Для чего нужны свечи зажигания, принцип их работы и разновидности. Свечи зажигания Назначение и устройство свечей зажигания литература

Устройство свечи зажигания

Задачей свечи зажигания в бензиновом двигателе автомобиля является воспламенение топливно-воздушной смеси в камере сгорания. Детали свечи, находящиеся в камере сгорания, подвергаются высоким термическим, механическим, электрическим нагрузкам, а также химическому воздействию продуктов неполного сгорания топлива. Температура в ней изменяется от 70 до 2500°С, давление газов достигает 50-60 бар, а напряжение на электродах доходит до 20 кВ и выше. Такие жесткие условия работы определяют особенности конструкции свечей и применяемых материалов, так как от бесперебойности искрообразования зависят мощность, топливная экономичность, пусковые свойства двигателей, а также токсичность отработавших газов.

Основными элементами любой свечи зажигания являются металлический корпус, керамический изолятор, электроды и контактный стержень. Корпус имеет резьбу, которая ввинчивается в головку блока цилиндров, шестигранник “под ключ” и специальное покрытие для защиты от коррозии. Опорная поверхность может быть плоской или конической. В первом случае для надежной герметизации свечного отверстия используется уплотнительное кольцо. Материалом изолятора служит высокопрочная керамика. Для предотвращения утечки электричества на его поверхности (в верхней части изолятора) делают кольцевые канавки (барьеры тока) и наносят специальную глазурь, а часть изолятора со стороны камеры сгорания выполняют в форме конуса (называемого тепловым). Внутри керамической части свечи закреплены центральный электрод и контактный стержень, между которыми может быть расположен резистор, подавляющий радиопомехи. Герметизация соединения этих деталей осуществляется токопроводящей стекломассой (стеклогерметиком). Боковой электрод “массы” приварен к корпусу.

Электроды изготавливают из жаростойкого металла или сплава. Для улучшения отвода тепла от теплового конуса центральный электрод может изготавливаться из двух металлов (биметаллический электрод) – центральную часть из меди заключают в жаростойкую оболочку. Биметаллический электрод обладает повышенным ресурсом благодаря тому, что хорошая теплопроводность меди препятствует чрезмерному его нагреву. Это позволяет, помимо улучшения термоэластичности, повысить надежность и долговечность свечи. С целью увеличения срока эксплуатации выпускаются свечи зажигания с несколькими боковыми электродами и тонкоэлектродные с центральным электродом, покрытым слоем платины или иридия. Срок службы свечей зажигания (в зависимости от конструкции) составляет от 30 до 100 тыс. км.


В маркировке свечи зажигания указываются ее геометрические и посадочные размеры, особенности конструкции и калильное число. Разные производители имеют свою систему обозначений. Ниже приведены маркировки, применямые российскими и ведущими зарубежными изготовителями, а также таблица взаимозаменяемости свечей разных марок (для просмотра нажмите на нужную картинку – файл откроется в новом окне).


Калильное число является показателем тепловых свойств свечи (ее способности нагреваться при различных тепловых нагрузках двигателя). Оно пропорционально среднему давлению, при котором в процессе испытаний свечи на моторной тарировочной установке в ее цилиндре начинает появляться калильное зажигание (неуправляемый процесс воспламенения рабочей смеси от раскаленных элементов свечи). Свечи с небольшим калильным числом называют горячими. Их тепловой конус нагревается до температуры 900°С (температура начала калильного зажигания) при относительно небольшой тепловой нагрузке. Такие свечи применяются на малофорсированных двигателях с небольшими степенями сжатия. У холодных свечей калильное зажигание возникает при больших тепловых нагрузках, и они используются на высокофорсированных двигателях.

Пока тепловой конус не нагреется до 400°С, на нем образуется нагар, приводящий к утечкам тока и нарушению искрообразования. По достижении этой температуры он (нагар) начинает сгорать, происходит очищение свечи (самоочищение). Чем длиннее тепловой конус, тем больше его площадь, поэтому он нагревается до температуры самоочищения при меньшей тепловой нагрузке. К тому же выступание этой части изолятора из корпуса усиливает ее обдув газами, что дополнительно ускоряет прогрев и улучшает очищение от нагара. Увеличение длины теплового конуса приводит к уменьшению калильного числа (свеча становится “горячее”).

Диагностика работы двигателя по состоянию свечей зажигания

Свеча зажигания может обеспечить бесперебойную работу только при соблюдении нижеперечисленных условий:

  • используются свечи, рекомендованные изготовителем двигателя;
  • используется марка бензина, указанная в руководстве по эксплуатации автомобиля;
  • исправны системы зажигания и питания;
  • не превышено усилие при вворачивании свечи в головку блока двигателя.

Наиболее вероятной причиной преждевременного отказа свечей является загрязнение их продуктами неполного сгорания или увеличение искрового зазора из-за износа электродов. При этом решающее влияние на работоспособность свечей оказывает техническое состояние двигателя. Даже по внешнему виду свечи можно многое сказать как о работе двигателя в целом, так и об отдельных его узлах. Осмотр свечи нужно проводить после продолжительной работы двигателя, идеальным вариантом будет осмотр свечи после длительной поездки по загородному шоссе. Ошибкой некоторых автолюбителей, например является то, что после холодного старта двигателя при минусовой температуре и неустойчивой его работе первым делом выкручивают свечи и увидев черный нагар, делают поспешные выводы. А ведь этот нагар мог образоваться во время работы двигателя в режиме холодного старта, когда смесь принудительно обогащается, а неустойчивая работа могла быть следствием скажем плохого состояния высоковольтных проводов. Поэтому если вас что-то не устраивает в работе двигателя, и вы решили сделать диагностику его работы с помощью свечей, нужно проехать на изначально чистых свечах минимум километров 250-300, и только после этого делать какие-то выводы.


На фото №1 изображена свеча, вывернутая из двигателя, работу которого можно считать отличной. Юбка центрального электрода имеет светло-коричневый цвет, нагар и отложения минимальны. Полное отсутствие следов масла. Владельцу данного мотора можно только позавидовать, и есть чему: это экономичный расход топлива и отсутствие необходимости доливать масло от замены до замены.

Фото №2 – типичный пример свечи от двигателя с повышенным расходом топлива. Центральный электрод покрыт бархатисто-черным нагаром. Причин тому несколько: богатая воздушно-топливная смесь (неправильная регулировка карбюратора, угла опережения зажигания или неисправностьсистемы впрыска), засорение воздушного фильтра.

Фото №3 – наоборот, пример чрезмерно бедной воздушно-топливной смеси. Цвет электрода от светло-серого до белого. Здесь есть повод для беспокойства. Езда на слишком обедненной смеси и при повышенных нагрузках может стать причиной значительного перегрева, как самой свечи, так и камеры сгорания, а перегрев камеры сгорания прямой путь к прогару выпускных клапанов.

На фото №4 юбка центрального электрода свечи имеет характерный красноватый оттенок. Этот цвет можно сравнить с цветом красного кирпича. Покраснение вызвано работой двигателя на низкокачественном топливе, содержащем избыточное количество присадок, которые имеют в своем составе металл. Длительное использование такого топлива приведет к тому, что отложения металла образуют на поверхности изоляции токопроводящий налет, через который току будет легче пройти, чем между электродами свечи, и свеча перестанет работать.

На фото № 5 свеча имеет ярко выраженные следы масла, особенно в резьбовой части. Двигатель с такими свечами после длительной стоянки имеет обыкновение после запуска “троить” некоторое время, а по мере прогрева работа стабилизируется. Причина этого – неудовлетворительное состояние маслоотражательных колпачков. Налицо повышенный расход масла. В первые минуты работы двигателя, в момент прогрева, характерный бело-синий выхлоп.

Фото № 6 – свеча вывернута из неработающего цилиндра. Центральный электрод, его юбка покрыты плотным слоем масла, смешанного с каплями несгоревшего топлива и мелкими частицами от разрушений, произошедшими в этом цилиндре. Причина этого – разрушение одного из клапанов или поломка перегородок между поршневыми кольцами с попаданием металлических частиц между клапаном и его седлом. В данном случае двигатель “троит” уже не переставая, заметна значительная потеря мощности, расход топлива возрастает в полтора, два раза. Выход один – ремонт.

Фото № 7 – полное разрушение центрального электрода с его керамической юбкой. Причиной данного разрушения мог стать один из перечисленных ниже факторов: длительная работа двигателя с детонацией, применение топлива с низким октановым числом, очень раннее зажигание, и просто бракованая свеча. Симптомы работы двигателя такие же, как в предыдущем случае. Единственное, на что можно надеяться, так это на то, что частицы центрального электрода сумели проскочить в выхлопную систему, не застряв под выпускным клапаном, иначе тоже не избежать ремонта головки блока цилиндров.

Фото № 8 последнее в этом обзоре. Электрод свечи оброс зольными отложениями, цвет не играет решающей роли, он лишь свидетельствует о работе топливной системы. Причина этого нароста – сгорание масла вследствие выработки или залегания маслосъемных поршневых колец. У двигателя повышенный расход масла, при перегазовках из выхлопной трубы сильное синее дымление, запах выхлопа похож на мотоциклетный.

Если вы хотите, чтобы с работой вашего двигателя было меньше проблем, вспоминайте о свечах не только тогда, когда мотор отказывается работать. Производитель гарантирует безотказную работу свечи на исправном двигателе 30 тыс. километров пробега. Однако не лишним будет в среднем каждые 10 тыс. километров пробега проверять состояние свечей. Прежде всего это проверка и, при необходимости, регулировка зазора до требуемой величины, удаление нагара. Нагар удалять лучше металлической щеткой, от пескоструйной обработки разрушается керамика центрального электрода, и вы рискуете получить копию с фото № 7.

Свеча зажигания — это, по сути, электрод, который подает электроэнергию из системы зажигания в камеру сгорания. Система зажигания должна сгенерировать величину напряжения, которой будет достаточно для формирования искры.

Что такое свеча зажигания?

Свеча зажигания — специальное устройство для воспламенения горючей смеси в цилиндре двигателя. Процесс работы одного цилиндра можно разделить на 4 пункта:

  • Заполнение цилиндра горючим веществом.
  • Сжатие горючего вещества поршнем и воспламенение вещества свечой.
  • Процесс расширения объема цилиндра за счет движения поршня в обратном направлении (При воспламенении давление существенно увеличивается, из-за чего происходит обратное движение поршня и за счет этой силы автомобиль может ездить).
  • Выталкивание продуктов сгорания через выхлопную трубу машины.

Процесс работы двигателя — круговой, в двигателе любой машины далеко не один цилиндр, количество свечей всегда равняется количеству цилиндров. Из-за этого могут возникать огромные проблемы с двигателем. Ведь если у вас сломается свеча в одном цилиндре, или же случится поломка в самом цилиндре, вы не сможете отличить эти нюансы. При каких-либо проблемах с двигателем большинство первым делом меняет свечи, отчасти это правильный ход. Ведь починка двигателя и даже его разбор стоит дороже чем новые свечи.

Отклонения от нормального процесса сгорания

Отклонения в работе свечи от нормального процесса сгорания бывают разными, при неисправной свечи могут пропускаться воспламенения, что чревато отказа в работе одной камеры цилиндра. Одним из частых отклонений является калильное зажигание, оно сопровождается ранним выходом искры или же запозданием, вследствие чего двигатель не будет работать на полную мощность. Очень распространенной проблемой является также детонация . Она возникает в наиболее удаленном от свечи месте в цилиндре и происходит из-за сильного сжатия топлива.

Признаки и причины неисправности

Теперь поговорим о неисправности свечей, если же вы не хотите покупать новые свечи или же просто хотите разобраться в проблеме, то первым делом нужно вынуть каждую из свечей и осмотреть её на наличие какого-либо налёта или влажных отложений . Если сопротивление между земельным и заземляющим электродом падает до нуля, то конец свечи может быть загрязнен сажей. Из-за чего это происходит? Чаще всего это загрязнение воздушного типа фильтра и слабая искра. Сажистые отложения приводят к тому, что свеча иногда будет пропускать воспламенение.

Из-за резкого роста температур в камере цилиндра при усиленной работе цилиндра свеча может частично плавиться, на свече появляется свинцовый налет. На повышение температур очень сильно влияет само топливо, которое использует машина. Это возникает из-за калильного зажигания свечи. Тут проблема может быть в выпускном клапане, поршне, поршневых кольцах, в результате чего может оплавиться изолятор свечи.

При наличии металлических стуков во время езды, вибрациях, увеличении расхода топлива, возможна детонация топлива в поршне . Чаще детонация происходит на относительно небольших скоростях при подъеме. Причин возникновения детонаций много:

  1. это слишком быстрая работа поршня (поршень сжимает смесь очень быстро и давление увеличивается до максимально допустимого);
  2. очень большая задержка в работе свечи (свеча срабатывает с огромным опозданием, за это время поршень увеличивает давление до максимально допустимого);
  3. неисправность всего цилиндра или двигателя.

При выборе свечей на свой автомобиль нужно учитывать два основных параметра:

  • габариты свечи;
  • калильное число.

Габариты свечи очень важны, ведь свеча с другими габаритами может просто не подойти к вашему автомобилю и в магазине вам могут отказать в возврате товара. Калильное число тоже играет огромную роль:

  1. Свечи с низким калильным числом чаще всего используются на легковых автомобилях, которые не предназначены для скоростной езды.
  2. Свечи со средним калильным числом рассчитаны на медленную и спокойную езду, а также невысокую нагрузку.
  3. Свечи с высоким калильным числом используют для спортивных автомобилей, такие свечи имеют большой запас прочности и более стойки к работе в условиях повышенной температуры.

Также нужно учитывать ваше местоположение, ближе к югу, где температура значительно превышает другие области, нагрузка на свечи существенно увеличивается.

Перед покупкой нужно обязательно учитывать все нюансы, съездить в несколько магазинов и спросить у продавцов, но главное, конечный выбор должны сделать вы, от этого зависит производительность вашего двигателя и его долговечность.

Назначение свечи зажигания

Одним из важнейших элементов систем зажигания двигателей внутрен-него сгорания являются свечи. Предназначены они для воспламенения горючей смеси в цилинд-рах при помощи искрового разряда.

Искровой разряд, создаваемый системой зажигания, должен обладать энергией, необходимой для воспламенения горючей смеси на любом режиме работы двигателя при всех условиях эксплуатации.

Различаются свечи по конструкции, размерам и тепловым характеристикам (калильным числам). Они могут быть неэкранированными, если их контактная часть выступает из металлического корпуса, и экранированными, у которых контактная часть расположена внутри металлического экрана.

Искровой разряд у большинства свечей образуется непосредственно в искро-вом зазоре между электродами.

При высоких значениях давления и температуры, возникающих в процессе работы двигателя, свечи должны надежно противостоять воздействию химиче-ски агрессивных продуктов сгорания. При этом изолятор должен выдерживать высокое электрическое напряжение.

В процессе работы из-за неполноты сгорания в пристеночной зоне на рабо-чих деталях свечи образуется нагар. Чтобы избавиться от него свечи должны самоочищать-ся, автоматически поддерживая необходимую рабочую температуру в темпера-турных пределах, обеспечивающих удаление нагара и исключающих возмож-ность калильного зажигания.

Свечи должны обеспечивать свою работоспособность в условиях с повышенными электри-ческими. механическими и химическими нагрузками. Непрерывный рост мощностей двигателей при ужесточении норм токсичности отработавших газов предъявляет к свечам все более жесткие требования по надежности и долговечности.

От совершенства конструкции, качества изготовления и правильности подбо-ра свечи к двигателю сильно зависят его пусковые свойства, надежность, мощность, топливная экономичность, а также токсичность отработавших газов.

В свою очередь, работоспособность свечи зависит от ее соответствия двига-телю по конструкции, основным размерам, величине искрового зазора и тепло-вой характеристике. Решающее влияние на надежность и долговечность свечи оказывает техническое состояние двигателя, характер и условия эксплуатации, качество топлива и моторного масла.

Принцип действия свечи зажигания

Газы и их смеси являются идеальными изоляторами. Но при приложении к электродам свечи достаточно высокого напряжения происходит пробой газа, и в искровом зазоре образуется ионизированный канал, проводящий электри-ческий ток.

Явление пробоя газа высоким напряжением обусловлено тем, что случайные электроны, появление которых вызвано проникающим ионизирующим излучением, под воздействием электромагнитного поля получают ускорение в сторону положительного электрода.

При столкновении с молекулами газа про-исходит цепная реакция ионизации, газ становится проводником, и образуется проводящий канал.

Это явление называется пробоем, первой фазой существова-ния искры.

После пробоя электрическое сопротивление канала стремится к нулю, сила тока увеличивается до сотен ампер, а напряжение уменьшается.

Первона-чально процесс протекает в очень узкой зоне, но вследствие быстрого нарастания температуры канал расширяется со сверхзвуковой скоростью. При этом образу-ется ударная волна, воспринимаемая на слух как характерный треск, создаваемый искрой.

Протекание сильного тока приводит к появлению электрической дуги, и температура в канале разряда при определенных условиях может достиг-нуть величины до 6000 К.

Скорость расширения проводящего канала стабили-зируется. а затем уменьшается до нормальной скорости распространения пла-мени.

При силе тока ниже 100 мА возникает тлеющий разряд, и температура уменьшается до 3000 К.

По мере убывания энергии, запасенной во вторичной цепи системы зажигания, искровой разряд угасает.

Тлеющий разряд более продолжителен, чем дуговой, и плазма разряда может перемещаться относительно электродов свечи с потоком смеси газов в цилиндре, возникающим вследствие движения поршня. Эффективная длина искры возрастает, а напряжение разряда увеличивается.

Если напряжение оказывается недостаточ-ным для поддержания искры, появляется вероятность ее угасания и повторного возникновения. Из-за остаточной ионизации в искровом зазоре повторная искра возникает при значительно меньшем напряжении, она по целому ряду причин менее эффективна для воспламенения.

В горючей смеси невозможно разделить процессы образования искрового разряда и воспламенения. Уже на этапе пробоя можно обнаружить продукты химических реакций горения. Эффективность первичного очага воспламенения определяется энергией искрового разряда и дополнительной энергией химических реакций горения.

Если скорость расширения плазмы разряда превышает скорость распро-странения пламени, большее значение имеет энергия искры. Когда скорость расширения канала уменьшается, большее значение приобретает энергия химических реакций.

Основные характеристики и определения свечи зажигания

Верхний температурный предел те-пловой характеристики - величи-на, равная рабочей температуре свечи, при которой возникает ка-лильное зажигание.

«Горячая» или «холодная» свечи - при прочих равных условиях имею-щие соответственно большую или меньшую рабочую температуру.

Детонация - аномальный процесс сгорания, имеющий взрывной ха-рактер с резким местным повыше-нием температуры и образованием ударной волны. Сопровождается звонким металлическим стуком, вызванным вибрацией деталей двигателя.

Искрообразование - возникновение искрового разряда в искровом за-зоре свечи в период от пробоя до угасания.

Искровая свеча зажигания (свеча зажигания, свеча) - электриче-ский ввод в комбинации с искро-вым разрядником, предназначен-ный для воспламенения горючей смеси в цилиндре двигателя при помощи искрового разряда в зазо-ре между электродами.

Искровой зазор - промежуток между изолированным центральным элек-тродом и боковым электродом -массы».

Искровой разряд (электрическая искра, искра) - нестационарный электрический разряд в газе, воз-никающий в электрическом поле.

Калильное зажигание - воспламене-ние горючей смеси, вызванное от-дельными перегретыми участками поверхностей выпускного клапана, поршня, цилиндра или свечи.

Калильное число свечи - условная величина, численно равная средне-му индикаторному давлению в ци-линдре двигателя испытательной установки, при котором появляется калильное зажигание.

Контактная часть свечи - элементы со стороны высоковольтного про-вода: головка изолятора, контакт-ная головка и контактная гайка.

Нагар - образовавшиеся на поверхно-сти рабочей части свечи продукты неполного сгорания.

Нижний температурный предел те-пловой характеристики - величи-на, равная температуре рабочей части свечи, при которой нагар вы-горает.

Работоспособность свечи - обеспече-ние бесперебойного новообразова-ния и герметичности в условиях, пре-дусмотренных нормативно-техниче-ской документацией и стандартами.

Рабочая камера свечи - полость, образуемая внутренней поверхно-стью корпуса и наружной поверхно-стью теплового конуса изолятора, сообщающаяся с камерой сгора-ния двигателя.

Рабочая температура свечи - тем-пература рабочей части свечи на данном режиме работы двигателя.

Рабочая часть свечи - элементы, расположенные непосредственно в камере сгорания: тепловой конус изолятора, торец центрального электрода и боковой электрод.

Тепловой конус изолятора (юбка изолятора) - часть изолятора, расположенная в рабочей каме-ре свечи, воспринимающая своей поверхностью поток тепла от пламени и раскаленных сгоревших газов.

Тепловая характеристика свечи - зависимость рабочей температу-ры свечи от режимов работы дви-гателя.

Цоколь свечи - часть корпуса с резь-бой, предназначенная для уста-новки свечи в двигателе и для связи электрической цепи высоко-го напряжения системы зажигания с «массой».

Шунтирование системы зажига-ния - короткое замыкание высоко-вольтной цепи системы зажигания на «массу» при утечке тока по нага-ру на поверхности теплового кону-са изолятора и (или) по токопро-водящему мостику в искровом зазоре.

Электропроводный (токопроводя-щий) мостик - нагар, частично или полностью заполняющий искровой зазор, обладающий проводи-мостью и создающий электриче-скую цепь, замыкающую изолиро-ванный

Условия работы свечи зажигания

Современные поршневые двигатели внутреннего сгорания работают по четы-рехтактному или двухтактному рабочему циклу.

Автомобильные двигатели, за ред-ким исключением, работают по четырехтактному циклу, осуществляемому за два полных оборота коленчатого вала и четыре хода поршня. Двигатели различного назначения особо малого рабочего объема работают по двухтактному циклу, осу-ществляемому за один оборот коленчатого вала и два хода поршня.

В процессе работы двигателя на свечи воздействуют переменные электриче-ские, тепловые, механические и химические нагрузки с частотой, пропорцио-нальной частоте вращения коленчатого вала. Нагрузка на свечу при работе на двухтактном двигателе по меньшей мере вдвое больше, чем на четырехтактном, что существенно уменьшает срок ее службы.

Тепловые нагрузки.

Свечу устанавливают в головке блока цилиндров так, что ее рабочая часть находится в камере сгорания, а контактная - в подкапотном пространстве. Температура газов в камере сгорания изменяется от нескольких десятков градусов Цельсия на впуске до двух-трех тысяч при сгорании. Темпера-тура под капотом автомобиля может достигать 150°С.

На многих автомобилях, и тем более мотоциклах, не исключена возможность попадания воды на свечу, особенно при мойке, что может привести к поврежде-нию изолятора.

Из-за неравномерности нагрева температура 8 различных сечениях свечи мо-жет отличаться на сотни градусов, что приводит к тепловым напряжениям и дефор-мациям. Это усугубляется тем, что изолятор и металлические детали значительно отличаются по величине коэффициента термического расширения.

Механические нагрузки.

Давление в цилиндре двигателя изменяется от давления ниже атмосферного на впуске до 50 кгс/см2 и выше при сгорании. При этом свечи дополнительно подвергаются вибрационным нагрузкам.

Химические нагрузки.

При сгорании образуется целый «букет» химически активных веществ, способных вызвать окисление даже весьма стойких материа-лов, тем более что рабочая часть изолятора и электродов может иметь рабочую температуру до 900°С.

Электрические нагрузки.

При искрообразовании, длительность которого может составлять до 3мс, изолятор свечи оказывается под воздействием им-пульса высокого напряжения, максимальное значение которого зависит от дав-ления и температуры в камере сгорания и величины искрового зазора. В неко-торых случаях напряжение может достигать 20-25 кВ (амплитудное значение).

Некоторые типы систем зажигания могут создавать напряжение значительно выше, но его ограничивает пробивное напряжение искрового зазора или напря-жение поверхностного перекрытия изолятора.

В дуговой фазе разряда протекание сильного тока приводит к появлению го-рячих катодных пятен на электроде. Электрическая дуга не может существовать без электронов, излучаемых горячими катодными пятнами. Температура пятен достигает 3000К, что выше температуры плавления любого материала электро-дов. Это приводит к неизбежному микроскопическому испарению материала электрода с каждой новой искрой. Скорость электрической эрозии при прочих равных условиях пропорциональна энергии искрового разряда и температуре электрода.

Отклонения от нормального процесса сгорания

Нормальное сгорание рабочей смеси происходит со скоростью нескольких десятков метров в секунду и сопровождается относительно плавным нарастани-ем температуры и давления в цилиндре двигателя. В результате искрового зажи-гания образуется первичный очаг воспламенения, затем формируется фронт пламени, который быстро распространяется по всему объему камеры сгорания. Несгоревшее топливо догорает уже за фронтом пламени, в пристеночных зонах, в зазорах между поршнем и цилиндром.

При некоторых условиях нормальный процесс сгорания может нарушаться, что отражается на надежности и сроке службы свечи. К таким нарушениям мож-но отнести следующие.

Пропуски воспламенения.

Могут возникнуть из-за переобеднения горючей смеси, пропусков искрообразования или недостаточной энергии искры. При этом усиливается процесс образования нагара на изоляторе и электродах.

Калильное зажигание.

Различают преждевременное, до появления искры, сопровождающее появление искры и запаздывающее, возникающее после воспламенения горючей смеси, вызванное перегретыми участками поверхностей выпускного клапана, поршня, цилиндра или свечи.

Преждевременное воспламе-нение может быть вызвано тлеющими частицами нагара.

При преждевременном калильном зажигании самопроизвольно увеличивается угол опережения зажига-ния. Это приводит к росту скорости нарастания давления и температуры, увели-чивается их максимальное значение, детали двигателя перегреваются и угол опережения зажигания еще больше увеличивается. Процесс принимает ускоря-ющийся характер до момента, когда угол опережения зажигания станет таким, что мощность двигателя начнет стремительно падать.

При калильном зажигании вероятны повреждения выпускного клапана, поршня, поршневых колец, поверхности цилиндра и прокладки головки блока цилиндров. У свечи могут полностью или частично сгореть электроды, а в некоторых случаях может даже оплавиться изолятор.

Детонация.

Это явление возникает при недостаточной детонационной стойкости топлива в наиболее удаленном от свечи месте у горячих поверхно-стей, в результате сжатия еще не сгоревшей горючей смеси основным фронтом пламени.

Ударные волны при детонации распространяются со скоростью 1500-2500 м/с, что превышает скорость звука. Они многократно отражаются от стенок и вызывают вибрацию и локальный перегрев цилиндра, поршня, клапанов и свечи. Возможны повреждения, как при калильном зажигании, так как перегретые детали становятся неспособными выдерживать возросшую нагрузку. На изоляторе свечи могут образоваться сколы и трещины, электро-ды могут оплавиться и даже полностью выгореть.

Характерными признаками детонации являются металлические стуки, вибрация и потеря мощности двига-теля, увеличение расхода топлива и иногда появление черного дыма из выпуск-ной трубы.

Особенностью детонации является некоторая задержка по времени от момента наступления необходимых условий до ее возникновения. Задержка необходима для образования активных веществ, способствующих возникновению взрывного процесса. В связи с этим детонация более вероятна при относительно небольших оборотах коленчатого вала и полной нагрузке.

Наиболее вероятен выход на этот режим при движении автомобиля на подьеме при полностью нажатой педали газа. Если при этом мощность двигателя оказывается недостаточной, скорость автомобиля и частота вращения коленчатого вала уменьшаются. При недостаточ-ном в данных условиях октановом числе топлива возникает детонация, сопровож-даемая звонким металлическим стуком.

Для устранения детонации достаточно перейти на пониженную передачу и увеличить обороты двигателя.

Безусловным является требование использовать только топливо, соответст-вующее двигателю по октановому числу.

Дизелинг.

В некоторых случаях возникает крайне неравномерная неуправляе-мая работа бензинового двигателя с выключенным зажиганием при очень малой частоте вращения коленчатого вала. Это явление возникает из-за самовоспла-менения горючей смеси при сжатии, подобно тому, как это происходит в дизелях. В русской технической литературе «дизелинг» является сравнительно новым тер-мином, взятым из английского языка (dieseling).

На двигателях, преимущественно карбюраторных, где не исключена воз-можность подачи топлива в цилиндр при выключенном зажигании, дизе-линг возникает при попытке остановить двигатель. При выключении зажигания двигатель продолжает работать с очень малыми оборотами и крайне неравно-мерно. Это может продолжаться несколько секунд, иногда дольше, затем двига-тель самопроизвольно останавливается. Объяснять это явление калильным за-жиганием от перегретой свечи было бы неправильно, она тут ни при чем.

Причина дизелинга - в особенностях конструкции камеры сгорания и в каче-стве топлива (то есть дизелинг наступает при низкой стойкости топлива к само-воспламенению при сжатии). Свечи не могут являться причиной этого явления, так как их температура при малых оборотах явно недостаточна для воспламене-ния горючей смеси. Калильное зажигание возникает при температуре электро-дов и изолятора 850-900°С, такой величины она может достигнуть только при работе двигателя с максимальной мощностью. При остановке двигателя темпе-ратура этих деталей не превышает 350°С. Свеча в этих условиях не причина, а скорее «жертва», так как из-за неполноты сгорания усиливается процесс обра-зования нагара.

Качество топлива и моторного масла

Для обеспечения нормальной работы свечей автомобильные бензины долж-ны иметь достаточную детонационную стойкость, минимальное коррозионное воздействие и не иметь склонности к отложениям.

Детонационная стойкость топлива зависит от его химического состава и структу-ры углеводородов, полученных при переработке нефти. Способность сопротив-ляться появлению детонации зависит от молекулярной массы - чем она выше, тем ниже стойкость топлива к детонации и наоборот. Стойкость бензина к детонации, так называемое октановое число, определяется в лабораторных условиях моторным и исследовательским методом на специальной моторной установке, путем сравнения стойкости испытуемого бензина и изооктана в смеси с гептаном. Октановое число изооктана принимают равным 100. Добавка гептана, нестойкого к детонации, снижает октановое число смеси.

Промышленное производство бензина включает первичную и вторичную перера-ботку нефти с последующим смешением различных компонентов для получения необходимых свойств.

При первичной переработке нефти (прямой перегонке) получают 10-25% бензина невысокого качества с октановым числом 40-50. При вторичной переработке неф-ти на крупных нефтеперерабатывающих заводах ее подвергают сложной технологи-ческой обработке с целью расщепления крупных молекул на мелкие, стабилизации химического состава и удаления вредных примесей, особенно серы. Выход бензи-на увеличивается до 60 %. Затем, путем смешения продуктов первичной и вторич-ной переработки нефти с добавлением различных присадок получают товарные бензины. Автомобильные бензины одной мархи, производимые на разных предпри-ятиях, в связи с разницей в технологии, имеют несколько различные составы.

Для повышения октанового числа в бензин добавляют антидетонаторы - хи-мические соединения, подавляющие детонацию. Для удаления из камеры сгора-ния продуктов сгорания при применении антидетонационных присадок в топливо добавляют так называемые выносители - химические вещества, способствую-щие удалению продуктов сгорания. Тем не менее, условия работы свечи при ис-пользовании антидетонаторов существенно ухудшаются.

Полностью удалить продукты сгорания не удается, и на электродах и тепло-вом конусе изолятора свечи образуется нагар. Под воздействием температуры эти отложения могут стать электропроводящими и вызвать частичный или пол-ный отказ 8 искрообразовании.

Небольшие фирмы получают высокооктановые бензины АИ-95 и АИ-98 путем добавки в бензины АИ-92 и АИ-95 до 12-15% метил-трет-бутилового эфира, при этом бензин имеет необходимое качество. Достаточно широко используются раз-личные железосодержащие антидетонаторы и традиционный антидетонатор на ос-нове тетраэтилсвинца (ТЭС). В бензин добавляют краситель, так как ТЭС ядовит.

К сожалению, недобросовестные производители изготавливают суррогатный бензин из низкооктановых бензинов, добавляя антидетонационные присадки свыше действующих норм.

Сверхнормативное использование (более 37 мг Fe/л) содержащих железо антидетонаторов, например ФерРоз, ФК-4 или АПК вызывает отложение токо-проводящего нагара красного цвета на свечах. Этот нагар практически невоз-можно удалить, он приводит к полному и необратимому их отказу.

Коррозионное воздействие бензина определяется содержанием кислот, щело-чей и сернистых соединений. Сильным коррозионным воздействием на металлы обладают минеральные кислоты и щелочи, их наличие в бензинах недопустимо. Сернистые соединения обладают высокой коррозионной активностью и способст-вуют образованию нагара, однако полностью избавиться от них непросто, особен-но при переработке сернистой нефти.

Большинство моторных масел имеют нефтяное происхождение и содержат присадки: противостоящие износу, стабилизирующие, антикоррозионные, мою-щие и т. д. При сгорании масла, попавшего в камеру сгорания, образуются зольные остатки, которые, как и продукты неполного сгорания топлива, могут образовывать нагар на свечах.

Образование нагара и самоочищение

Нагар на свече - это твердая углеродистая масса с шероховатой поверхностью, образующаяся при температуре поверхности 200°С и выше. Свойства, внешний вид и цвет нагара зависят от условий его образования, состава топлива и моторно-го масла. В некоторых случаях, особенно на двухтактных двигателях, нагар может образовать в искровом зазоре электропроводный мостик и вызвать короткое замы-кание во вторичной цепи системы зажигания.

И в том, и в другом случае происхо-дит частичное или полное прекращение искрообразования.

Если свечу очистить от нагара, то ее работоспособность восстанавливается. Поэтому одно из важней-ших требований к свече - способность самоочищаться от нагара. Во многом степень совершенства ее конструкции определяется именно этим свойством.

Удаление нагара, если в продуктах сгорания нет несгораемых веществ, проис-ходит при температуре 300-350°С - это нижний температурный предел работо-способности свечи.

Эффективность самоочищения от нагара зависит от того, как быстро тепловой конус изолятора нагреется до этой температуры после пуска двигателя. С этой точки зрения длину теплового конуса изолятора необходимо выполнять как можно большей, а сам тепловой конус целесообразно выдвигать в камеру сгорания.

То же самое требуется для предотвращения утечек тока и соот-ветственно для снижения потерь энергии зажигания.

Тепловая характеристика

Тепловая характеристика свечи - это зависимость температуры теплового конуса изолятора или центрального электрода от режима работы двигателя.

Различие в тепловых характеристиках свечей достигают в основном за счет изменения длины теплового конуса изолятора.

Удлинение теплового конуса изолятора приводит к увеличению подвода тепла в свечу и к росту ее рабочей температуры. Максимальное значение температуры не может превышать

1,

Давайте представим, что происходит при исправной свече зажигания. Искрообразование происходит благодаря высокому импульсному напряжению, передаваемому от катушки (модуля) зажигания по броне проводу на центральный электрод свечи (сердечник). Эта искра воспламеняет сжатую в камере сгорания топливовоздушную смесь. Создаваемый разряд чрезвычайно короткой длительности (1/1000 секунды). Диапазон подаваемого напряжения варьируется от 4 тыс. до 28 тыс. вольт. Большой зазор, работа мотора «в натяг», состояние компрессии оказывают влияние на величину напряжения искрообразования между электродами.
Основная роль свечи зажигания заключается в формировании сильной искры в точно заданный момент времени.

Воспламенение

Процесс воспламенения происходит от частиц топлива располагаемых между электродами при создании искры. В результате химической реакции (окисления) и формирования искры образуется тепловая реакция, переходящая в пламя. Это тепло активизирует окружающую топливовоздушную смесь, распространяя горение по всей камере сгорания. В случае образования слабой искры происходит недостаточное формирование пламени и выработки тепла, пламя гаснет и прекращает горение. При увеличенном зазоре для формирования искрового разряда требуется подача большего количества напряжения, что может достичь пределов производительности катушки зажигания, снизив производительность свечи (воспламенителя).

Для определения момента времени возникновения искрового разряда поршень выставляют в верхнюю точку такта сжатия топливовоздушной смеси и устанавливают зажигание с небольшим опережением. Если воспламенить смесь раньше определённого времени, давление вырастет до прохождения поршнем цикла сжатия, потеряется мощь мотора, при продолжительной работе произойдёт повреждение двигателя, детонация - момент, когда искра проскакивает до достижения поршнем верхней точки, где пик давления рабочей смеси в такте сжатия не создан, что приводит к нестабильной работе двигателя. Время образования искрового разряда на свечах определяется компьютером или катушкой зажигания.


Рисунок 1. Изменение напряжения разряда

  1. увеличение напряжение
  2. искрообразование
  3. ёмкостная искра
  4. индукционная искра
  5. одна миллисекунда
  6. график напряжения, T - график времени

Переход первичного напряжения в точке «а» в возрастание вторичного (1).
В точке «b» происходит частичное повышение напряжения, достаточное для формирования разряда и возникновения искры (2).
В промежутке «b» и «c» устанавливается ёмкость искры. В начале момента разряда искра генерируется электрической энергией, накопленной во вторичном контуре. Ток большой, длительность короткая (3).
Между «с» и «d» происходит индукционная искра (4). Искра порождается электромагнитной энергией катушки. Ток мал, но больше длительность. Промежуток времени с точки «с» продолжается в течение примерно 1 миллисекунды (5), в точке «d» разряд заканчивается.

Режимы работы

На выбор типа и модели свечи оказывают влияние различные обстоятельства, такие как техническое состояние двигателя, условия передвижения, манера вождения. Например, при монотонном движении в течение длительного времени с обычными свечами будет происходить перегрев корпуса свечи и электродов. Поэтому важно выбирать свечи соответственно режиму эксплуатации.

Зазор свечи зажигания. Напряжение разряда повышается пропорционально зазору свечи. В процессе работы зазор свечи увеличивается, сердечник изнашивается, поэтому требуется высокое напряжение, что неизбежно приводит к пропускам зажигания.

Форма электрода. Искровой разряд легче проскакивает на угловых, острых частях электрода. Старые свечи с закругленными электродами хуже подвержены искрообразованию и более вероятны осечки.

Степень сжатия. Напряжение разряда поднимается пропорционально степени сжатия. Сжатие выше при низкой скорости и повышенной нагрузке на двигатель.

Температура топливовоздушной смеси. Напряжение разряда снижается при повышении температуры топливовоздушной смеси. Чем ниже температура двигателя, тем больше должно быть напряжение, так что пропуски зажигания чаще проявляются при холодных погодных условиях.

Температура электрода. Напряжение разряда снижается при повышении температуры электрода. Температура возрастает пропорционально частоте вращения двигателя. Пропуски зажигания чаще проявляются при низкой скорости передвижения.

Влажность. При повышении влажности температура электрода уменьшается, поэтому требуется большее напряжение разряда.

Соотношение топлива и воздуха. Напряжение разряда зависит от объёма топливовоздушной смеси, чем меньше объём, тем больше требуется напряжение. Если объём топливовоздушной смеси уменьшится вследствие неисправности топливной системы возможно появление пропусков зажигания.

Степень нагрева свечи (калильное число). Тепло, передаваемое электродам воспламенителя в результате сгорания топлива, рассредотачивается по пути, показанному на рисунке 2.


Рисунок 2. Распределение тепла свечи зажигания при сгорании топлива

  • охлаждающая жидкость
  • охлаждение при подаче топливовоздушной смеси через впускной клапан

Степень, при которой происходит рассеивание тепла, получаемого свечой, называется степень нагрева (рисунок 3). Свечи с высокой степенью рассеивания тепла называют «холодными», с низкой степенью рассеивания тепла называют «горячими». Это, в значительной степени, определяется температурой газа внутри камеры сгорания и конструкцией свечи.


Рисунок 3. Степень нагрева свечи

  • "Холодные" свечи
  • "Горячие" свечи
  • Газовый карман

У «холодных» свечей длинный металлический цоколь и больше площадь охлаждаемой поверхности, подверженной влиянию пламени и газа. Хорошее рассеивание тепла. У свечей с низкой степенью рассеивания короткий цоколь и невелика площадь охлаждаемой поверхности.

Зависимость между температурой воспламенителя и скоростью транспортного средства выражена графиком на рисунке 4. Существуют ограничения по температуре,при достижении которой свечи не должны эксплуатироваться: наименьшее значение температуры самоочищения и верхнее значение капильного зажигания. Хорошая работа обеспечивается при нагреве центрального электрода от 500 °С до 950 °С.


Рисунок 4. Влияние скорости передвижения на степень нагрева свечи

  • Низкая степень нагрева свечи
  • Нормальная работа свечи
  • Высокая степень нагрева свечи

S — Скорость транспортного средства
T — Температура свечи

Температура самоочищения свечи

Когда температура сердечника составляет 500 °С или ниже в процессе воспламенения и сгорания топливовоздушной смеси происходит выделение свободного углерода, топливо полностью не сгорает и осаждается на поверхности изолятора и металлического цоколя, создавая «мостики» из нагара между изолятором и корпусом. Происходят утечки электричества, неполное искрообразование, вызывая сбои зажигания. Температура в 500 °С называется температурой самоочистки свечи, так как при более высоких температурах углерод сгорает полностью.

Температура образования калильного зажигания

При нагреве сердечника выше 950 °С происходит калильное зажигание. Это означает, что электрод выступает в качестве источника тепла и воспламенение топлива происходит без искры. Таким образом, падает мощность двигателя, что приводит к повышенному износу электродов и повреждению изолятора.

Степень нагрева

Свечи с низкой степенью рассеивания тепла оборудованы сердечником, температура которого поддерживается даже при низкой скорости передвижения. Поэтому они легко достигают температуры самоочистки не позволяя углероду осаждаться на изоляторе.

С другой стороны, центральный электрод с высокой степенью нагрева не поддается легкому нагреву, что не позволяет им достичь температуры калильного зажигания даже при высокой скорости и повышенной нагрузке. Этот тип свечи применяется на скоростных и мощных моторах. Выбор свечи с соответствующим диапазоном нагрева должен основываться на характеристиках двигателя и условиях эксплуатации.

Степень нагрева свечи зависит от сезона использования

Когда температура воздуха летом высокая, температура воздуха на входе выше, что увеличивает нагрузку на двигатель. В такое время, лучше выбрать свечи с более высоким диапазоном нагрева.

Большая мощность двигателя требует установку свечей с более высоким диапазоном нагрева.
Если мощность была увеличена за счет тюнинга произойдёт повышение температуры в цилиндре, предвестнику калильного зажигания. Во избежание подобного повышайте калильное число и уровень теплостойкости.

Подведём итог

Калильное число означает соответствие свечи условиям нормальной работы. Температура топливной смеси при сгорании превышает 1 800 - 2 000°С. Если свеча правильно подобрана к определённому типу двигателя, то процесс воспламенения топливной смеси будет оптимальным для сгорания топлива и сжигания образованных отложений:
не произойдёт перегрев свечи и преждевременное воспламенение, называемое зажиганием калильным, когда микс воздуха и топлива воспламеняется от воспламененных поверхностей камеры сгорания (электроды свечи, выпускной клапан, толстый нагар);
не произойдет детонации, специфичного постукивания, проявляющегося при функционировании на низко октановом топливе с возрастанием нагрузки на мотор, когда часть смеси сгорает быстрее обычного, образуя ударную волну в камере сгорания.

При оптимальном функционировании всех составляющих мотора нижняя часть свечи нагревается до 600 градусов, происходит выгорание масла и излишков топлива, попадающих на электроды, производя процедуру самоочищения. При несоответствии калильного числа характеристикам эксплуатации, отложения на элементах цилиндра происходят активнее, чем выгорают.

Однако возможны ситуации применения отличного от рекомендованного калильного числа. Увеличение числа сожжет нагар в изношенном моторе, работающем большую часть времени на холостом ходу, или автомобиле, используемом для коротких отрезков. При отсутствии проблем с нагаром двигателя горячие свечи противопоказаны, возникает риск преждевременного воспламенения, детонации.

Особые авто (гоночные, работающие на повышенных нагрузках, высоких оборотах длительное время) предпочитают «холодные» свечи, минимум вероятности проявления калильного зажигания. Холостой ход и малая скорость приведут болиды к образованию отложений на поршневой группе.

На сегодняшний день многие производители выпускают свечи с расширенным интервалом нагрева, внедряя сердечник из меди или платины. Медь - отличный проводник тепла, позволяет изолятору выдерживать повышенный нагрев, сжигая загрязняющие отложения до состояния калильного зажигания. Платина также отлично отводит тепло от сердечника.

Полезная информация

А Вы знаете, что на свечах зажигания больше всего иридия, чем где-либо! Иридиевый сплав наносят на центральный электрод лазерной сваркой для снижения электрической эрозии.

Свеча зажигания служит для переноса в цилиндр двигателя подающегося высокого напряжения, с целью создания искры зажигания и воспламенения рабочей смеси. Кроме того, свеча должна изолировать от блока цилиндров подающееся на нее высокое напряжение (более 30 кВ), снижать пробои и прорывы, а также герметично закрывать камеру сгорания. Кроме того, она должна обеспечивать соответствующий диапазон температур во избежание загрязнения электродов и возникновения калильного зажигания. Устройство типичной свечи зажигания показано на рисунке.

Рис. Свеча зажигания производства фирмы «Bosch»

Стержень клеммы и центральный электрод

Стержень клеммы изготовлен из стали и выступает из корпуса свечи зажигания. Он служит для присоединения провода высокого напряжения или напрямую установленной стержневой катушки зажигания. Электрическое соединение между стержнем клеммы и центральным электродом выполнено с помощью расположенного между ними расплава стекла. К расплаву стекла домешивается наполнитель для улучшения степени обгорания и свойств сопротивления помехам. Так как центральный электрод находится непосредственно в камере сгорания, он подвержен воздействию очень высоких температур и сильной коррозии вследствие контакта с отработавшими газами, а также с остаточными продуктами сгорания масла, топлива и примесей. Высокие температуры искрообразования приводят к частичному расплавлению и выпариванию материала электродов, поэтому центральные электроды изготавливаются из никелевого сплава с добавками хрома, марганца и кремния. Наряду с никелевыми сплавами используются также сплавы серебра и платины, так как они незначительно обгорают и хорошо отводят тепло. Центральный электрод и стержень клеммы герметично закреплены в изоляторе.

Изолятор

Изолятор предназначен для отделения стержня клеммы и центрального электрода свечи зажигания от ее корпуса, чтобы не происходило пробоя высокого напряжения на «массу» автомобиля. Для этого изолятор должен обладать высоким электрическим сопротивления, поэтому он изготовлен из оксида алюминия, содержащего стекловидные добавки. Для снижения токов утечки горлышко изолятора имеет оребрение.

Наряду с механическими и электрическими нагрузками изолятор подвергается также высоким термическим нагрузкам. При работе двигателя на максимальных оборотах у опоры изолятора температура достигает 850 °С, а у головки изолятора - около 200 °С. Данные температуры возникают вследствие цикличных процессов сгорания рабочей смеси в цилиндре двигателя. Для того, чтобы температуры в области опоры не становились высокими, материал изолятора должен обладать хорошей теплопроводностью.

Общее устройство свечи зажигания

Свеча зажигания имеет металлический корпус, который вкручивается в соответствующее отверстие в головке блока цилиндров. В корпус свечи зажигания встроен изолятор, для герметизации которого используются специальные внутренние уплотнения. Изолятор содержит внутри центральный электрод и стержень клеммы. После сборки свечи зажигания выполняется окончательная фиксация всех деталей путем термической обработки. Боковой электрод, изготовленный из того же материала что и центральный, приваривается к корпусу свечи. Форма и расположение бокового электрода зависят от типа и конструкции двигателя. Зазор между центральным и боковым электродами регулируется в зависимости от типа двигателя и системы зажигания.

Существует много возможностей расположения бокового электрода, что влияет на величину промежутка искрового разряда. Чистая искра образуется между центральным электродом и боковым, г-образной формы. При этом рабочая смесь легко попадает в промежуток между электродами, что способствует ее оптимальному воспламенению. Если кольцеобразный боковой электрод устанавливается на одном уровне с центральным, то искра может скользить над изолятором. В этом случае ее называют скользящим искровым разрядом, который позволяет сжигать наслоения и остаточный нагар на изоляторе. Улучшить эффективность воспламенения рабочей смеси можно либо увеличением длительности искрообразования, либо увеличением энергии искрообразования. Рациональной является комбинация скользящего и обычного искровых разрядов.

Рис. Типы свечей зажигания с воздушным скользящим искровым разрядом

Для снижения потребности в напряжении на свече зажигания со скользящим искровым зарядом может быть дополнительно установлен управляющий электрод. При увеличении температуры изолятора искрообразование способно происходить при меньшем напряжении. При длительном промежутке искрового разряда воспламенение улучшается как для бедной, так и для богатой смеси топлива с воздухом.

Для двигателей с впрыском топлива во впускной коллектор предпочтение отдается свече зажигания с траекторией искрового разряда, «растянутой» в камере сгорания, в то время как для двигателей с непосредственным впрыском топлива в камеру сгорания и послойным смесеобразованием свеча зажигания с поверхностным разрядом имеет преимущества благодаря лучшей возможности самоочищения.

При выборе подходящей для двигателя свечи зажигания важную роль играет ее калильное число, с помощью которого можно судить о тепловой нагрузке на опору изолятора. Данная температура должна быть примерно на 500 °С выше, чем температура, необходимая для самоочищения свечи от наслоений. С другой стороны, нельзя превышать максимальную температуру около 920 °С, иначе возможно возникновение калильного зажигания.

Если не достичь температуры, необходимой для самоочищения свечи, частицы топлива и масла, скапливающиеся у опоры изолятора, не будут сжигаться, и между электродами на изоляторе могут образоваться токопроводящие полосы, которые способны привести к пропускам искрообразования.

Если опора изолятора нагревается выше 920 °С, это приведет к неконтролируемому сгоранию рабочей смеси вследствие накаленной опоры изолятора во время сжатия. Мощность двигателя снижается, а свеча зажигания вследствие тепловой перегрузки может быть повреждена.

Свеча зажигания для двигателя выбирается согласно ее калильному числу. Свеча с маленьким калильным числом имеет незначительную поверхность поглощения тепла и подходит для двигателей с высокими нагрузками. Если двигатель нагружен слабо, устанавливается свеча зажигания с высоким калильным числом, имеющая большую поверхность поглощения тепла. Конструктивно калильное число свечи зажигания регулируется при ее изготовлении, например, с помощью изменения длины опоры изолятора.

Рис. Определение калильного числа свечи зажигания

При использовании комбинированного электрода, включающего электрод на никелевой основе с медным ядром, улучшается теплопроводность и вследствие этого отвод тепла от электрода.

К важным задачам при разработке свечи зажигания относится увеличение интервалов технического обслуживания. Вследствие коррозии, связанной с искровым разрядом, во время работы зазор между электродами увеличивается, а вместе с тем увеличивается и потребность в напряжении во вторичной цепи системы зажигания. При сильном износе электродов свечу зажигания следует заменить. На сегодняшний сроки службы свечей зажигания, в зависимости от их конструкции и материалов, составляют от 60000 км до 90000 км. Это достигается улучшением материала электродов и использованием большего количества боковых электродов (2, 3 или 4 боковых электрода).