцией гораздо выше обычного комплекта ГБО.

Все европейские и большинство азиатских производителей использовали ISO 9141 стандарт (К, L - линия, - ранее освещалась тема - подключение обычного компьютера посредством адаптера К, L - линии для диагностики автомобиля). General Motors использовал SAE J1850 VPW (Variable Pulse Width Modulation), а Fords - SAE J1850 PWM (Pulse Width Modulation). Немного позднее появился ISO 14230 (усовершенствованный вариант ISO 9141, известный как KWP2000). Европейцами в 2001 был принят EOBD (enhanced) расширенный OBD стандарт.

Основное преимущество - наличие высокоскоростной CAN (Controller Area Network) шины. Название CAN шина пришло из компьютерной терминологии, так как создавался данный стандарт примерно в 80-х компаниями BOSCH и INTEL, как компьютерный сетевой интерфейс бортовых мультипроцессорных систем реального времени. CAN-шина — это двухпроводная, последовательная, асинхронная шина с равноправными узлами и подавлением синфазных помех. CAN характеризуется высокой скоростью передачи (гораздо большей, чем другие протоколы) и высокой помехоустойчивостью. Для сравнения ISO 9141, ISO 14230, SAE J1850 VPW обеспечивают скорость передачи данных 10.4 Kbps, SAE J1850 PWM - 41.6 Kbps, ISO 15765 (CAN) - 250/500 kbit/s.

Совместимость конкретного автомобиля с протоколом обмена данными - ISO9141-2 проще всего определить по колодке диагностики OBD-2 (наличие определенных выводов свидетельствует о конкретном протоколе обмена данными). Протокол ISO9141-2 (производитель Азия - Acura, Honda, Infinity, Lexus, Nissan,Toyota, и др., Европа - Audi, BMW, Mercedes, MINI, Porsche, некоторые модели WV и др., ранние модели Chrysler, Dodge, Eagle, Plymouth) идентифицируется наличием контакта 7 (K-line) в диагностическом разъеме. Используемые выводы - 4, 5, 7, 15 (15 может не быть) и 16. ISO14230-4 KWP2000 (Daewoo, Hyundai, KIA, Subaru STi и некоторые модели Mercedes) аналогичен ISO9141.

Стандартный разъем диагностики OBD-II имеет следующий вид.

Назначение выводов (“распиновка”) 16-ти контактного диагностического разъема OBD-II (стандарт J1962):

02 - J1850 Bus+
04 - Chassis Ground
05 - Signal Ground
06 - CAN High (ISO 15765)
07 - ISO 9141-2 K-Line
10 - J1850 Bus-
14 - CAN Low (ISO 15765)
15 - ISO 9141-2 L-Line
16 - Battery Power (напряжение АКБ)
Пропущенные выводы могут использоваться конкретным производителем для своих нужд.

Перед подключением, чтобы не ошибиться, необходимо тестером вызвонить постоянные массы и +12V. Основная причина поломки адаптера - неправильное подключение массы, точнее критичным является отрицательное напряжение на К-линии (замыкание как на массу так и на +12В не приводят к выходу из строя К-линии). В адаптере есть защита от переполюсовки, но если минусовой провод подключить на какой-нибудь исполнительный механизм, а не на массу (например, на бензонасос), а К-линию включить на массу,- в этом случае получаем единственно опасный вариант отрицательного напряжения на К-линии. Если питание (масса) подключено правильно (например, прямо на аккумулятор), сжечь К-линию уже нельзя никаким образом. В автомобиле, зачастую, стоит аналогичная микросхема драйвер К-линии, но включена она всегда правильно, и сжечь контроллер нельзя при любом включении. Линия L менее защищена, и представляет собой параллельный канал на отдельных транзисторах (недопустимо ошибочное подключение на плюс питания). Если не планируется использование двунаправленной L линии, вывод лучше заизолировать (диагностика большинства автомобилей, и также отечественных, выполняется только по К линии).
Диагностика выполняется при включенном зажигании.

Желательно придерживаться следующей последовательности подключения:
1. Подключить адаптер к ПК.
2. Подключить адаптер к ботовому контроллеру в следующем порядке: масса, +12 В, линия К, линия L (по необходимости).
3. Включить ПК.
4. Включить зажигание или завести двигатель (в последнем варианте доступны ряд параметров работы двигателя).
5. Отключение в обратной последовательности.

При использовании обычного стационарного компьютера необходимо использовать розетки с заземлением (в сырых помещениях не редки случаи пробоя импульсных источников питания ПК на корпус, что чревато не только повреждением оборудования, в том числе и бортового контроллера автомобиля, но и связано с риском поражения электрическим током).

OBD-II представляет собой стандарт бортовой диагностики автомобиля, разработанный в 1990-х годах в США и затем распространившийся на весь мировой автомобильный рынок. Данный стандарт предусматривает осуществление полного контроля состояния двигателя, частей кузова и системы управления автомобилем.

Разъем OBD-II

Оборудование автомобиля системой бортовой диагностики стандарта OBD-II предусматривает наличие специального разъема, предназначенного для подключения к автомобилю контрольно-диагностической аппаратуры. Разъем OBD-II расположен внутри кабины под рулевым колесом и представляет собой колодку с двумя рядами по 8 контактов. Диагностический разъем служит для питания оборудования от аккумуляторной батареи автомобиля, заземления и каналов передачи информации.

Наличие стандартного разъема позволяет экономить время специалистов сервисных центров по обслуживанию автомобилей, которые тем самым избавляются от необходимости иметь большое количество отдельных разъемов и приборов для обработки поступающих от каждого разъема сигналов.

Доступ к информации и ее обработка

Стандарт OBD-II предусматривает использование системы кодификации ошибок. Шифр ошибки состоит из одной буквы и последующих за ней четырех цифр, обозначая неисправности различных систем и агрегатов автомобиля. Доступ к информации, передаваемой с помощью системы бортовой диагностики, позволяет получить ценные данные, необходимые для более быстрого и качественного определения технического состояния автомобиля и устранения имеющихся неполадок.

В соответствии со стандартом ISO 15031, система обмена данных OBD-II имеет различные режимы считывания, обработки и передачи информации. Производители автомобилей самостоятельно решают, какие именно режимы использовать для конкретной модели автомобиля. Также производители самостоятельно определяют, какой из диагностических протоколов применять при использовании системы OBD-II.

Существует специальное оборудование для работы с данными о состоянии автомобиля по стандарту OBD-II. Приборы отличаются по функциональности и в общем случае представляют собой адаптер, подключаемый к автомобилю с помощью разъема OBD-II и к компьютеру с помощью стандартного USB-разъема. В комплекте с оборудованием поставляется программное обеспечение, благодаря которому осуществляется чтение и анализ информации.

С 01.01.2000 все автомобили с бензиновыми двигателями стали оснащаться системой OBD. С 01.01.2004 это требование распространилось и на автомобили с дизельными двигателями, а с 2006 года - на грузовые автомобили. С этого времени гарантировалась возможность ремонта и обслуживания автомобилей с системами OBD на всей территории Евросоюза. При этом в автомобилях должен быть стандартизированный интерфейс системы OBD. Также должен быть обеспечен доступ ко всей необходимой информации и данным по соответствующим системам без специального декодирования для любой СТО, контролирующих органов, аварийно-эвакуационных служб. Изготовители были обязаны не позднее чем через три месяца после предоставления авторизованным дилерам технической информации по OBD, сделать ее доступной для прочих заинтересованных сторон, при необходимости за отдельную плату. Исключение составляют данные, представляющие собой особую интеллектуальную собственность или секретные технические знания. К сожалению, не всегда и не все изготовители и импортеры выполняют это требование.

Системы OBD во время поездки обеспечивают постоянный контроль всех деталей и узлов автомобиля, имеющих отношение к выхлопным газам. При возникновении неисправностей, приводящих к превышению установленного предельного содержания вредных веществ в ОГ в 1,5 раза, на панели приборов загорается сигнальная лампа (MIL). В этом случае водитель должен заехать на ближайшую СТО и устранить неисправность. Диагностическая система не должна оценивать неправильно функционирующие детали, если такая оценка может привести к угрозе безопасности или отказу деталей.

Система OBD предоставляет все текущие данные о состоянии автомобиля. Так, могут быть запрошены данные об объеме оснащения, версии ПО и версии ЭБУ. Эти данные можно получить только через стандартизированный интерфейс OBD. Обязательная проверка токсичности ОГ также упрощается благодаря OBD. Taк, в качестве замены для проверки контура регулирования выполняется считывание кодов из регистратора событий системы OBD.

Общие задачи OBD:

  • контроль всех узлов, деталей и систем автомобиля, имеющих отношение к выхлопным газам;
  • защита компонентов (катализатора и лямбда-зондов);
  • запись информации о возникших неисправностях;
  • регистрация условий эксплуатации в момент возникновения неисправности;
  • информирование водителя при превышении предельного уровня токсичности ОГ в 1,5 раза;
  • передача сохраненной информации в рамках диагностики и устранения неисправностей.

Постоянные проверки системы OBD и ее компонентов происходят лишь косвенно. К примеру, состав выхлопных газов автомобиля определяется только по напряжению лямбда-зонда и некоторым другим параметрам. Фактическая же концентрация вредных веществ в ОГ не может контролироваться системой OBD. В частности, не определяются граничные случаи, когда отдельные системы хоть и работают в допустимых пределах, но в сумме эти допуски выдают превышение предельных концентраций.

Таким образом, системы OBD не позволяют сделать точный вывод о полной функциональной безопасности систем в плане токсичности ОГ. Распознавание причин неисправностей и прогнозирование вызываемых ими новых неисправностей посредством OBD также невозможно. Здесь системы OBD (по крайней мере, используемые на момент написания данного материала) достигают пределов своих технических возможностей.

Общие требования к OBD

В предписаниях no OBD законодательно устанавливаются минимальные основные требования. При этом существуют лишь небольшие различия между европейскими и американскими требованиями.

Основные требования к системам OBD:

  • контроль катализаторов;
  • контроль сажевых фильтров;
  • контроль лямбда-зондов;
  • распознавание пропусков зажигания;
  • распознавание неполного сгорания;
  • контроль топливной системы;
  • контроль системы впуска добавочного воздуха;
  • контроль системы рециркуляции ОГ;
  • контроль системы вентиляции топливного бака;
  • контроль системы охлаждения;
  • контроль системы управления клапанами;
  • регистрация условий работы;
  • стандартизированное управление индикаторами неисправности (MIL);
  • стандартизированный диагностический интерфейс;
  • сообщение о готовности системы к проверке (код готовности);
  • защита от вмешательств и манипуляций с ЭБУ;
  • контроль специальных функций АКПП (имеющих отношение к ОГ).

Для выполнения этих требований необходимо множество датчиков, контролирующих электронику двигателя, выпускной тракт и картину выхлопа. Постоянная самодиагностика и проверка правдоподобности сигналов гарантируют комплексный контроль. Возникающие неисправности после нормирования регистрируются в запоминающем устройстве. Несмотря на эту сложную технологию, инженеры не могут отказаться от хорошо зарекомендовавших себя прямых методов диагностики. Постоянный контроль автомобиля, например, проверка токсичности ОГ - по-прежнему нужны.

Системы OBD посредством датчиков должны постоянно определять, анализировать и регистрировать, как минимум, следующие параметры двигателя и условия эксплуатации:

  • температура двигателя;
  • давление топлива;
  • обороты двигателя;
  • скорость движения;
  • информация о неисправностях;
  • пробег автомобиля;
  • коды неисправностей;
  • давление во впускном трубопрводе;
  • напряжение питания;
  • состояние и функция контура лямбда-регулирования.

Дополнительно определяются и анализируются и другие важные величины - температура масла, опережение зажигания, расход воздуха, положение дроссельной заслонки, регулировка фаз газораспределения, функция кондиционера, вентиляция картера двигателя, температура ОГ и функция АКПП. При этом имеются некоторые различия между определением величин в EOBD и CARB OBD II.

Таблица. Сравнение требований CARB OBD и EOBD

Защита от манипуляций с OBD

Изготовители обязаны обеспечить защиту систем OBD от манипуляций и простого перепрограммирования характеристик. Предотвратить это призвано использование запаянных ЭБУ и специальных кристаллов памяти. В директиве 1999/102/EG в Приложении 1 п. 5.1.4.5 указано: «Изготовители, использующие программируемые системы машинного кода (например, электрически-стираемое программируемое ПЗУ, EEPROM), должны предотвратить несанкционированное перепрограммирование. Изготовители должны применять прогрессивные стратегии защиты, а также функции защиты от записи, требующие электронного доступа к компьютеру, который изготовитель подключает за пределами автомобиля. Методы, обеспечивающие должный уровень защиты от несанкционированного вмешательства, утверждаются соответствующими органами».

Зачастую развитие тюнинга (дополнительные блоки управления перед блоком управления двигателем, программируемые модули памяти и пр.) опережает защитные меры изготовителей. Условия для выполнения и соблюдения требований к OBD подделываются.

В любом случае использование или замена деталей одного и того же типа разных изготовителей не должна ухудшать или деактивировать диагностические функции системы OBD.

Устранение неисправностей в OBD

Для индикатора неисправностей MIL (Malfunction Indicator Lamp) для всех изготовителей действуют пороговые значения. Индикатор неисправностей OBD не следует путать с описанными ранее контрольными лампами CHECK ENGINE у более старых автомобилей. Эти контрольные лампы не имели стандартизированных условий включения, не зависящих от изготовителя. Они программировались изготовителями по собственному усмотрению согласно определенным ими пороговым значениям.

Управление индикатором неисправностей OBD при возникновении неисправностей стандартизируется следующим образом:

  • включение индикатора неисправностей после двух (CARB) или трех (EOBD) последовательных циклов движения с одной и той же неисправностью и запись в регистратор событий;
  • выключение индикатора неисправностей после трех последовательных бесперебойных циклов движения с фазой прогрева, в течение которого система контроля, включающая индикатор неисправностей больше не выявляет соответствующую неисправность, равно как не выявляет и других неисправностей, которые, в свою очередь, включили бы индикатор неисправностей;
  • удаление кода неисправности из запоминающего устройства после не менее 40 бесперебойных циклов движения с фазой прогрева (защита от дорогостоящего ремонта).

Таблица. Диагностические пороги

В таблице показаны действующие пороговые значения для диагностики у европейских OBD для включения MIL и записи кодов неисправностей в запоминающее устройство. В случае перебоев процесса сгорания, при которых (по данным изготовителя) очень вероятно повреждение катализатора, индикатор неисправностей может перейти на обычную форму активации, если перебоев со сгоранием больше не происходит или условия работы двигателя по оборотам и нагрузке изменились настолько, что выявленная частота перебоев со сгоранием больше не приводит к повреждениям катализатора.

Правила управления индикатором неисправностей предотвращают сбивающее водителя с толку включение индикатора из-за кратковременных сбоев или граничных случаев, не являющихся истинными неисправностями деталей выпускной системы. Точно определены циклы движения и прогрева.

Цикл движения - это запуск двигателя, движение до возможной регистрации неисправности и выключение двигателя.

Цикл прогрева - это запуск двигателя, движение до тех пор, пока температура охлаждающей жидкости не повысится не менее чем на 22 °С и не составит минимум 70 °С, и двигатель снова не выключится.

Индикатор неисправностей MIL включается при следующих условиях:

  • если неисправен компонент, связанный с управлением двигателем или КПП;
  • если какая-либо деталь вызывает превышение предельного уровня выбросов на 15% или выдает неправдоподобные сигналы;
  • старение катализатора приводит к росту выбросов СН сверх предельного уровня;
  • возникают пропуски зажигания, повреждающие катализатор или увеличивающие выбросы;
  • система вентиляции топливного бака имеет определенную утечку или через систему не проходит воздушный поток;
  • система управления двигателем или КПП переходят в аварийный режим;
  • лямбда-регулирование не активируется в установленное время после запуска;
  • заданная температура двигателя превышена более чем на 11 °С (кроме EOBD).


Рис. Управление индикатором неисправностей OBD

Индикатор неисправностей должен загореться перед запуском двигателя при включении зажигания и погаснуть после запуска двигателя, если прежде не будет выявлена какая-либо неисправность. Конструкция и внешний вид индикатора MIL регламентируются следующими условиями:

  • лампа должна находиться в поле зрения водителя;
  • при включении зажигания лампа должна загореться;
  • цвет лампы не должен быть красным (часто используется желтый цвет);
  • при возникновении неисправностей в деталях системы выпуска лампа должна гореть постоянно;
  • при возникновении неисправностей, которые могут привести к повреждениям катализатора (например, пропуски зажигания), лампа должна мигать;
  • допускается дополнительный звуковой сигнал.

Мигание индикатора MIL при возникающих пропусках зажигания должно продолжаться до тех пор, пока не будет перекрыта подача топлива в неисправный цилиндр. Когда будет перекрыта подача топлива, MIL будет гореть постоянно.

Индикатор неисправностей нельзя использовать ни для каких других целей кроме индикации аварийного пуска или движения в аварийном режиме. Он должен быть хорошо различим при всех (как правило) условиях освещения. Система OBD записывает в регистратор событий пробег с момента появления стандартизированной неисправности. Условия работы (окружающие условия) при возникновении неисправности также записываются в регистратор. Эти окружающие условия называют данными Freeze Frame.

В рамках цикла движения определенные детали и системы контролируются постоянно, а другие - лишь однократно.

Постоянному контролю подлежат детали и системы, имеющие отношение в выхлопным газам. Это, к примеру, распознавание сбоев сгорания, топливная система или электрические контуры деталей выпускной системы, которые контролируется сразу после запуска двигателя и при сбоях могут привести к немедленному включению индикатора неисправности.

Циклически контролируются системы, функция которых привязана к определенным условиям работы. Эти системы контролируются только один раз за цикл движения, при достижении соответствующих рабочих точек. Сюда относятся, к примеру, функции катализатора и лямбда-зонда, а также система впуска добавочного воздуха (если установлена). В силу условий, необходимых для работы этих систем (например, холодный запуск для системы впуска добавочного воздуха), может случиться так, что условия проверки деталей не всегда смогут быть выполнены.

Рис. Пример цикла движения для достижения готовности к проверке

Как показано в примере цикла движения на рисунке, отдельные фазы цикла можно проезжать в произвольном порядке. Неисправность, связанная с системой выпуска, должна появиться в двух последовательных (один за другим) циклах движения, прежде чем загорится индикатор неисправности. Диагностика и проверка системы прерываются, если условия цикла, такие как частота вращения или скорость, выходят за допустимые пределы.

На практике это приводит к проблемам, когда при выполнении технического обслуживания специалисты пытаются просмотреть результаты диагностики системы OBD после успешно выполненного ремонта того или иного узла. Большое количество времени на проезд всего цикла, а также необходимый процент движения с постоянной скоростью сильно усложняют такого рода поездку.

Стало быть, должна обеспечиваться возможность проверки системы OBD и без цикла движения - на СТО. Здесь изготовители выставляют определенные условия для тестирования автомобиля. Путем целенаправленного прохода заданных точек нагрузки и диапазонов частоты вращения можно значительно ускорить проверку функционирования отдельных компонентов. Короткие проверки нужно сначала зарегистрировать в ЭБУ с помощью диагностического тестера.

Условия отключения для OBD

Заданные условия отключения OBD допустимы тогда, когда при определенных условиях работы возможна индикация и регистрация неисправности, не вызванная реальной неисправностью. Это может иметь место, когда:

  • топлива в баке остается менее 15% (CARB) или менее 20% (EOBD);
  • автомобиль эксплуатируется на высоте более 2400 м (CARB) или 2500 м (EOBD) над уровнем моря;
  • окружающая температура составляет менее -7 °С;
  • используются вспомогательные агрегаты, приводимые двигателем - например, лебедки у вседорожников (только если вспомогательный агрегат работает);
  • слишком низкое напряжение АКБ.

Описанные выше условия отключения допускаются лишь при предоставлении изготовителем соответствующих данных и/или заключений технических экспертиз, убедительно доказывающих ненадежность контроля функций автомобиля при названных условиях. Изготовитель может также запросить отключение системы OBD при других температурах окружающей среды, господствующих при запуске двигателя, если на основании представленных данных и/или заключений технических экспертиз он сможет доказать, что при этих условиях диагностика может выдавать неверные результаты.

Стандартизированный интерфейс OBD

Рис. Диагностический разъем (розетка CARB)

В качестве стандартизированного интерфейса OBD используется 16-контактный штекерный разъем. В этом разъеме стандартизированы и геометрическая форма, и размеры, и распределение контактов. Этот диагностический разъем является интерфейсом между автомобильной электроникой и устройством считывания неисправностей, так называемого Scan Tool. Передаваемые данные одинаковы для всех автомобилей, но изготовители не смогли договориться о едином протоколе передачи.

Для обмена данными между диагностическим тестером и автомобильной электроникой утверждены следующие виды связи.

Связь по ISO 9141-2

Используется европейскими изготовителями с медленной скоростью передачи данных (5 бит/с).

Связь по ISO 14230-4 (допускается KWP 2000; KWP - KeyWord Protocol)

Используется европейскими и азиатскими изготовителями. Его также использует Chrysler.

Связь по SAE J 1850

Используется американскими изготовителями. Особенно для автомобилей General Motors и легких грузовиков.

Связь по ISO/DIS 15 765-4

Диагностика на CAN - шине.

Стандартизированный интерфейс OBD должен находиться в салоне и расположен так, чтобы он был легко доступен с водительского сиденья и был защищен от использования не по назначению.

Большая часть диагностических разъемов находится под панелью приборов, в области рулевой колонки или центральной консоли. Конкретное положение интерфейса можно найти во многих системах диагностики двигателя и соответствующей документации изготовителя.

Распределение контактов интерфейса OBD

Контакты 7 и 15 зарезервированы для обмена данными по ISO 9141-2 для диагностики системы управления двигателем и составом ОГ.

  • Контакты 2 и 10 - для обмена данными по ISO SAEJ 1850.
  • Контакт 4 - «масса» (кузов).
  • Контакт 5 - сигнал «массы».
  • Контакт 16 - «плюсовая» клемма АКБ.
  • Контакт 6 -CAN HIGH.
  • Контакт 14 -CAN LOW.

Контакты 1, 3,8, 9,11,12,13 - нераспределенные контакты OBD. Эти контакты могут использоваться/используются изготовителями для внутренней системной и автомобильной диагностики, например ABS, ASR, КПП, подушки безопасности.

Подключение к интерфейсу OBD

Рис. Общий процесс проверки у систем OBD

Процесс проверки считанных неисправностей изображен на рисунке. Для считывания неисправностей через стандартизированный диагностический интерфейс служит тестер, так называемый Scan-Tool. Это устройство с дисплеем, с помощью которого можно считывать коды из регистратора событий системы OBD. Согласно ISO 15 031-4 тестер должен автоматически распознавать тип передачи данных и установленную систему управления двигателем. Функционал тестера не должен быть привязан к определенным условиям изготовителя, он должен быть универсально пригоден к использованию в любом автомобиле. Обязательным условием является наличие стандартизированного протокола передачи данных и стандартизированного списка кодов неисправностей. Для OBD утверждено 9 режимов проверки. Из них 5 режимов касаются проверки токсичности ОГ. Вместо специального тестера Scan-Tool можно также использовать соответственно оснащенный тестер двигателя или ноутбук с дополнительной картой (например Bosch KTS 550).

Рис. Считывающее устройство OBD KTS 550

При правильном подключении тестера у диагностических разъемов CARB и у разъемов многих изготовителей электропитание на тестер подается через сам диагностический разъем. Проблемы с электропитанием возникают тогда, когда аккумуляторная батарея недостаточно заряжена или при запуске двигателя кратковременно сильно падает напряжение. В этом случае уровень напряжения находится ниже предельно допустимого для тестера.

При выполнении определенных этапов проверки или у специальных ЭБУ подвода электропитания через диагностический разъем оказывается недостаточно. По этой причине тестер следует всегда подключать к внешнему источнику питания. У некоторых ЭБУ некоторые функции могут выполняться только при определенных условиях работы. Если ЭБУ не находится в требуемом состоянии, то связь прерывается. В этом случае программу проверки нужно запустить заново и в точности соблюдать указания по отдельным этапам проверки.

Однако для еще более эффективной диагностики автомобиля и анализа неисправностей на СТО требуется нечто большее, чем просто считывание кодов системы OBD с помощью тестера Scan-Tool. С помощью диагностических интерфейсов и регистратора событий новые диагностические тестеры позволяют достаточно хорошо локализовать причины проблем. Пример системы с очень высокой эффективностью и производительностью - Bosch FSA 740. У этой системы с помощью генератора сигналов можно проверять датчики, в том числе провода и разъемы во встроенном состоянии. Можно физически проверять также быстрые CAN-шины. Мультиметр и осциллограф с частотой 50 МГц позволяют проводить различные проверки отдельных деталей и полную диагностику блоков управления. Возможно дооснащение до станции комплексной проверки ОГ. Ценной для интерпретации результатов измерений является также возможность записи сравнительных кривых в системе и при необходимости наложения их на кривую, измеренную в автомобиле. Хорошие измерительные кривые можно сохранять в памяти для использования в будущем. На их основе СТО может сформировать свою собственную базу данных. Комплексное программное оснащение на различных стадиях расширения заданными значениями, электрическими схемами и различными системами диагностики ЭБУ обеспечивает покрытие около 95% всего автомобильного рынка.

18.10.2015 (показов - 5427)

OBD или не OBD , вот в чем вопрос

OBD (On Board Diagnostic) - наиболее близкий перевод "самодиагностика". Как видим определение очень расплывчатое и под этим термином можно понимать, что существует некий механизм, рассказывающий о неких неприятностях в работе автомобиля. Часто под термином OBD понимают совершенно различные вещи. Рядовой автолюбитель обычно считает, что это индикатор ошибок, которые были зафиксированы в его автомобиле, о чем сигнализирует лампочка "Check Engine" и требуется считать эти ошибки через разъем диагностики с привлечением диагностического оборудования. Далее продвинутый пользователь покупает недорогой адаптер типа ELM и торжественно докладывает восхищенным друзьям, что он успешно прочитал ошибки из машины и теперь он царь и бог диагностики. Как ни странно, это почти правильно, но это очень упрощенный подход. Попробуем разобраться в деталях, а именно в них обычно скрыт дьявол, как утверждают классики.

Немного истории. С появлением микропроцессорных систем управления двигателями, появилась возможность нагрузить процессор еще одной задачкой, а именно следить за состоянием датчиков и механизмов изнутри системы управления и сообщать по запросу об их состоянии. Первым диагностическим тестером была канцелярская скрепка, которая замыкала контакты на ЭБУ двигателя, а первым дисплеем диагностики была лампочка, по числу морганий которой можно было судить о сообщениях выдаваемых ЭБУ. Каждый производитель занимался своей системой и в этой области до поры до времени царила полная анархия. Однако этот разброд и шатания прервало американское агентство по контролю загрязнения окружающей среды EPA (Environmental Protection Agency). С его подачи был разработан стандарт, который ограничивал состав и количество вредных элементов в выхлопных газах, а следовательно прямо влиял на работу моторов и качество процессов сгорания топливно-воздушной смеси. Именно этот стандарт был назван OBD-2 и оформлен в виде серии документов SAE и ISO 15031.

  • ISO 15031-2 (SAE J-1930) - наводит порядок в терминах и определениях в этой сфере
  • ISO 15031-3 (SAE J-1962) - определяет 16 контактный диагностический разъем как стандарт.
  • ISO 15031-4 (SAE J-1978) - требования к внешнему испытательному оборудованию
  • ISO 15031-5 (SAE J-1979) - описание служб (сервисов) самодиагностики
  • ISO 15031-6 (SAE J-2012) - классификация и определение кодов ошибок при диагностике

Детально пересказывать содержание этих документов в этой статье задача не ставиться. Будем считать, что пытливый читатель сам способен ознакомиться с ними. Но сделаем некоторые выводы, которые следуют из этого стандарта.

  1. OBD -2 стандарт имеет экологическую направленность и описывает процесс контроля за работой силовой установки (мотор + трансмиссия) только с стороны контроля за выхлопом. Системы силовой установки не относящиеся к экологии стандартом
  2. Кроме силовой установки в современном автомобиле есть еще десятки электронных блоков, доступ к которым средствами OBD-2 невозможен.
  3. Нет возможности проводить различные технологические процедуры (калибровки, замена блоков и их адаптация)
Таким образом для профессиональной диагностики и обслуживания автомобилей OBD-2 приборы непригодны. С их помощью можно поверхностно оценить проблемы с силовой установкой и не более того. Для работы с бортовыми сетями автомобилей нужно использовать устройства, в которых реализованы протоколы диагностики от автопроизводителей.

Однако устройства на основе OBD-2 получили большое распространение в среде рядовых автолюбителей. Причины такой популярности кроются в следующем. Такие устройства очень дешевы по сравнению с профессиональной аппаратурой и они покрывают большое количество разнотипных автомобилей. Поэтому гаражные умельцы, которые не привязаны к конкретному бренду, очень любят такие приборы. По их показаниям можно действительно определить основное направление проблемы с двигателем, но провести точную диагностику неисправности как правило не получается.

Различные приборы диагностики и обслуживания от автопроизводителей не являются OBD-2 устройствами, хотя и могут поддерживать этот режим как дополнение в основному фирменному стандарту.

Автопроизводители поставлены в условия, когда в своих системах они вынуждены поддерживать OBD2 и свой собственный внутрифирменный протокол обмена данными в бортовых сетях. Это привело к тому что части OBD2 используются в фирменных протоколах. Это в первую очередь относится к стандартизированному DLC (Diagnostic Link Connector) разъему и к системе классификации ошибок. Такая ситуация создает иллюзию совместимости фирменных стандартов с OBD2. Но как правило форматы данных и логика работы фирменных стандартов существенно шире чем OBD2. Практически все современные автомобили поддерживают OBD2, но это только поверхностный слой диагностики, под которым скрываются сложные фирменные системы управления и диагностики бортовых автомобильных сетей. Как пример можно привести GMLAN или VW TP 2.0

Посмотрим на различия в назначении контактов DLC для стандарта OBD-2 и GM-LAN.

Контакт

Назначение

Назначение

Шины SAE J1850

MS-CAN GMLAN serial bus (+)

Земля шасси

Земля шасси

Земля сигнальная

Земля сигнальная

CAN-H ISO-15765-4

CAN-H ISO-15765-4 HS-CAN

K-line ISO9141-2 и ISO14230-4

K-line ISO9141-2 и ISO14230-4

Шины SAE J1850

MS-CAN GMLAN serial bus (-)

CAN-L ISO-15765-4

L-line ISO9141-2 и ISO14230-4

L-line ISO9141-2 и ISO14230-4

Напряжение питания

Напряжение питания

Контакт

CAN-L ISO-15765-4

Назначение контактов 1,3,8,9,11,12,13 оставлены на усмотрение производителей автомобилей.

Несмотря на то, что контакты 2,6,7,10,14,15 задействованы, они могут быть переназначены автопроизводителем для других функций, при условии что эти назначения не мешают работе оборудования соответствующих SAE 1978.

Контакт 7 задействованный под K-Line не имеет отношения к GM-LAN, но он части встречается на автомобилях GM в дополнение к GM-LAN для доступа к блокам, которые достались в наследство от предыдущих моделей, например ЭГУР в Astra-H. Но для работы по стандарту OBD в GMLAN не используется.

Как видно из таблицы назначения контактов DLC разъема существенно различаются. Совпадения видны только по контактам 6-14, которые отвечают за CAN ISO-15765-4. Фактически по этой шине и есть поддержка OBD-2 из под GM LAN. Все остальные информационные шины GM LAN не имеют ничего общего с OBD-2

Даже при условии, что OBD-2 и GM LAN имеют общие контакты по шине CAN , это еще не означает, что они используют один протокол общения с ECU. Диагностические протоколы общаются в ECU посредством сообщений, которые преобразуются в последовательность CAN кадров или в сообщение для К-line. Это я к тому, что общий уровень CAN может быть базой для создания различных и несовместимых систем диагностики. Проиллюстрируем это считыванием VIN номера двумя различными запросам к одному автомобилю

AP-Terminal

Первый запрос сформируем по стандарту OBD2 и выглядит он как 09 02 с CAN идентификатором 7E0 (моторный блок) . Аналогичный запрос в сетях GMLAN 1A 90 и так же идентификатор 7E0. Мы ожидаем увидеть ответ от ECU серией кадров с идентификатором 7E8 , которые потом формируют ответ в виде VIN номера. Как видим, ответные сообщения похожи, но все же различны и соответственно не совместимы.

Таким образом термин OBD имеет два значения. Первое строгое и точное определение: OBD-2 - это стандарт информационного взаимодействия между блоком управления силовой установкой автомобиля и тестовым оборудованием, основанный на документе ISO 15031 . Стандарт позволяет оценить качество работы силовой установки с точки зрения уменьшения вредных выбросов в атмосферу

Второе значение, которым пользуются для общего описания системы диагностики автомобилей и при этом не делают различий в тонкостях протоколов различных фирм. Такое значение термина OBD получило большое распространение в непрофессиональной среде. но оно скорее разговорное и очень общее. Поэтому лучше воздержаться от его употребления в этом значении во избежание путаницы.