Дизельная, карбюраторная, бензиновая система питания двс. Назначение устройство и работа системы питания карбюраторного двигателя Общее устройство системы питания

Система питания - неотъемлемая часть любого двигателя внутреннего сгорания. Она предназначена для решения перечисленных ниже задач.

□ Хранение топлива.

□ Очистка топлива и подача его в двигатель.

□ Очистка воздуха, используемого для приготовления горючей смеси.

□ Приготовление горючей смеси.

□ Подача горючей смеси в цилиндры двигателя.

□ Вывод отработавших (выхлопных) газов в атмосферу.

Система питания легкового автомобиля включает в себя следующие элементы: топливный бак, топливные шланги, топливный фильтр (их может быть несколько), топливный насос, воздушный фильтр, карбюратор (инжектор или иной прибор, используемый для приготовления горючей смеси). Отметим, что в современных автомобилях карбюраторы используются довольно редко.

Топливный бак располагается внизу или в задней части автомобиля: эти места наиболее безопасны. Топливный бак соединяется с прибором, который создает горючую смесь, посредством топливных шлангов, которые проходят почти через весь автомобиль (обычно - по днищу кузова).

Однако любое топливо должно пройти предварительную очистку, которая может включать в себя несколько степеней. Если вы заливаете топливо из канистры - используйте воронку с сетчатым фильтром. Помните, что бензин обладает большей текучестью, чем вода, поэтому для его фильтрации можно использовать совсем мелкие сетки, у которых ячейки почти не видны. Если ваш бензин содержит примесь воды, то после фильтрации через тонкую сетку вода останется на ней, а бензин - просочится.

Очистка топлива при заливке его в топливный бак называется предварительной очисткой или первой степенью очистки - потому, что на пути топлива до двигателя оно еще не раз пройдет подобную процедуру.

Вторая степень очистки производится с использованием специальной сетки, находящейся на топливозаборнике внутри топливного бака. Даже если на первой стадии очистки в топливе остались какие-то примеси, то они будут удалены на втором этапе.

Для наиболее качественной (тонкой) очистки топлива, поступающего в топливный насос, применяется топливный фильтр (рис. 2.9), находящийся в моторном отсеке. Кстати, в некоторых случаях фильтр устанавливается и до, и после топливного насоса - с целью улучшения качества очистки поступающего в двигатель топлива.

Важно.

Топливный фильтр следует менять через каждые 15 000 - 25 000 км пробега (в зависимости от конкретной марки и модели автомобиля).

Для обеспечения подачи топлива в двигатель используется топливный насос. Обычно он включает в себя следующие детали: корпус, диафрагма с приводным механизмом и пружиной, впускной и выпускной (нагнетательный) клапаны. Также в насосе присутствует еще один сетчатый фильтр: он обеспечивает последнюю, четвертую стадию очистки топлива перед подачей его в двигатель. Среди прочих деталей топливного насоса отметим шток, нагнетательный и всасывающий патрубки, рычаг ручной подкачки топлива и др.

Топливный насос может приводиться в действие от валика привода масляного насоса либо от распределительного вала двигателя. При вращении любого из этих валов находящийся на них эксцентрик оказывает давление на шток привода топливного насоса. Шток, в свою очередь, давит на рычаг, а рычаг - на диафрагму, в результате чего та опускается вниз. После этого над диафрагмой образуется разряжение, под влиянием которого впускной клапан преодолевает усилие пружины и открывается. В результате определенная порция топлива засасывается из топливного бака в пространство над диафрагмой.

Когда затем эксцентрик «отпускает» шток топливного насоса, рычаг перестает давить на диафрагму, в результате чего за счет жесткости пружины та поднимается вверх. При этом образуется давление, под действием которого впускной клапан плотно закрывается, а нагнетательный - открывается. Топливо над диафрагмой направляется в карбюратор (или иной прибор, используемый для приготовления горючей смеси - например, инжектор). Когда эксцентрик в очередной раз начинает давить на шток, топливо всасывается и процесс повторяется заново.

Однако очищать следует не только топливо, но и воздух, используемый для приготовления горючей смеси. Для этого используется специальный прибор - воздушный фильтр. Он устанавливается в специальный корпус после воздухозаборника и закрывается крышкой (рис. 2.10).

Воздух, проходя через фильтр, оставляет на нем весь содержащийся мусор, пыль, примеси и т. д., и для приготовления горючей смеси используется уже в очищенном виде.

Помни об этом.

Воздушный фильтр является расходным материалом, который следует менять через определенный пробел (обычно 10 000 - 15 000 км). Засорившийся фильтр затрудняет прохождение через него воздуха. Это становится причиной перерасхода топлива, поскольку горючая смесь будет содержать много топлива и мало воздуха.

Очищенные компоненты горючей смеси (бензин и воздух) каждый своей дорогой поступают в карбюратор или иной прибор, специально предназначенный для создания горючей смеси из паров бензина и воздуха. Готовая смесь подается в цилиндры двигателя.

Примечание.

Карбюратор автоматически регулирует состав горючей смеси (соотношение паров бензина и воздуха), а также ее количество, подаваемое в цилиндры, в зависимости от режима работы двигателя (холостой ход, размеренная езда, ускорение и др.). Как мы уже отмечали ранее, на современных автомобилях карбюраторы используются редко (всем управляет электроника, самый известный такой прибор - инжектор), но советские и российские автомобили (ВАЗ, АЗЛК, ГАЗ, ЗАЗ) выпускались с карбюратором. Поскольку на таких авто и сегодня ездит пол-России, мы далее подробно рассмотрим принцип работы и устройство карбюратора.

Карбюратор (рис. 2.11) состоит из большого количества разных деталей и включает в себя ряд систем, необходимых для стабильной работы двигателя.

Ключевыми элементами типового карбюратора являются: поплавковая камера, поплавок с игольчатым запорным клапаном, смесительная камера, распылитель, воздушная заслонка, дроссельная заслонка, диффузор, топливные и воздушные каналы с жиклерами.

В общем случае принцип производства горючей смеси в карбюраторе выглядит так.

Когда поршень при впуске в цилиндр горючей смеси начинает двигаться от ВМТ к НМТ, над ним в соответствии с законами физики образуется разряжение. Соответственно, струя воздуха после предварительной очистки с помощью воздушного фильтра и прохождения через карбюратор поступает в эту зону (иными словами, ее туда засасывает).

При прохождении очищенного воздуха через карбюратор из поплавковой камеры через распылитель всасывается топливо. Этот распылитель расположен в самом узком месте смесительной камеры, называемом «диффузор». Входящим потоком очищенного воздуха бензин, вытекающий из распылителя, как бы «дробится», после чего смешивается с воздухом, и происходит так называемое первоначальное смешивание. Окончательное же перемешивание бензина с воздухом осуществляется на выходе из диффузора, а затем горючая смесь поступает в цилиндры двигателя.

Другими словами, в карбюраторе для получения горючей смеси применяется принцип обычного пульверизатора.

Однако мотор будет работать стабильно и надежно лишь тогда, когда в поплавковой камере карбюратора уровень бензина будет постоянным. Если он поднимется выше установленного предела, то в смеси будет слишком много топлива. Если же уровень бензина в поплавковой камере ниже установленного предела - горючая смесь будет слишком бедной. Для решения этой проблемы в поплавковой камере предназначен специальный поплавок, а также игольчатый запорный клапан. Когда бензина в поплавковой камере остается слишком мало, то поплавок опускается вместе с игольчатым запорным клапаном, позволяя тем самым бензину беспрепятственно поступать в камеру. Когда топлива становится достаточно, поплавок всплывает и клапаном перекрывает путь поступления бензина. Чтобы наглядно увидеть этот принцип «в действии», посмотрите на работу простого сливного бачка в туалете.

Чем сильнее водитель нажимает на педаль газа, тем больше открывается дроссельная заслонка (в исходном положении она закрыта). При этом в карбюратор поступает больше бензина и воздуха. Чем больше водитель отпускает педаль газа, тем сильнее закрывается дроссельная заслонка, и в карбюратор поступает меньше бензина и воздуха. Мотор работает менее интенсивно (падают обороты), поэтому крутящий момент, передаваемый на колеса автомобиля, уменьшается, соответственно - автомобиль снижает скорость.

Но даже при полном отпускании педали газа (и закрытии дроссельной заслонки) мотор не заглохнет. Это объясняется тем, что при работе двигателя на холостых оборотах применяется другой принцип. Сущность его состоит в том, что карбюратор оборудован каналами, специально предназначенными для того, чтобы воздух мог проникнуть под дроссельную заслонку, смешиваясь по пути с бензином. При закрытой дроссельной заслонке (на холостых оборотах) воздух вынужденно попадает в цилиндры через эти каналы. При этом он «высасывает» бензин из топливного канала, перемешивается с ним, и эта смесь поступает в поддроссельное пространство. В этом пространстве смесь окончательно принимает требуемое состояние и поступает в цилиндры двигателя.

Примечание.

Для большинства двигателей при работе на холостом ходу оптимальная скорость вращения коленвала составляет 600–900 оборотов в минуту.

В зависимости от текущего режима работы мотора карбюратор готовит горючую смесь требуемого качества. В частности при пуске остывшего мотора горючая смесь должна содержать больше топлива, чем при работе прогретого двигателя. Стоит отметить, что самый экономичный режим работы двигателя - это ровная езда на самой высокой передаче на скорости примерно 60–90 км/ч. При движении в таком режиме карбюратор создает обедненную горючую смесь.

Примечание.

Автомобильные карбюраторы могут иметь разные модели и варианты исполнения. Здесь мы не будем приводить описание карбюраторов разных модификаций, так как нам достаточно иметь хотя бы общее представление о работе карбюратора. Подробную информацию о том, как функционирует карбюратор в конкретном автомобиле, можно найти в руководстве по эксплуатации и ремонту этой машины.

Как мы уже отмечали выше, в процессе работы двигателя внутреннего сгорания образуются выхлопные газы. Они представляют собой продукт сгорания рабочей смеси в цилиндрах двигателя.

Именно выхлопные газы выводятся из цилиндра во время последнего, четвертого такта его рабочего цикла, который так и называется - выпуск. Затем они выводятся в атмосферу. Для этого в каждом автомобиле существует механизм выпуска отработанных газов, который является частью системы питания. Причем его задачей является не только отвод их из цилиндров и выпуск в атмосферу, что само собой, но и уменьшение шума, которым сопровождается данный процесс.

Дело в том, что выпуск отработанных газов из цилиндра двигателя сопровождается очень громким шумом. Он настолько силен, что без глушителя (специального прибора, поглощающего шумы, рис. 2.12) эксплуатация автомобилей была бы невозможной: рядом с работающим автомобилем невозможно было бы находиться из-за производимого им шума.

Механизм выпуска отработанных газов стандартного автомобиля включает в себя следующие составные элементы:

□ выпускной клапан;

□ выпускной канал;

□ приемная труба глушителя (на водительском сленге - «штаны»);

□ дополнительный глушитель (резонатор);

□ основной глушитель;

□ соединительные хомуты, с помощью которых части глушителя соединяются между собой.

Во многих современных автомобилях, кроме перечисленных элементов, используется также специальный катализатор нейтрализации выхлопных газов. Название прибора говорит само за себя: он предназначен для сокращения количества вредных веществ, содержащихся в выхлопных газах автомобиля.

Механизм выпуска отработанных газов работает довольно просто. Из цилиндров двигателя они поступают в приемную трубу глушителя, которая соединена с дополнительным глушителем, а тот, в свою очередь - с основным глушителем (концом которого является выхлопная труба, торчащая сзади автомобиля). Резонатор и основной глушитель внутри имеют довольно сложную структуру: так находятся многочисленные отверстия, а также небольшие камеры, которые расположены в шахматном порядке, в результате чего образуется сложный запутанный лабиринт. Когда выхлопные газы проходят по этому лабиринту, они намного снижают свою скорость и выходят из выхлопной трубы практически бесшумно.

Отметим, что выхлопные газы автомобиля содержат множество вредных веществ: окись углерода (так называемый угарный газ), окись азота, соединения углеводородов и др. Поэтому никогда не прогревайте автомобиль в закрытом помещении - это смертельно опасно: известно очень много случаев, когда люди погибали в собственных гаражах от угарного газа.

РЕЖИМЫ РАБОТЫ СИСТЕМЫ ПИТАНИЯ

В зависимости от целей и дорожных условий водитель может применять различные режимы движения. Им соответствуют и определенные режимы работы системы питания, каждому из которых присуща топливно-воздушная смесь особого качества.

  1. Состав смеси будет богатым при запуске холодного двигателя. При этом потребление воздуха минимально. В таком режиме категорически исключается возможность движения. В противном случае это приведет к повышенному потреблению горючего и износу деталей силового агрегата.
  2. Состав смеси будет обогащенным при использовании режима «холостого хода», который применяется при движении «накатом» или работе заведенного двигателя в прогретом состоянии.
  3. Состав смеси будет обедненным при движении с частичными нагрузками (например, по равнинной дороге со средней скоростью на повышенной передаче).
  4. Состав смеси будет обогащенным в режиме полных нагрузок при движении автомобиля на высокой скорости.
  5. Состав смеси будет обогащенным, приближенным к богатому, при движении в условиях резкого ускорения (например, при обгоне).

Выбор условий работы системы питания, таким образом, должен быть оправдан необходимостью движения в определенном режиме.

НЕИСПРАВНОСТИ И СЕРВИСНОЕ ОБСЛУЖИВАНИЕ

В процессе эксплуатации транспортного средства топливная система автомобиля испытывает нагрузки, приводящие к ее нестабильному функционированию или выходу из строя. Наиболее распространенными считаются следующие неисправности.

НЕДОСТАТОЧНОЕ ПОСТУПЛЕНИЕ (ИЛИ ОТСУТСТВИЕ ПОСТУПЛЕНИЯ) ГОРЮЧЕГО В ЦИЛИНДРЫ ДВИГАТЕЛЯ

Некачественное топливо, длительный срок службы, воздействие окружающей среды приводят к загрязнению и засорению топливопроводов, бака, фильтров (воздушного и топливного) и технологических отверстий устройства приготовления горючей смеси, а также поломке топливного насоса. Система потребует ремонта, который будет заключаться в своевременной замене фильтрующих элементов, периодической (раз в два-три года) прочистке топливного бака, карбюратора или форсунок инжектора и замене или ремонте насоса.

ПОТЕРЯ МОЩНОСТИ ДВС

Неисправность топливной системы в данном случае определяется нарушением регулировки качества и количества горючей смеси, поступающей в цилиндры. Ликвидация неисправности связана с необходимостью проведения диагностики устройства приготовления горючей смеси.

УТЕЧКА ГОРЮЧЕГО

Утечка горючего – явление весьма опасное и категорически не допустимое. Данная неисправность включена в «Перечень неисправностей…», с которыми запрещается движение автомобиля. Причины проблем кроются в потере герметичности узлами и агрегатами топливной системы. Ликвидация неисправности заключается либо в замене поврежденных элементов системы, либо в подтягивании креплений топливопроводов.

Таким образом, система питания является важным элементом ДВС современного автомобиля и отвечает за своевременную и бесперебойную подачу топлива к силовому агрегату.

Назначение, устройство и работа системы питания топливом


Система питания двигателя топливом предназначена для размещения запаса топлива на автомобиле, очистки, распыления топлива и равномерного распределения его по цилиндрам в соответствии с порядком работы двигателя.

В двигателе КамАЗ-740 применена система питания топливом раздельного типа (т. е. функции топливного насоса высокого давления и форсунки разделены). Она включает в себя (рис. 37) топливные баки, топливный фильтр грубой очистки, топливный фильтр тонкой очистки, топливоподкачивающий насос* низкого давления, насос ручной прокачки топлива, топливный насос высокого давления (ТНВД) с всережимным регулятором и автоматической муфтой опережения впрыска топлива, форсунки, топливопроводы высокого и низкого давления и контрольно-измерительные приборы.

Топливо из топливного бака под действием разрежения, создаваемого топливоподкачивающим насосом, через фильтры грубой и тонкой очистки по топливопроводам низкого давления подается к топливному насосу высокого давления. В соответствии с порядком работы двигателя (1-5-4-2-6-3-7-8) ТНВД подает топливо под высоким давлением и определенными порциями через форсунки в камеры сгорания цилиндров двигателя. Форсунками топливо распыляется. Излишки топлива, а вместе с ними и попавший в систему воздух через перепускной клапан ТНВД и клапан-жиклер фильтра тонкой очистки отводятся в топливный бак. Топливо, просочившееся через зазор

Рис. 37. Система питания двигателя топливом:
1 - бак топливный; 2 - топливопровод к фильтру грубой очистки; 3 - тройник; 4 - фильтр грубой очистки топлива; 5 - сливной дренажный топливопровод форсунок левого ряда; 6 - форсунка; 7 - подводящий топливопровод к насосу низкого давления; 8 - топливопровод высокого давления; 9 - ручной топливоподкачивающий насос; 10 - топ-ливоподкачивающий насос низкого давления; 11 - топливопровод к фильтру тонкой очистки; 12 - топливный насос высокого давления; 13 - топливопровод к электромагнитному клапану; 14 - электромагнитный клапан; /5-сливной дренажный топливопровод форсунок правого ряда; 16 - свеча факельная; П - дренажный топливопровод насоса высокого давления; 18 - фильтр тонкой очистки топлива; 19 - подводящий топливопровод к насосу высокого давления; 20 - дренажный топливопровод фильтра тонкой очистки топлива; 21 - сливной топливопровод; 22 - кран распределительный

Рис. 38. Топливный бак:
1 - дно; 2 - перегородка; 3 - корпус; 4 - пробка сливного крана; 5 - наливная труба; 6 - пробка наливной трубы; 7 -стяжная лента; 8 - кронштейн крепления бака

Топливные баки (рис. 38) предназначены для размещения и хранения на автомобиле определенного.запаса топлива. На автомобиле КамАЗ-4310 установлено два бака емкостью по 125 л каждый. Расположены они по обеим сторонам автомобиля на лонжеронах рамы. Бак состоит из двух половин, выштампован-ных из листовой стали и соединенных сваркой; для предохранения от коррозии освинцован изнутри.

Внутри бака имеются две перегородки, которые служат для смягчения гидравлических ударов топлива о стенки при движении автомобиля. Бак оборудован заливной горловиной с выдвижной трубой, фильтрующей сеткой и герметичной крышкой. В верхней части бака установлены датчик указателя уровня топлива реостатного типа, трубка, выполняющая роль воздушного клапана. В нижней части бака размещены заборная трубка и штуцер с краном для слива отстоя. На конце заборной трубки имеется сетчатый фильтр.

Фильтр грубой очистки топлива (рис. 39) предназначен для предварительной очистки топлива, поступающего в топливопод-качивающий насос. Установлен с левой стороны на раме автомобиля. Он состоит из корпуса, отражателя с фильтрующей сеткой, распределителя, успокоителя, стакана фильтра, подводящего и отводящего штуцеров с прокладками. Стакан с крышкой соединяется четырьмя болтами через резиновую уплотнитель-«ую прокладку. В нижнюю часть стакана ввертывается сливная пробка.

Топливо, поступающее через подводящий штуцер из топливного бака, подается к распределителю. Крупные посторонние частицы и вода собираются в нижней части стакана. Из верхней части топливо через сетчатый фильтр подводится к отводящему штуцеру, а из него - к топливопод-качивающему насосу.

Фильтр тонкой очистки топлива (рис. 40) предназначен для окончательной очистки топлива перед поступлением его в топливный насос высокого давления. Фильтр установлен в задней части двигателя в самой высокой точке системы питания. Такая установка обеспечивает сбор воздуха, попавшего в систему питания, и его удаление в топливный бак через клапан-жиклер. Фильтр состоит из корпуса,

двух фильтрующих элементов, двух колпаков с приваренными стержнями, клапана-жиклера, подводящего и отводящего штуцеров с уплотнительными прокладками, элементов уплотнения. Корпус отлит из алюминиевого сплава. В нем выполнены каналы для подвода и отвода топлива, полость для установки клапана-жиклера и кольцевые проточки для установки колпаков.

Сменные картонные фильтрующие элементы изготовлены из высокопористого картона типа ЭТФЗ. Торцевое уплотнение элементов осуществляется верхними и нижними уплотнителями. Плотное прилегание элементов к корпусу фильтра обеспечивается пружинами, устанавливаемыми на стержни колпаков.

Клапан-жиклер предназначен для удаления воздуха, попавшего в систему питания. Он установлен в корпусе фильтра и состоит из колпака, пружины клапана, пробки, регулировочной шайбы, уплотнительной шайбы. Клапан-жиклер открывается, когда давление в полости перед клапаном равно 0,025… 0,045 МПа (0,25…0,45 кгс/см2), а при давлении 0,22±0,02 МПа (2,2±0,2 кгс/см2) начинает перепускаться топливо.

Топливо под давлением от топливоподкачивающего насоса заполняет внутреннюю полость колпака и продавливается через фильтрующий элемент, на поверхности которого остаются механические примеси. Очищенное топливо с внутренней полости фильтрующего элемента подается к впускной полости ТНВД.

Рис. 39. Фильтр грубой очистки топлива:
1 - пробка сливная; 2 - стакан; 3 - успокоитель; 4 - сетка фильтрующая; 5 - отражатель; 6 - распределитель; 7- болт; 8- фланец; 9- кольцо уплотнительное; 10 - корпус

Топливоподкачивающий насос низкого давления предназначен для подачи топлива через фильтры грубой и тонкой очистки к впускной полости ТНВД. Насос поршневого типа с приводом от эксцентрика кулачкового вала ТНВД. Давление подачи 0,05…0,1 МПа (0,5…1 кгс/см2). Насос установлен на задней крышке ТНВД. Топливоподкачивающий насос (рис. 41, 42) состоит из корпуса, поршня, пружины поршня, толкателя поршня, штока толкателя, пружины толкателя, направляющей втулки штока, впускного клапана, нагнетательного клапана.

Корпус насоса чугунный. В нем выполнены каналы и полости для поршня и клапанов. Полости под поршнем и над поршнем соединены каналом через нагнетательный клапан.

Толкатель предназначен для передачи усилия от эксцентрика кулачкового вала поршню. Толкатель роликового типа.

Эксцентрик кулачкового вала ТНВД через толкатель и шток сообщает поршню насоса (см. рис. 41) возвратно-поступательное движение.

Рис. 40. Фильтр тонкой очистки топлива:
1 - корпус; 2 - болт; 3 - шайба уплотнительная; 4 - пробка; 5, 6 - прокладки; 7 - элемент фильтрующий; 8 - колпак; 9 - пружина фильтрующего элемента; 10 - пробка сливная; 11 - стержень

При опускании толкателя поршень под действием пружина движется вниз. Во всасывающей полости а создается разрежение, впускной клапан открывается и пропускает топливо в над-поршневую полость. Одновременно топливо из подпоршневой полости через фильтр тонкой очистки поступает во впускные каналы ТНВД. При движении поршня вверх впускной клапан закрывается и топливо из надпоршневой полости через нагнетательный клапан поступает в полость под поршнем. Когда давление в нагнетательной магистрали б повышается, поршень прекращает вслед за толкателем двигаться вниз, а остается в положении, которое определяется равновесием сил от давления топлива с одной стороны и усилия пружины с другой. Таким образом, поршень совершает не полный ход, а частичный. Тем самым производительность насоса будет определяться расходом топлива.

Ручной топливоподкачивающий насос (см. рис. 42) предназначен для заполнения системы топливом и удаления из нее воздуха. Насос поршневого типа, крепится на корпусе топли-воподкачивающего насоса через уплотняющую медную шайбу.

Насос состоит из корпуса, поршня, цилиндра, штока поршня и рукоятки, опорной тарелки, впускного клапана (общего с топливоподкачивающим насосом).

Заполнение и прокачивание системы осуществляется движением рукоятки со штоком вверх-вниз. При движении рукоятки вверх в подпоршневом пространстве создается разрежение. Впускной клапан открывается и топливо поступает в полость над поршнем топливоподкачивающего насоса. При движении рукоятки вниз нагнетательный клапан топливоподкачивающего насоса открывается и топливо под давлением поступает в нагнетательную магистраль. Далее процесс повторяется.

После прокачки рукоятка должна быть плотно навернута на верхний резьбовой хвостовик цилиндра. При этом поршень ярижимается к резиновой прокладке, уплотняя впускную полость топливоподкачивающего насоса.

Рис. 41. Схема работы топливоподкачивающего насоса низкого давления и ручного топливоподкачивающего насоса:
1 - эксцентрик привода насоса; 2 - толкатель; 3 - поршень; л – впускной клапан; 5 - ручной насос; 6 - нагнетательный 4 клапан

Топливный насос высокого давления (ТНВД) предназначен для подачи дозированных порций топлива под высоким давлением в цилиндры двигателя в соответствии с порядком их работы.

Рис. 42. Топливоподкачивающий насос:
1 - эксцентрик привода насоса; 2 - ролик толкателя; 3 - корпус (цилиндр) насоса; 4 - пружина толкателя; 5 - шток толкателя; 6 - втулка штока; 7 - поршень; 8 - пружина поршня; 9 - корпус насоса высокого давления; 10 - седло впускного клапана; 11- корпус топливоподкачивающего насоса низкого давления; 12 - впускной клапан; 13 - пружина клапана; /4 - ручной подкачивающий насос; 15 - шайба; 16 - пробка нагнетательного клапана; 17 - пружина нагнетательного клапана; 18 - нагнетательный клапан топливного насоса низкого давления

Рис. 43. Топливный насос высокого давления: 1 - задняя крышка регулятора; 2, 3 - ведущая и промежуточная шестерни регулятора частоты вращения; 4- ведомая шестерня регулятора с державкой грузов; 5 - ось груза; 6 - груз; 7-муфта грузов; 8 - палец рычага; 9 - корректор; 10 - рычаг пружины регулятора; 11 - рейка; 12 - втулка рейки; 13 - редукционный клапан; 14 - пробка рейки; 15 - ыуфта опережения впрыска топлива; 16 - кулачковый вал; 17, - корпус насоса; 18 - насосная секция

Насос установлен в развале блока цилиндров и приводится в действие от шестерни распределительного вала через шестерню привода насоса. Направление вращения кулачкового вала со стороны привода - правое.

Насос состоит из корпуса, кулачкового вала (см. рис. 43), восьми насосных секций, всережимного регулятора частоты вращения, муфты опережения впрыска топлива и привода топливного насоса.

Корпус ТНВД предназначен для размещения насосных секций, кулачкового вала и регулятора частоты вращения. Отлит из алюминиевого сплава, в нем выполнены впускной и отсечной каналы и полости для установки и крепления насосных секций, кулачкового вала с подшипниками, шестерен привода регулятора, подводящих и отводящих топливных штуцеров. На заднем торце корпуса насоса крепится крышка регулятора, в которой расположен топливоподкачивающий насос низкого давления с насосом ручной подкачки топлива. Сверху крышки ввертывается штуцер с маслоподводящей трубкой для смазки деталей ТНВД под давлением. Масло из насоса сливается по трубке, соединяющей нижнее отверстие крышки регулятора с отверстием в развале блока. Верхняя полость корпуса ТНВД закрывается крышкой (см. рис. 44), на которой расположены рычаги управления регулятором частоты вращения и два защитных кожуха топливных секций насоса. Крышка устанавливается на двух штифтах и крепится болтами, а защитные кожухи - двумя винтами. На переднем торце корпуса насоса на выходе из отсечного канала ввернут штуцер с перепускным клапаном шарикового типа, поддерживающим избыточное давление топлива в насосе 0,06…0,08 МПа (0,6…0,8 кгс/см2). В нижней части корпуса насоса выполнена полость для установки кулачкового вала.

Кулачковый вал предназначен для сообщения движения плунжерам насосных секций и обеспечения своевременной подачи топлива в цилиндры двигателя. Кулачковый вал изготавливается из стали. Рабочие поверхности кулачков и опорных шеек цементируются на глубину 0,7…1,2 мм. Благодаря К-об-разной конструкции насоса кулачковый вал имеет меньшую длину и, следовательно, обладает более высокой жесткостью. Вал вращается в двух конических подшипниках, внутренние обоймы которых напрессованы на шейки вала. Осевой зазор кулачкового вала 0,1 мм регулируется прокладками, устанавливаемыми под крышку подшипника. Для уплотнения кулачкового вала в крышке имеется резиновая манжета. На переднем конусном конце кулачкового вала на сегментной шпонке устанавливается автоматическая муфта угла опережения впрыска топлива. На заднем конце кулачкового вала монтируется упорная втулка, ведущая шестерня регулятора в сборе, а на призматической шпонке - фланец ведущей шестерни регулятора. Фланец выполнен вместе с эксцентриком привода топливопод-качивающего насоса. Крутящий момент от кулачкового вала на ведущую шестерню регулятора передается через фланец посредством резиновых сухарей. При вращении кулачкового вала усилие передается на роликовые толкатели и через пяты толкателей на плунжеры насосных секций. Каждый толкатель от поворота фиксируется сухарем, выступ которого входит в паз корпуса насоса. За счет изменения толщины пяты регулируется начало подачи топлива. При установке пяты большей толщины топливо начинает подаваться раньше.

Рис. 44. Крышка регулятора:
1 - болт регулирования пусковой подачи; 2 - рычаг останова; 3 - бол* регулирования хода рычага останова; 4 - болт ограничения максимальной частоты вращения; 5 - рычаг управления регулятором (рейкой топливного насоса); 6 - болт ограничения минимальной частоты вращения; I - работа; It - выключено

Насосная секция (рис. 45,а) - часть топливного насоса высокого давления, осуществляющая дозирование и подачу топлива к форсунке. Каждая насосная секция состоит из корпуРЗ, плунжерной пары, поворотной втулки, пружины плунжера, нагнетательного клапана, толкателя.

Корпус секции имеет фланец, при помощи которого секция крепится на шпильках, ввернутых в корпус насоса. Отверстия во фланце под шпильки имеют овальную форму. Это позволяет поворачивать насосную секцию для регулирования равномерности подачи топлива отдельными секциями. При повороте секции против часовой стрелки цикловая подача увеличивается, по часовой - уменьшается. В корпусе секции выполнены два отверстия для прохода топлива из каналов в насосе к отверстиям в плунжерной втулке (А, Б), отверстие для установки штифта, фиксирующего положение втулки и плунжера относительно корпуса секции, и прорезь для размещения поводка поворотной втулки.

Плунжерная пара (рис. 45, б) - узел насосной секции, непосредственно предназначенный для дозирования и подачи топлива. Плунжерная пара включает втулку плунжера и плунжер. Они представляют собой прецизионную пару. Изготавливаются из хромомолибденовой стали, подвергаются закалке с последующей обработкой глубоким холодом для стабилизации свойств материала. Рабочие поверхности втулки и плунжера азотируют.

Рис. 45. Секция топливного насоса высокого давления:
а - конструкция; б - схема верхней части плунжерной пары; А - полость нагнетания топливного насоса; Б - полость отсечки; 1 - корпус насоса; 2- толкатель секции; 3 - пята толкателя; 4 - пружина: 5, 14- плунжер секции; 6, 13 - втулка плунжера; 7 - нагнетательный клапан; 8 - штуцер; 9 - корпус секции; 10 - отсечная кромка винтовой канавки плунжера; 11 - рейка; 12 - поворотная втулка плунжера

Плунжер является подвижной деталью плунжерной пары и выполняет роль поршня. Плунжер в верхней части имеет осевое сверление, две спиральные канавки, выполненные с двух сторон плунжера, и радиальное сверление, соединяющее осевое сверление и канавки. Спиральная канавка предназначена для изменения цикловой подачи топлива за счет поворота плунжера, а следовательно, и канавки относительно отсечного отверстия втулки плунжера. Поворот плунжера относительно втулки осуществляется рейкой топливного насоса через шипы плунжера. На наружной поверхности одного шипа имеется метка. При сборке секции метка на шипе плунжера и прорезь в корпусе секции для установки поводка поворотной втулки должны находиться с одной стороны. Наличие второй канавки обеспечивает гидравлическую разгрузку плунжера от боковых усилий. За счет этого повышается надежность работы насосной секции.

Уплотнение между втулкой и корпусом секции обеспечивается кольцом из маслобензостойкой резины, установленным в кольцевую канавку втулки.

Нагнетательный клапан и его седло выполняются из стали, закаливаются и обрабатываются глубоким холодом. Клапан и седло составляют прецизионную пару, в которой замена одной детали на одноименную из другого комплекта не допускается.

Нагнетательный клапан расположен на верхнем конце втулки и прижат к седлу пружиной. Седло нагнетательного клапана прижато к втулке плунжера торцевой поверхностью штуцера через уплотнительную текстолитовую прокладку.

Нагнетательный клапан грибкового типа с цилиндрической направляющей частью. Радиальное отверстие диаметром 0,3 мм служит для корректировки цикловой подачи при частоте вращения кулачкового вала 600…1000 мин-1. Корректировка осуществляется за счет возрастания дросселирующего действия клапана в период отсечки подачи, в результате чего снижается количество топлива, перетекающего из топливопровода высокого давления в надплунжерное пространство. Разгрузка топливопровода от высокого давления осуществляется за счет перемещения при посадке направляющей клапана в канале седла. Верхняя часть направляющей выполняет роль поршенька, отсасывающего топливо из топливопровода.

Всережимный регулятор частоты вращения. Двигатели внутреннего сгорания должны работать на заданном установившемся (равновесном) режиме, характеризуемом постоянством частоты вращения коленчатого вала, температуры охлаждающей жидкости и других параметров. Такой режим работы может поддерживаться только при условии равенства крутящего момента двигателя моменту сопротивления движению. Однако в процессе эксплуатации это равенство часто нарушается вследствие изменения нагрузки или задаваемого режима, поэтому значение параметров (частоты вращения и др.) отклоняется от заданных. Для восстановления нарушенного режима работы двигателя применяется регулирование. Регулирование может осуществляться вручную путем воздействия на орган управления (рейку топливного насоса) или при помощи специального прибора, называемого автоматическим регулятором частоты вращения. Таким образом, регулятор частоты вращения предназначен для поддержания заданной водителем частоты вращения коленчатого вала путем автоматического изменения цикловой подачи топлива в зависимости от нагрузки.

На двигателе КамАЗ установлен всережимный центробежный регулятор частоты вращения прямого действия. Он размещен в развале корпуса ТНВД, а управление выведено на крышку насоса.

Регулятор имеет следующие элементы (рис. 46):
– задающее устройство;
– чувствительный элемент;
– сравнивающее устройство;
– исполнительный механизм;
– привод регулятора.

В задающее устройство входят рычаг управления регулятором, рычаг пружины, пружина регулятора, рычаг регулятора, рычаг с корректором, регулировочные болты ограничения частоты вращения.

К чувствительному элементу относятся вал регулятора с державкой грузов, грузы с роликами, упорный подшипник, муфта регулятора с пятой.

К сравнивающему устройству относится рычаг муфты грузов, с помощью которого передается движение муфты регулятора исполнительному механизму (рейкам).

К исполнительному механизму относятся рейки топливного насоса, рычаг реек (дифференциальный рычаг).

В привод регулятора входят ведущая шестерня регулятора, промежуточная шестерня 6, шестерня регулятора, выполненная за одно целое с валом всережимного регулятора.

Для останова двигателя имеется устройство, в которое входят рычаг останова, пружина рычага останова, стартовая пружина, ограничительный болт регулировки хода рычага останова, болт регулировки пусковой подачи.

Управление подачей топлива осуществляется с помощью ножного и ручного приводов.

Вращение ведущей шестерне регулятора передается через-резиновые сухари. Сухари, являясь упругими элементами, гасят колебания, связанные с неравномерностью вращения вала. Уменьшение высокочастотных колебаний приводит к снижению износа сочленений основных деталей регулятора. От ведущей шестерни вращение к ведомой шестерне передается через промежуточную шестерню.

Ведомая шестерня выполнена заодно с державкой грузов, вращающейся на двух шарикоподшипниках. При вращении державки грузы под действием центробежных сил расходятся и через упорный подшипник перемещают муфту, муфта, упираясь в палец, в свою очередь, перемещает рычаг муфты грузов.

Рычаг муфты грузов одним концом крепится на оси рычагов регулятора, другим через штифт соединен с рейкой топливного насоса. На оси также крепится рычаг регулятора, другой конец которого перемещается до упора в регулировочный болт подачи топлива. Рычаг муфты грузов воздействует на рычаг регулятора через корректор. Рычаг управления регулятором жестко связан с рычагом пружины регулятора.

Рис. 46. Регулятор частоты вращения:
1 - крышка задняя; 2 - гайка; 3 - шайба; 4 - подшипник; 5 - прокладка регулировочная; 6 - шестерня промежуточная; 7 - прокладка задней крышки регулятора; 8 - кольцо стопорное; 9- державка грузов; 10 - ось груза; 11 - подшипник упорный; 12 - муфта; 13 - груз; 14 - палец; 15 - корректор; 16 - возвратная пружина рычага останова; 17 - болт; 18 - втулка; 19 - кольцо; 20 - рычаг пружины регулятора; 21 - шестерня ведущая: 22 - сухарь ведущей шестерни; 23 - фланец ведущей шестерни; 24 - регулировочный болт подачи топлива; 25 - рычаг стартовой

Стартовая пружина присоединена к рычагу стартовой пружины и рычагу реек. Рейки, в свою очередь, связаны с поворотными втулками насосных секций. Снижение степени неравномерности регулятора на малых частотах вращения коленчатого вала достигается за счет изменения плеча приложения усилия пружины регулятора к рычагу регулятора.

Повышение чувствительности регулятора обеспечивается качественной обработкой трущихся поверхностей подвижных деталей регулятора и насоса, надежной смазкой их и увеличением угловой скорости вращения муфты грузов в два раза па отношению к кулачковому валу насоса за счет передаточного числа приводных шестерен регулятора.

На двигателе установлен регулятор частоты вращения с корректором дымности, который встроен в рычаг муфты грузов. Корректор, уменьшая подачу топлива, позволяет снизить дымление двигателя на малой частоте вращения коленчатого вала (1000…1400 мин).

Заданный скоростной режим работы двигателя устанавливается рычагом управления регулятором, который поворачивается и через рычаг пружины увеличивает ее натяжение. Под воздействием этой пружины рычаг через корректор воздействует на рычаг муфты, который перемещает рейки, связанные с поворотными втулками плунжеров, в сторону увеличения подачи топлива. Частота вращения коленчатого вала увеличивается.

Центробежная сила вращающихся грузов через упорный подшипник, муфту и рычаг муфты грузов передается на рейку топливного насоса, которая через дифференциальный рычаг соединена с другой рейкой. Перемещение реек центробежной силой грузов вызывает уменьшение подачи топлива.

Регулируемый скоростной режим зависит от соотношения силы пружины регулятора и центробежной силы грузов при установленной частоте вращения коленчатого вала. Чем больше натянута пружина регулятора, тем при более высоком скоростном режиме его грузы могут изменить положение рычага регулятора в сторону ограничения подачи топлива в цилиндры двигателя. Устойчивый режим работы двигателя будет в том случае, если центробежная сила грузов будет равна силе пружины регулятора. Каждому положению рычага управления регулятором соответствует определенная частота вращения коленчатого вала.

При заданном положении рычага управления регулятором в случае уменьшения нагрузки на двигатель (движение на спуск) частота вращения коленчатого вала, а следовательно, и вала привода регулятора повышается. В этом случае центробежная сила грузов возрастает и они расходятся.

Грузы воздействуют на упорный подшипник и, преодолевая усилие пружины, заданное водителем, поворачивают рычаг регулятора и перемещают рейки в сторону уменьшения подачи по тех пор, пока не установится подача топлива, соответствующая условиям движения. Заданный скоростной режим работы двигателя восстановится.

С увеличением нагрузки (движение на подъем) частота вращения, а следовательно, и центробежные силы грузов уменьшаются. Усилие пружины через рычаги 31, 32, воздействуя на муфту, перемещает ее и сближает грузы. При этом рейки перемещаются в сторону увеличения подачи топлива до тех пор, пока частота вращения коленчатого вала не достигнет величины, заданной условиями движения.

Таким образом, всережимный регулятор поддерживает любой заданный водителем режим движения.

При работе двигателя на номинальной частоте вращения и полной подаче топлива Г-образный рычаг 31 упирается в регулировочный болт 24. В случае увеличения нагрузки частота вращения коленчатого вала и вала регулятора начинает снижаться. При этом нарушается равновесие между силой пружины регулятора и центробежной силой его грузов, приведенной к оси рычага регулятора. И за счет избыточной силы пружины корректора плунжер корректора перемещает рычаг муфты в сторону увеличения подачи топлива.

Таким образом, регулятор частоты вращения не только поддерживает работу двигателя на заданном режиме, но и обеспечивает подачу в цилиндры дополнительных порций топлива при работе с перегрузкой.

Выключение подачи топлива (останов двигателя) осуществляется поворотом рычага останова до упора в болт регулировки хода рычага останова. Рычаг, преодолевая усилие пружины (установленной на рычаге), повернет за палец рычаг регулятора. Рейки перемещаются до полного выключения подачи топлива. Двигатель останавливается. После остановки рычаг останова под действием возвратной пружины возвращается в положение РАБОТА, а стартовая пружина через рычаг реек вернет рейки топливного насоса в сторону пусковой подачи топлива (195…210 мм3/цикл).

Автоматическая муфта опережения впрыска топлива. В дизелях топливо впрыскивается в воздушный заряд. Топливо не может мгновенно воспламениться, а должно пройти подготовительную фазу, во время которой осуществляется перемешивание топлива с воздухом и его испарение. При достижении температуры самовоспламенения смесь воспламеняется и быстро начинает гореть. Этот период сопровождается резким нарастанием давления и повышением температуры. Для того чтобы получить наибольшую мощность, необходимо, чтобы сгорание топлива произошло в минимальном объеме, т. е. когда поршень находится в ВМТ. С этой целью топливо всегда впрыскивается еще до прихода поршня в ВМТ.

Угол, определяющий положение коленчатого вала относительно ВМТ в момент начала впрыска топлива, называется углом опережения впрыска топлива. Конструкция привода топливного насоса дизеля КамАЗ обеспечивает впрыск топлива за 18° до прихода поршня в ВМТ при такте сжатия.

С увеличением частоты вращения коленчатого вала двигателя время на подготовительный процесс уменьшается и воспламенение может начаться после ВМТ, что приведет к снижению полезной работы. Для того чтобы получить наибольшую работу с увеличением частоты вращения коленчатого вала, топливо необходимо впрыскивать раньше, т. е. увеличивать угол опережения впрыска топлива. Это можно сделать за счет поворота кулачкового вала в сторону его вращения относительно привода. Для этой цели между кулачковым валом ТНВД и его приводом устанавливается муфта опережения впрыска топлива. Применение муфты значительно улучшает пусковые качества дизеля и его экономичность на различных скоростных режимах.

Таким образом, муфта опережения впрыска топлива предназначена для изменения момента начала подачи топлива в зависимости от частоты вращения коленчатого вала двигателя.

На КамАЗ-740 применена автоматическая муфта центробежного типа прямого действия. Диапазон регулирования угла опережения впрыска топлива 18…28°.

Муфта установлена на коническом конце кулачкового вала ТНВД на сегментной шпонке и крепится кольцевой гайкой с пружинной шайбой. Она изменяет момент впрыска топлива за счет дополнительного поворота кулачкового вала насоса во время работы двигателя относительно вала привода насоса высокого давления (рис. 47).

Автоматическая муфта (рис. 47, а) состоит из корпуса, ведущей полумуфты с пальцами, ведомой полумуфты с осями грузов, грузов с пальцами, проставок, стаканов пружин, пружин, регулировочных прокладок и упорных шайб.

Корпус муфты чугунный. На переднем торце выполнено два резьбовых отверстия для заполнения муфты моторным маслом. Корпус наворачивается на ведомую полумуфту и стопорится. Уплотнение между корпусом и ведущей полумуфтой и ступицей ведомой полумуфты осуществляется двумя резиновыми манжетами, а между корпусом и ведомой полумуфтой - кольцом из маслобензостойкой резины.

Ведущая полумуфта установлена на ступице ведомой и может поворачиваться относительно нее. Привод муфты осуществляется от приводного вала ТНВД (рис. 47, б). В ведущей полумуфте выполнено два пальца, на которых установлены проставки. Проставка упирается одним концом в палец груза, а другим скользит по профильному выступу грузов.

Ведомая полумуфта установлена на конусной части кулачкового вала ТНВД. В полумуфту запрессованы две оси грузов и нанесена метка для установки угла опережения впрыска топлива. Грузы качаются на осях в плоскости, перпендикулярной оси вращения муфты. В грузах имеются профильные выступы и пальцы. На грузы действуют усилия пружин.

Рис. 47. Автоматическая муфта опережения впрыска топлива:
а - автоматическая муфта: 1 - ведущая полумуфта; 2, 4 - манжеты; 3 - втулка ведущей полумуфты; 5 - корпус; 6 - регулировочная прокладка; 7 - стакан пружины; 8 - пружина; 9, 15 - шайбы; 10 - кольцо; 11 - груз с пальцем; 12 - про-ставка с осью; 13 - ведомая полумуфта; 14 - уплотнительное кольцо; 16 - ось грузов
б - привод автоматической муфты и установка ее по меткам; 1 - метка ня заднем фланце полумуфты; II - метка на муфте опережения впрыска; III - метка на корпусе топливного насоса; 1 - автоматическая муфта опережения впрыска; 2 - ведомая полумуфта привода; 3 - болт; 4 - фланец полумуфты привода

При минимальной частоте вращения коленчатого вала центробежная сила грузов невелика и они удерживаются усилием пружин. В этом случае расстояние между осями грузов (на ведомой полумуфте) и пальцами ведущей полумуфты будет максимальным. Ведомая часть муфты отстает от ведущей на максимальный угол. Следовательно, угол опережения впрыска топлива будет минимальный.

С увеличением частоты вращения коленчатого вала грузы под действием центробежных сил, преодолевая сопротивление пружин, расходятся. Проставки скользят по профильным выступам грузов и поворачиваются вокруг осей пальцев грузов. Так как в отверстие проставок входят пальцы ведущей полумуфты, то расхождение грузов приводит к тому, что расстояние между пальцами ведущей полумуфты и осями грузов будет уменьшаться, т. е. будет уменьшаться и угол отставания ведомой полумуфты от ведущей. Ведомая полумуфта поворачивается относительно ведущей на некоторый угол по ходу вращения муфты (направление вращения правое). Поворот ведомой полумуфты вызывает проворачивание кулачкового вала ТНВД, что приводит к более раннему впрыску топлива относительно ВМТ.

При уменьшении частоты вращения коленчатого вала двигателя центробежная сила грузов уменьшается и они под действием пружины начинают сходиться. Ведомая полумуфта поворачивается относительно ведущей в сторону, противоположную вращению, уменьшая угол опережения впрыска топлива.

Форсунка предназначена для впрыска топлива в цилиндры “двигателя, распыления и распределения его по объему камеры сгорания. На двигателе КамАЗ-740 устанавливаются форсунки закрытого типа с многодырочным распылителем и гидравлически управляемой иглой. Давление начала подъема иглы 20… 22,7 МПа (200…227 кгс/см2). Форсунка устанавливается в гнездо головки цилиндра и крепится скобой. Уплотнение форсунки в гнезде головки цилиндра осуществляется в верхнем поясе резиновым кольцом 7 (рис. 48), в нижнем - конусом гайки распылителя и медной шайбой. Форсунка состоит из корпуса 6, гайки распылителя 2, распылителя, проставки 3, штанги 5, пружины, опорной и регулировочных шайб и штуцера форсунки с фильтром.

Корпус форсунки изготовлен из стали. В верхней части корпуса выполнены резьбовые отверстия для установки штуцера с фильтром и штуцера дренажного трубопровода (см. рис. 37). В корпусе выполнены топливоподводящий канал и канал для отвода топлива, просачивающегося во внутреннюю полость корпуса.

Рис. 48. Форсунка:
а - с регулировочными шайбами; б -с наружной регулировкой; 1 - корпус распылителя; 2 - гайка распылителя; 3 - проставка; 4 - установочные штифты; 5 - штанга; 6 - корпус; 7 и 16 - уплотнительные кольца; 8 - штуцер; 9 - фильтр; 10 - уплотнительная втулка; 11 и 12 - регулировочные шайбы; 13 - пружина; 14 - игла распылителя; 15 - упор пружины;. 17 - эксцентрик

Гайка распылителя предназначена для соединения распылителя с корпусом форсунки.

Распылитель - узел форсунки, осуществляющий распыление и формирование струй впрыскиваемого топлива.

Корпус распылителя и игла составляют прецизионную пару, в которой замена одной какой-либо детали не допускается. Корпус изготовлен из хромоникелеванадиевой стали и подвергнут специальной термообработке (цементация, закалка с последующей обработкой глубоким холодом) для получения высокой твердости и износостойкости рабочих поверхностей. В корпусе распылителя выполнены кольцевая канавка и канал для подвода топлива в полость корпуса распылителя, а также два отверстия для штифтов, обеспечивающих фиксацию корпуса распылителя относительно корпуса форсунки. В нижней части корпуса выполнены четыре сопловых отверстия. Их диаметр 0,3 мм. Для обеспечения равномерного распределения топлива по объему камеры сгорания сопловые отверстия выполнены под разными углами. Это вызвано тем, что форсунка относительно оси цилиндра расположена под углом 21°.

Игла распылителя предназначена для запирания распыляющих отверстий после впрыска топлива. Игла выполнена из инструментальной стали и также подвергнута специальной обработке. С целью повышения срока службы распылителя и иглы запорная часть иглы выполнена двухконусной.

Проставка предназначена для фиксации корпуса распылителя относительно корпуса форсунки.

Штанга - подвижная деталь форсунки, предназначена для передачи усилия от пружины форсунки к игле распылителя.

Пружина форсунки предназначена для обеспечения необходимого давления подъема иглы. Натяжение пружины осуществляется регулировочными шайбами, которые устанавливаются между опорной шайбой и торцем внутренней полости корпуса форсунки. Изменение толщины шайб на 0,05 мм приводит к изменению давления начала подъема иглы на 0,3…0,35 МПа (3…3,5 кгс/см2). В форсунках второго типа (рис. 48,6) регулировка пружины производится поворотом эксцентрика 17.

Совместная работа насосной секции ТНВД и форсунки. Водитель, воздействуя на педаль подачи топлива через систему тяг и рычагов, задающее устройство всережимного регулятора, рейки топливного насоса, поворотные втулки, поворачивает плунжер. Тем самым устанавливает определенное расстояние между отсечным отверстием и отсечной кромкой винтовой канавки, обеспечивая определенную цикловую подачу топлива.

Плунжер под действием кулачкового вала совершает возвратно-поступательное движение. При движении плунжера вниз нагнетательный клапан, нагруженный пружиной, закрыт и в надплунжерной полости создается разрежение.

После открытия верхней кромкой плунжера впускного отверстия во втулке топливо из топливного канала под давлением 0,05…0,1 МПа (0,5… 1 кгс/см2) от топливоподкачивающего насоса поступает в надплунжерное пространство (рис. 49,а).

В начале движения (рис. 49, б) плунжера вверх часть топлива вытесняется через впускное и отсечное отверстия втулки в топливоподводящий канал. Момент начала подачи топлива определяется моментом перекрытия впускного отверстия втулки верхней кромкой плунжера. С этого момента при движении плунжера вверх происходит сжатие топлива в надплунжерной полости, а после достижения давления, при котором открывается нагнетательный клапан,- в трубопроводе высокого давления и форсунке.

Рис. 49. Схема работы насосной секции:
а - заполнение надплунжерной полости; б - начало подачи; в - конец подачи

Когда давление топлива в указанной полости становится более 20 МПа (200 кгс/см2), игла распылителя поднимается вверх и открывает доступ топлива к сопловым отверстиям распылителя, через которые и происходит впрыск топлива под высоким давлением в камеру сгорания.

При движении плунжера вверх, когда отсечная кромка винтовой канавки достигнет уровня отсечного отверстия, наступает момент окончания подачи топлива (рис. 49, а). При дальнейшем движении плунжера вверх надплунжерная полость через вертикальный канал, диаметральный канал, винтовую канавку сообщается с отсечным каналом. В результате этого давление в надплунжерной полости падает, нагнетательный клапан под действием пружины и давления топлива в штуцере насоса садится в седло и поступление топлива к форсунке прекращается, хотя плунжер еще может двигаться вверх. С понижением давления в топливопроводе ниже усилия, создаваемого мружинои, игла распылителя под действием пружины опускается вниз и перекрывает доступ топлива к сопловым отверстиям распылителя, прекращая тем самым подачу топлива в цилиндр двигателя. Просочившееся через зазор в паре игла - корпус распылителя топливо отводится через канал в корпусе форсунки к дренажному трубопроводу и далее в топливный бак.

Система питание на КамАЗе располагается в подкапотном пространстве на самом двигателе, на днище и раме автомобиле.

Назначение системы питания

Система питания дизельного двигателя служит для подвода воздуха и топлива в цилиндры двигателя в заданной пропорции и под заданным давлением и отвода отработавших газов из них.

Общее устройство системы питания

Система питания воздухом.

Топливная система.

Система отводов продуктов сгорания топлива


Рис.3

газораспределительный механизм автомобиль

Устройство деталей и узлов системы питания


Топливная система

Общее устройство.

Служит для хранения запаса топлива, для очистки топлива, для создания его высокого давления, для впрыскивания топлива под давлением в цилиндры двигателя.

Устройство:

  • -Топливный бак служит для хранения топлива.
  • -Топливный фильтр грубой очистки служит для очистки топлива от грубых механических примесей.
  • -Топливный насос низкого давления служит для подачи топлива от бака к топливному насосу высокого давления.
  • -Топливные фильтры тонкой очистки, для очистки от мелких механических примесей.
  • -Топливный насос высокого давления служит для создания высокого давления и подачи топлива под давлением в цилиндры двигателя в соответствии с порядком работы цилиндров.
  • -Топливо проводы:

Топливо проводы низкого давления. Все топливо проводы идущие бака до ТНВД.

Топливо проводы высокого давления идущие от ТНВД до форсунок.

Дренажные топливо проводы, служат для слива лишнего топлива с форсунок и фильтра тонкой очистки обратно в бак.

Устройство приборов топливной системы.

Топливный бак.

Служит для хранения запаса топлива.

Устройство:

  • -Корпус, состоит из двух штампованных пластин.
  • -В верхней части заливная горловина и два отверстия закрытые крышками.
  • -Внутри бака перегородки, они ограничивают перемещения топлива в баке
  • -Топливо приемник соединен с топливо проводом, частично очищает топливо.
  • -Датчик уровня топлива поплавкового типа, соединен с проводом указателя уровня топлива.

Фильтр грубой очистки топлива.

Предназначен для очистки топлива от грубых механических загрязнений и воды.

Устройство:

  • -Крышка закрывает фильтр сверху, на ней имеются два отверстия для подвода и отвода топлива и четыре отверстия для крепления стакана на крышке. Так же имеются кронштейны для крепления фильтра на несущей части автомобиля.
  • -Стакан в нем располагается успокоитель фильтрующий элемент. На дне стакана накапливается отстой, для слива отстоя отверстие в нижней части стакана, на фланце располагаются 4 резьбовых отверстия для его соединения с крышкой.
  • -Штуцера для подвода и отвода топлива.
  • -Сетчатый фильтр, через него топливо фильтруется, на выходе из фильтра грубой очистки.
  • -Успокоитель по нему топливо стекает в стакан, сливная пробка с уплотнительной прокладкой закрывает отверстие для слива отстоя.
  • -Уплотнительная прокладка крышки.
  • -Соединительные болты шайбы.

Фильтры тонкой очистки топлива.

Предназначено для тонкой очистки топлива, от механических примесей.

Устройство:

  • -Крышка в ней расположен один подводящий и три отводящих канала топлива к ТНВД, один канал для слива топлива в топливный бак. В него топливо поступает через редукционный клапан.
  • -Редукционный клапан располагается в крышке, которая располагает топливо из выпускного канала, в бак по дренажному топливо проводу.
  • -Два колпака с уплотнительными прокладками соединяются с крышкой с соединительными осями, в них располагаются два фильтрующих элемента.
  • -Соединительные оси с пружинами служат для крепления колпаков на фильтрующих элементах. Через них сливается отстой.
  • -Две пробки закрывают отверстие в колпаке, для слива топлива и отстоя.
  • -Фильтрующие элементы. Внутри стальная перфорированная обойма, за ней фильтрующий гофрированный картон.

Топливный насос низкого давления.

ТННД создает низкое давление топлива, в топливной магистрали от бака до ТНВД, позволяет топливу двигаться в сторону ТНВД и проходить через фильтры.

  • -Поршень(1)
  • -Толкатель(2)
  • -Ролик
  • -Пружина(3)
  • -Впускной и выпускной клапаны(4,6)

Форсунка.

Служит для впрыска топлива в двигатель под высоким давлением, который создает ТНВД.

Устройство:

  • -Корпус в нем располагаются пружины, регулировочные шайбы, штанга, в верхней части корпуса два резьбовых отверстия, в них вворачиваются штуцера, один подводящий топливо, другой дренажный. С наружи корпуса уплотняется кольцом.
  • -Проставка, располагается между корпусом и распылителем, в ней имеются направляющие отверстия для штанги и иглы. Через нее проходит подводящий канал для топлива.
  • -Распылитель. Внутри распылится проводится канал который заканчивается кольцевым каналом. В распылителе находиться отверстие в котором находится игла и распылительный корпус.
  • -Игла. Рецензионная деталь, притирается по распылителю, закрывает и открывает отверстие в распылительном конусе, поддерживает герметичность распылителя.
  • -Штанга. На нее с одной стороны опирается игла, с другой стороны пружина которая прижимает иглу к распылителю, пружина прижимает иглу к распылителю через штангу.
  • -Регулировочные прокладки, для регулировки усилия прижатия иглы к распылителю.
  • -Гайка. Соединяет между собой корпус поставку и распылитель.

1 - корпус; 2, 32 - ролики толкателей; 3, 31 - оси роликов; 4 -втулка ролика; 5 - пята толкателя; 6 - сухарь; 7 - тарелка пружины толкателя; 8 - пружина толкателя: 9,34,43,45, 51 - шайбы; 10 - втулка поворотная; 11 - плунжер; 12, 13, 46, 55 - кольца уплотнительные; 14 - штифт установочный; 15 - рейка; 16 - втулка плунжера; 17 - корпус секции; 18 - прокладка нагнетательного клапана; 19 -клапан нагнетательный; 20 - штуцер; 21 - фланец корпуса секции; 22 - насос ручной топливоподкачивающий; 23 - пробка пружины; 24, 48 - прокладки; 25 -корпус насоса низкого давления; 26 - насос топливоподкачивающий низкого давления; 27 - втулка штока; 28 - пружина толкателя; 29 - толкатель; 30 - винт стопорный; 33, 52 - гайки; 35 - эксцентрик привода насоса низкого давления; 36, 50 - шпонки; 37 - фланец ведущей шестерни регулятора; 38 - сухарь ведущей шестерни регулятора; 39 - шестерня ведущая регулятора; 40 - втулка упорная; 41, 49 - крышки подшипника; 42 - подшипник; 44 - вал кулачковый; 47 - манжета с пружиной в сборе; 53 - муфта опережения впрыскивания топлива; 54 - пробка рейки; 56 - клапан перепускной; 57 - втулка рейки; 58 - ось рычага реек; 59 - прокладки регулировочные.

Система питания топливом бензинового двигателя ⭐ предназначена для размещения и очистки топлива, а также приготовления горючей смеси определенного состава и подачи ее в цилиндры в необходимом количестве в соответствии с режимом работы двигателя (за исключением двигателей с непосредственным впрыском, система питания которых обеспечивает поступление бензина в камеру сгорания в необходимом количестве и под достаточным давлением).

Бензин , как и дизельное топливо, является продуктом перегонки нефти и состоит из различных углеводородов. Число атомов углерода, входящих в молекулы бензина, составляет 5 - 12. В отличие от дизелей в бензиновых двигателях топливо не должно интенсивно окисляться в процессе сжатия, так как это может привести к детонации (взрыву), что отрицательно скажется на работоспособности, экономичности и мощности двигателя. Детонационная стойкость бензина оценивается октановым числом. Чем больше оно, тем выше детонационная стойкость топлива и допустимая степень сжатия. У современных бензинов октановое число составляет 72-98. Кроме антидетонационной стойкости бензин должен также обладать низкой коррозионной активностью, малой токсичностью и стабильностью.

Поиск (исходя из экологических соображений) альтернатив бензину как основному топливу для ДВС привел к созданию этанолового топлива, состоящего в основном из этилового спирта, который может быть получен из биомассы растительного происхождения. Различают чистый этанол (международное обозначение - Е100), содержащий исключительно этиловый спирт; и смесь этанола с бензином (чаще всего 85 % этанола с 15 % бензина; обозначение - Е85). По своим свойствам этаноловое топливо приближается к высокооктановому бензину и даже превосходит его по октановому числу (более 100) и теплотворной способности. Поэтому данный вид топлива может с успехом применяться вместо бензина. Единственный недостаток чистого этанола - его высокая коррозионная активность, требующая дополнительной защиты от коррозии топливной аппаратуры.

К агрегатам и узлам системы питания топливом бензинового двигателя предъявляются высокие требования, основные из которых:

  • герметичность
  • точность дозирования топлива
  • надежность
  • удобство в обслуживании

В настоящее время существуют два основных способа приготовления горючей смеси. Первый из них связан с использованием специального устройства - карбюратора, в котором воздух смешивается с бензином в определенной пропорции. В основу второго способа положен принудительный впрыск бензина во впускной коллектор двигателя через специальные форсунки (инжекторы). Такие двигатели часто называют инжекторными.

Независимо от способа приготовления горючей смеси ее основным показателем является соотношение между массой топлива и воздуха. Смесь при ее воспламенении должна сгорать очень быстро и полностью. Этого можно достичь лишь при хорошем смешении в определенной пропорции воздуха и паров бензина. Качество горючей смеси характеризуется коэффициентом избытка воздуха а, который представляет собой отношение действительной массы воздуха, приходящейся на 1 кг топлива в данной смеси, к теоретически необходимой, обеспечивающей полное сгорание 1 кг топлива. Если на 1 кг топлива приходится 14,8 кг воздуха, то такая смесь называется нормальной (а = 1). Если воздуха несколько больше (до 17,0 кг), смесь обедненная, и а = 1,10… 1,15. Когда воздуха больше 18 кг и а > 1,2, смесь называют бедной. Уменьшение доли воздуха в смеси (или увеличение доли топлива) называют ее обогащением. При а = 0,85… 0,90 смесь обогащенная, а при а < 0,85 - богатая.

Когда в цилиндры двигателя поступает смесь нормального состава, он работает устойчиво со средними показателями мощности и экономичности. При работе на обедненной смеси мощность двигателя несколько снижается, но заметно повышается его экономичность. На бедной смеси двигатель работает неустойчиво, его мощность падает, а удельный расход топлива возрастает, поэтому чрезмерное обеднение смеси нежелательно. При поступлении в цилиндры обогащенной смеси двигатель развивает наибольшую мощность, но и расход топлива также увеличивается. При работе на богатой смеси бензин сгорает неполностью, что приводит к снижению мощности двигателя, росту расхода топлива и появлению копоти в выпускном тракте.

Карбюраторные системы питания

Рассмотрим сначала карбюраторные системы питания, которые еще недавно были широко распространены. Они более просты и дешевы по сравнению с инжекторными, не требуют высококвалифицированного обслуживания в процессе эксплуатации и в ряде случаев более надежны.

Система питания топливом карбюраторного двигателя включает в себя топливный бак 1, фильтры грубой 2 и тонкой 4 очистки топлива, топливоподкачивающий насос 3, карбюратор 5, впускной трубопровод 7 и топливопроводы. При работе двигателя топливо из бака 1 с помощью насоса 3 подается через фильтры 2 и 4 к карбюратору. Там оно в определенной пропорции смешивается с воздухом, поступающим из атмосферы через воздухоочиститель 6. Образовавшаяся в карбюраторе горючая смесь по впускному коллектору 7 попадает в цилиндры двигателя.

Топливные баки в силовых установках с карбюраторными двигателями аналогичны бакам систем питания дизелей. Отличием баков для бензина является лишь их лучшая герметичность, не позволяющая бензину вытечь даже при опрокидывании ТС. Для сообщения с атмосферой в крышке наливной горловины бака обычно устанавливают два клапана - впускной и выпускной. Первый из них обеспечивает поступление в бак воздуха по мере расходования топлива, а второй, нагруженный более сильной пружиной, предназначен для сообщения бака с атмосферой, когда давление в нем выше атмосферного (например, при высокой температуре окружающего воздуха).

Фильтры карбюраторных двигателей аналогичны фильтрам, применяемым в системах питания дизелей. На грузовых автомобилях устанавливаются пластинчато-щелевые и сетчатые фильтры. Для тонкой очистки используют картон и пористые керамические элементы. Кроме специальных фильтров в отдельных агрегатах системы имеются дополнительные фильтрующие сетки.

Топливоподкачивающий насос служит для принудительной подачи бензина из бака в поплавковую камеру карбюратора. На карбюраторных двигателях обычно применяют насос диафрагменного типа с приводом от эксцентрика распределительного вала.

В зависимости от режима работы двигателя карбюратор позволяет готовить смесь нормального состава (а = 1), а также обедненную и обогащенную смеси. При малых и средних нагрузках, когда не требуется развивать максимальную мощность, следует готовить в карбюраторе и подавать в цилиндры обедненную смесь. При больших нагрузках (продолжительность их действия, как правило, невелика) необходимо готовить обогащенную смесь.

Рис. Схема системы питания топливом карбюраторного двигателя:
1 - топливный бак; 2 - фильтр трубой очистки топлива; 3 - топливоподкачивающий насос; 4 - фильтр тонкой очистки; 5 - карбюратор; 6 - воздухоочиститель; 7 - впускной коллектор

В общем случае в состав карбюратора входят главное дозирующее и пусковое устройства, системы холостого хода и принудительного холостого хода, экономайзер, ускорительный насос, балансировочное устройство и ограничитель максимальной частоты вращения коленчатого вала (у грузовых автомобилей). Карбюратор может содержать также эконостат и высотный корректор.

Главное дозирующее устройство функционирует на всех основных режимах работы двигателя при наличии разрежения в диффузоре смесительной камеры. Основными составными частями устройства являются смесительная камера с диффузором, дроссельная заслонка, поплавковая камера, топливный жиклер и трубки распылителя.

Пусковое устройств о предназначено для обеспечения пуска холодного двигателя, когда частота вращения проворачиваемого стартером коленчатого вала невелика и разрежение в диффузоре мало. В этом случае для надежного пуска необходимо подать в цилиндры сильно обогащенную смесь. Наиболее распространенным пусковым устройством является воздушная заслонка, устанавливаемая в приемном патрубке карбюратора.

Система холостого хода служит для обеспечения работы двигателя без нагрузки с малой частотой вращения коленчатого вала.

Система принудительного холостого хода позволяет экономить топливо во время движения в режиме торможения двигателем, т. е. тогда, когда водитель при включенной передаче отпускает педаль акселератора, связанную с дроссельной заслонкой карбюратора.

Экономайзер предназначен для автоматического обогащения смеси при работе двигателя с полной нагрузкой. В некоторых типах карбюраторов кроме экономайзера для обогащения смеси используют эконостат. Это устройство подает дополнительное количество топлива из поплавковой камеры в смесительную только при значительном разрежении в верхней части диффузора, что возможно лишь при полном открытии дроссельной заслонки.

Ускорительный насос обеспечивает принудительный впрыск в смесительную камеру дополнительных порций топлива при резком открытии дроссельной заслонки. Это улучшает приемистость двигателя и соответственно ТС. Если бы ускорительного насоса в карбюраторе не было, то при резком открытии заслонки, когда расход воздуха быстро растет, из-за инерционности топлива смесь в первый момент сильно обеднялась бы.

Балансировочное устройство служит для обеспечения стабильности работы карбюратора. Оно представляет собой трубку, соединяющую приемный патрубок карбюратора с воздушной полостью герметизированной (не сообщающейся с атмосферой) поплавковой камеры.

Ограничитель максимальной частоты вращения коленчатого вала двигателя устанавливается на карбюраторах грузовых автомобилей. Наиболее широко распространен ограничитель пневмоцентробежного типа.

Инжекторные топливные системы

Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.

Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.

В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.

Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.

Рис. Схема системы питания топливом бензинового двигателя с многоточечным впрыском:
1 - топливная рампа; 2 - форсунки; 3 - регулятор давления; 4 - впускной патрубок двигателя; 5 - фильтр; 6 - замок зажигания; 7 - топливный насос; 8 - топливный бак

Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:

  • угол поворота дроссельной заслонки
  • степень разрежения во впускном коллекторе
  • частота вращения коленчатого вала
  • температура всасываемого воздуха и охлаждающей жидкости
  • концентрация кислорода в отработавших газах
  • атмосферное давление
  • напряжение аккумуляторной батареи
  • и др.

Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:

  • топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
  • появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
  • достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
  • обеспечивается лучшая приемистость двигателя
  • в отработавших газах содержится меньше вредных веществ

Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.

Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.

Представляет собой целый комплекс устройств. Основной задачей становится не просто подача топлива к инжекторным форсункам, а еще и подача горючего под высоким давлением. Давление необходимо для высокоточного дозированного впрыска в камеру сгорания цилиндра. Система питания дизеля выполняет следующие важнейшие функции:

  • дозирование строго определенного количество топлива с учетом нагрузки на двигатель в том или ином режиме его работы;
  • эффективный впрыск топлива в заданный промежуток времени с определенной интенсивностью;
  • распыление и максимально равномерное распределение горючего по объему камеры сгорания в цилиндрах дизельного ДВС;
  • предварительная фильтрация топлива перед подачей горючего в насосы системы питания и инжекторные форсунки;

Большинство требований к системе питания дизельного мотора выдвигается с учетом того, что дизельное топливо имеет ряд специфических особенностей. Горючее такого рода представляет собой смесь керосиновых и газойлевых соляровых фракций. Дизельное топливо получают после того, как из нефти реализуется отгон бензина.

Дизельное топливо обладает целым рядом свойств, главным из которых принято считать показатель самовоспламеняемости, который оценивается цетановым числом. Представленные в продаже виды дизельного топлива имеют цетановое число на отметке 45–50. Для современных дизельных агрегатов наилучшим топливом является горючее с большим показателем цетанового числа.

Система питания дизельного ДВС обеспечивает подачу хорошо очищенного дизельного топлива к цилиндрам, ТНВД сжимает горючее до высокого давления, а форсунка подает его в распыленном на мельчайшие частицы виде в камеру сгорания. Распыленное дизельное топливо смешивает с горячим (700–900 °С) воздухом, который нагревается до такой температуры от высокого сжатия в цилиндрах (3–5 МПа) и самовоспламеняется.

Обратите внимание, рабочая смесь в дизельном моторе не поджигается отдельным устройством, а воспламеняется самостоятельно от контакта с разогретым воздухом под давлением. Эта особенность сильно отличает дизельный ДВС от бензиновых аналогов.

Дизельное топливо имеет еще и более высокую плотность сравнительно с бензином, а также обладает лучшей смазывающей способностью. Не менее важной характеристикой выступает вязкость, температура застывания и чистота дизельного топлива. Температура застывания позволяет делить топливо на три базовых сорта горючего: .

Схема устройства системы питания дизельного ДВС

Система питания дизельного двигателя состоит из следующих базовых элементов:

  1. топливный бак;
  2. фильтры грубой очистки дизтоплива;
  3. фильтры тонкой очистки топлива;
  4. топливоподкачивающий насос;
  5. топливный насос высокого давления (ТНВД);
  6. инжекторные форсунки;
  7. трубопровод низкого давления;
  8. магистраль высокого давления;
  9. воздушный фильтр;

Дополнительными элементами частично становится электронасосы, выпуск отработанных газов, сажевые фильтры, глушители и т.д. Систему питания дизельных ДВС принято делит на две группы топливной аппаратуры:

  • дизельная аппаратура для повода топлива (топливоподводящая);
  • дизельная аппаратура для подвода воздуха (воздухоподводящая);

Топливоподводящая аппаратура может иметь различное устройство, но сегодня наиболее распространена система разделенного типа. В такой системе топливный насос высокого давления (ТНВД) и форсунки реализованы в виде отдельных устройств. Топливо подается в дизельный двигатель по магистралям высокого и низкого давления.

Дизельное топливо хранится, фильтруется и подается к ТНВД под невысоким давлением посредством магистрали низкого давления. В магистрали высокого давления ТНВД поднимает давление в системе для осуществления подачи и впрыска строго определенного количества топлива в рабочую камеру сгорания дизельного двигателя в заданный момент.

В системе питания дизеля присутствуют сразу два насоса:

  • топливоподкачивающий насос;
  • топливный насос высокого давления;

Топливоподкачивающий насос обеспечивает подачу топлива из топливного бака, прокачивает горючее через фильтр грубой и тонкой очистки. Давление, которое создает топливоподкачивающий насос, позволяет осуществить подачу топлива по топливопроводу низкого давления к топливному насосу высокого давления.

ТНВД реализует подачу топлива к форсункам под высоким давлением. Подача происходит в соответствии с порядком работы цилиндров дизельного мотора. Топливный насос высокого давления имеет определенное количество одинаковых секций. Каждая из таких секций ТНВД соответствует определенному цилиндру дизельного двигателя.

Существует также система питания дизельных двигателей неразделенного типа и применяется на дизельных двухтактных двигателях. В такой системе топливный насос высокого давления и форсунка объединены в одном устройстве под названием насос-форсунка.

Данные моторы работают жестко и шумно, имеют небольшой срок службы. В конструкции их системы питания отсутствуют топливопроводы магистрали высокого давления. Указанный тип ДВС не имеет большого распространения.

Вернемся к массовой конструкции дизельного мотора. Дизельные форсунки располагаются в головке блока цилиндров () дизельного двигателя. Основной их задачей становится точное распыление горючего в камере сгорания двигателя. Топливоподкачивающий насос подает к ТНВД большое количество топлива. Получившиеся избытки горючего и проникающий в систему топливоподачи воздух возвращаются в топливный бак по специальным трубопроводам, которые называются дренажными.

Инжекторные дизельные форсунки бывают двух видов:

  • дизельная форсунка закрытого типа;
  • дизельная форсунка открытого типа;

Четырехтактные дизельные моторы преимущественно получают форсунки закрытого типа. В таких устройствах сопла форсунки, которые представляют собой отверстие, закрываются особой запорной иглой.

Получается, что внутренняя полость, расположенная внутри корпуса распылителей форсунок, сообщается с камерой сгорания только во время открытия форсунки и в момент впрыска дизельного топлива.

Ключевым элементом в конструкции форсунки выступает распылитель. Распылитель получает от одного до целой группы сопловых отверстий. Именно эти отверстия и образуют факел топлива в момент впрыска. От их количества и расположения зависит форма факела, а также пропускная способность форсунки.

Система питания турбодизеля

Завоздушивание топливной системы дизеля: признаки неисправности и диагностика. Как самостоятельно найти место подсоса воздуха, способы решения проблемы.
  • Конструкция дизельного топливного насоса высокого давления, потенциальные неисправности, схема и принцип работы на примере устройства системы топливоподачи.