Электрическая схема рулевого управления судна. Состав, назначение рулевого устройства

Рулевое устройство включает рулевую машину с румпельным, секторным, винтовым или гидравлическим приводом и собственно руль, основной и ручной (запасной) привод руля.

К основным требованиям, предъявляемым к рулевым устройствам, относят:

Максимальный угол перекладки руля для морских судов должен быть равен 35 градусам, а для судов речного флота может достигать 45 градусов;

Длительность перекладки руля с одного борта до другого борта должна быть не более 28 с;

Рулевые машины должны обеспечивать надёжную работу рулевого устройства в условиях качки судна с креном до 45 градусов, длительного крена — до 22,5 градусов и дифферента — до 10 градусов.

Дефектоскопия и ремонт . К характерным дефектам рулевого устройства относят:

Изнашивание шеек баллера руля, его изгиб и скручивание;

Изнашивание подшипников, штырей, чечевицы;

Повреждения соединения баллера с пером руля;

Коррозионные и эрозионные разрушения, трещины пера руля;

Нарушение центрирования руля.

Техническое состояние рулевого устройства определяют перед каждым очередным освидетельствованием судна (на плаву или в доке), до и после ремонта судна и при подозрении о появлении неисправности.

Дефектоскопию рулевого устройства проводят в два этапа.

На первом этапе, без каких-либо демонтажных работ, определяют общее техническое состояние рулевого устройства методом внешнего осмотра (со шлюпки и водолазный осмотр): соответствие положения пера руля и указателей (для определения величины скручивания баллера руля); зазоры в подшипниках и высоту от пятки ахтерштевня до пера руля (Н) (проседание руля):

На втором этапе рулевое устройство демонтируют и разбирают.

Демонтаж, разборка. Перед демонтажем руля в кормовой части устанавливают настил, подвешивают тали, готовят стропы, домкраты и необходимый инструмент. Разборка включает следующие операции:

Разбирают ручной привод руля, тормозное устройство и выводят из зацепления зубчатый сектор механического привода;

Снимают с головной части баллера руля зубчатый сектор, румпель;

Разбирают подшипники баллера руля, разъединяют и разобщают баллер с рудерписом;

Поднимают и выводят перо руля из кормового подзора и опускают на палубу дока, судна или на причал;

Опускают застропленный баллер через гельмпортовую трубу на палубу;

Выбивают чечевицу из гнезда пятки ахтерштевня через отверстие, имеющее в ней.

Втулку-подшипник, запрессованную в пятке ахтерштевня, в случае большого изнашивания, разрезают по длине и после смятия её краев выбивают из гнезда.

При разборке рулевого устройства наибольшую сложность представляет демонтаж румпеля с баллера руля. Как правило, румпель напрессован на головную часть баллера в горячем состоянии с натягом. Иногда головку румпеля для снятия разрезают газовым резаком во время разборки и проводят детальную дефектоскопию с последующим ремонтом деталей рулевого устройства.

Изнашивание шеек баллера устраняют проточкой (допустимое уменьшение диаметра шейки баллера — не более 10% номинального значения), либо электронаплавкой с последующей механической обработкой.

Изогнутый баллер правят в горячем состоянии с нагревом до температуры 850-900 С, а после правки его подвергают отжигу и нормализации. Точность правки считается удовлетворительной, если биение баллера в месте изгиба будет находиться в пределах 0,5-1 мм. После правки и нормализации плоскость фланца баллера и шейки протачивают на токарном станке.

При скручивании баллера до 15 градусов заваривают старый шпоночный паз, выполняют термообработку этого участка для снятия напряжений скручивания, размечают и фрезеруют новый шпоночный паз в плоскости пера руля.

При изнашивании втулки-подшипника и чечевицы их заменяют. Чечевицу изготавливают из стали с последующей закалкой.

Дефект фланцевого соединения баллера с пером руля устраняют их проворачиванием, шабрением шпоночного паза и установкой новой шпонки.

К наиболее частым повреждениям пера руля относят вмятины и разрывы листов обшивки пера руля. При общем изнашивании обшивки пера руля (более 25% толщины) листы заменяют.

Трещины и коррозионные разрушения сварных швов устраняют разделкой и сваркой. Перед заменой обшивки пера руля из её внутренней полости удаляют варпек (продукт перегонки каменного угля), который представляет собой твёрдую стекловидную массу чёрного цвета. После ремонта во внутреннюю полость пера руля опять заливают варпек в горячем состоянии (при нагревании варпек становится жидким).

До постановки простого руля на место проверяют центрирование отверстий петель ахтерштевня методом натянутой струны. За базу при центровке петель ахтерштевня принимают оси гельмпортового подшипника и подшипника пятки ахтерштевня.

Качество ремонта и монтажа рулевого устройства оценивают по результатам центрирования, величине установочных зазоров в подшипниках, соответствию положений пера руля и указателей.

Критерием общего технического состояния рулевого устройства является время перекладки руля во время ходовых испытаний судна, которое не должно превышать 28 с. Испытания рулевого устройства должны проходить при волнении моря не более 3 баллов, на полном переднем ходу судна при номинальной частоте вращения гребного вала.

Методика контроля рулевого устройства по техническому состоянию.

Методика предусматривает определение общего технического состояния рулевого устройства на основе его наружных осмотров без каких-либо демонтажных работ (осмотр со шлюпки, водолазный осмотр) и контроля следующих параметров:

Уровня виброускорения баллера руля; .

Времени перекладки руля с борта на борт;

Давления жидкости в гидравлических цилиндрах для электрогидравлических рулевых машин;

Силы рабочего тока исполнительного электродвигателя для электрических рулевых машин;

Наличия металлических и абразивных продуктов изнашивания в рабочей жидкости.

По уровню виброускорения баллера руля контролируют состояние зазоров в подшипниках руля.

Периодичность контроля параметров рулевого устройства приведены в таблице:

Достижение предельно-допустимого значения хотя бы одним из параметров говорит о необходимости проведения технического обслуживания (ремонта) рулевого устройства.

На основе контроля фактического технического состояния рулевого устройства могут выполняться следующие работы: замена или пополнение смазки в подшипниках, замена подшипников, плунжерных пар; кроме того, решается вопрос о необходимости постановки судна в док для демонтажа баллера из-за увеличенных зазоров в его подшипниках и повреждений пера руля.


Морской сайт Россия нет 24 ноября 2016 Создано: 24 ноября 2016 Обновлено: 24 ноября 2016 Просмотров: 16118

Рулевое устройство совокупность механизмов, агрегатов и узлов, обеспечивающих управление судном.

Основными конструктивными элементами любого рулевого устройства являются:

рабочий орган - перо руля (руль) или поворотная направляющая насадка;

баллер, соединяющий рабочий орган с рулевым приводом;

рулевой привод, передающий усилие от рулевой машины к рабочему органу;

рулевая машина, создающая усилие для поворота рабочего органа;

привод управления, связывающий рулевую машину с постом управления.

На современных судах устанавливают пустотелые обтекаемые рули, состоящие из горизонтальных ребер и вертикальных диафрагм, покрытых стальной обшивкой (рис. 1, а). Обшивку крепят к раме электрозаклепками. Внутреннее пространство руля заполняют смолистыми веществами или самовспенивающимся пенополиуретаном ППУ3С.

В зависимости от расположения оси вращения различают балансирные (рис. 1, д, в), небалансирные (рис. 1, б) и полубалансирные рули . Ось вращения балансирного руля проходит через перо руля, а небалансирного - совпадает с передней кромкой пера. У полубалансирного руля в нос от оси вращения выступает только нижняя часть пера. Момент сопротивления повороту балгнсирного или полубалансирного руля меньше, чем небалансирного, и соответственно меньше требуемая мощность рулевой машины.

По способу крепления рули разделяют на подвесные и простые.

Подвесной руль крепят горизонтальным фланцевым соединением к баллеру и устанавливают только на малых и малых маломерных добывающих судах.Простой одноопорный балансирный руль (см. рис. 1, а) штырем упирается в упорный стакан пятки ахтерштевня. Для уменьшения трения цилиндрическая часть штыря имеет бронзовую облицовку, а в пятку ахтерштевня вставлена бронзовая втулка. Соединение руля с баллером - горизонтальное фланцевое на шести болтах или конусное. При конусном соединении коническая концевая часть баллера вставляется в конусное отверстие верхней торцевой диафрагмы руля и плотно затягивается гайкой, доступ к которой обеспечивается через крышку, поставленную на винтах, входящих в обшивку руля. Изогнутый баллер дает возможность раздельного демонтажа руля и баллера (при их взаимном развороте).

Простой двухопорный небалансирный руль (см. рис. 1, б) сверху закрыт листовой диафрагмой и литой головкой, имеющей фланец для соединения руля с баллером и петлю под верхнюю штыревую опору. В петлю рудерпоста вставляют бакаутовые, бронзовые или другие втулки.

Недостаточная жесткость нижней опоры балансирных рулей часто становится причиной вибрации кормы судна и руля. Этот недостаток отсутствует у балансирного руля со съемным рудерпостом (см. рис. 1, в). В перо такого руля вмонтирована труба, через которую проходит съемный рудерпост. Нижний конец рудерпоста закрепляют конусом в пятке ахтерштевня, а верхний крепят фланцем к ахтерштевню. Внутри трубы устанавливают подшипники. Рудерпост в местах прохождения через подшипники имеет бронзовую облицовку. Крепление руля к баллеру - фланцевое.

Рис. 1. Рабочие органы рулевых устройств: а - руль одноопорный балансирный; б - руль двухопорный небалансирный; в - руль баланснрный со съемным рудерпостом; г - активный руль; д - поворотная направляющая насадка со стабилизатором; 1 - баллер; 2 - фланец; 3 - обшивка пера руля; 4 - наделка-обтекатель; 5 - вертикальная диафрагма; 6 - горизонтальное ребро; 7 - пятка ахтерштевня; 8 - гайка; 9 - шайба; 10 - рулевой штырь; 11 - бронзовая облицовка штыря; 12 - бронзовая втулка (подшипник); 13 - упорный стакан; 14 - канал для демонтажа упорного стакана; 15 - гельмпортовая труба; 16 - петля рудерпоста; 17 - рудерпост; 18 - бакаут; 19 - фланец рудерпоста; 20 - съемный рудерпост; 21 - вертикальная труба; 22 - гребной винт руля; 23 - редуктор с обтекателем; 24 - стабилизатор; 25 - поворотная направляющая насадка; 26 - гребной вал; 27 - гребной винт

В пере активного руля (рис. 1, г) помещен вспомогательный гребной винт . При перекладке руля направление упора вспомогательного винта изменяется и возникает дополнительный момент, поворачивающий судно. Направление вращения вспомогательного винта противоположно направлению вращения основного. Электродвигатель размещается в пере руля или в румпельном отделении. В последнем случае электродвигатель непосредственно соединен с вертикальным валом, передающим вращение редуктору движителя. Винт активного руля может обеспечить судну скорость до 5 уз.

На многих судах промыслового флота вместо руля устанавливают поворотную направляющую насадку (рис. 1, д), которая создает такую же, как и руль, боковую силу при меньших углах перекладки. Причем момент на баллере насадки примерно в два раза меньше момента на баллере руля. Для обеспечения устойчивого положения насадки при перекладках и увеличения ее рулевого действия к хвостовой части насадки в плоскости оси баллера крепят стабилизатор. Конструкция и крепление насадки аналогичны конструкции и креплению балансирного руля.

Баллер - изогнутый или прямой стальной цилиндрический брус, выведенный через гельмпортовую трубу в румпельное отделение. Соединение гельмпортовой трубы с наружной обшивкой и настилом палубы - водонепроницаемое. В верхней части трубы устанавливают уплотнительный сальник и подшипники баллера, которые могут быть опорными и упорными.

Рулевое устройство должно иметь приводы: главный и вспомогательный, а при их расположении ниже грузовой ватерлинии дополнительный аварийный, размещенный выше палубы переборок. Вместо вспомогательного привода допускается установка сдвоенного главного, состоящего из двух автономных агрегатов. Все приводы должны действовать независимо друг от друга, но, как исключение, допускается наличие у них некоторых общих деталей. Главный привод должен работать от источников энергии, вспомогательный может быть ручным.

Конструкция привода руля зависит от типа рулевой машины. На судах промыслового флота устанавливают электрические и электрогидравлические рулевые машины. Первые выполняют в виде электродвигателя постоянного тока, вторые - в виде комплекса электродвигатель - насос в сочетании с плунжерным, лопастным или винтовым гидравлическим приводом. Ручные рулевые машины в сочетании с штуртросовым, валиковым или гидравлическим рулевым приводом встречаются только на малых и маломерных добывающих судах.

Рис. 2. Приводы руля: а - секторно-эубчатый; б - штуртросовый; в - гидравлический плунжерный; г - гидравлический лопастный; д - гидравлический винтовой; е - румпель-таль; 1 - штурвал и рулевая колонка вспомогательного привода; 2 - румпель; 3 - червячный редуктор; 4 - зубчатый сектор главного привода; 5 - электродвигатель; 6 - пружинный амортизатор; 7 - баллер; 8 - балансирный руль; 9 - зубчатый сектор вспомогательного привода; 10 - червяк; 11 - штуртрос; 12 - направляющие роульсы; 13 - буферные пружины; 14 - сектор; 15 - поршень-плунжер; 16 - гидроцилиндр; 17 - насос; 18 - предохранительный клапан; 19 - корпус; 20 - секторовидная камера; 21 - крылатка с лопастями; 22 - стакан с продольными канавками; 23 - кольцевой поршень; 24 - стакан с винтовыми канавками; 25 - крышка; 26 - квадратная головка; 27 - рабочая полость цилиндра; 28 - шпоночная канавка; 29 - ходовой конец лопаря; 30 - подвижный блок; 31 - неподвижный блок

На многих мало и среднетоннажных судах устанавливают секторнозубчатый рулевой привод (рис. 2, а). При работе электродвигателя свободно насаженный на баллер зубчатый сектор через пружинные амортизаторы передает усилие жестко закрепленному на баллере продольному румпелю. Амортизаторы смягчают толчки, возникающие при пуске электродвигателя или при ударах волн о перо руля. Червячный редуктор обеспечивает самоторможение привода. В качестве вспомогательного привода предусмотрен дополнительный жестко насаженный на баллер зубчатый сектор. Работу сектора обеспечивает ручная штурвальная колонка через валиковую проводку и дополнительный червячный редуктор.

На маломерных добывающих судах применяют секторный штуртросовый привод (рис. 2, б). Усилие рулевой машины через штуртрос передается жестко насаженному на баллер сектору. Штуртрос выполняют иэ стального троса с участком цепи Галля в средней части или целиком из цепи. Обе ветви штуртроса от сектора через направляющие роульсы идут к звездочке или барабану рулевой машины. В последнем варианте при вращении барабана одна ветвь стального троса выбирается, а другая - потравливается. Слабину штуртроса выбирают винтовыми талрепами, толчки смягчаются буферными пружинами.

Наибольшее распространение на промысловом флоте получили гидравлические рулевые приводы: плунжерный, лопастный, винтовой.

Насос гидравлического плунжерного привода (рис. 2, в) при работе электродвигателя перекачивает рабочую жидкость из одного гидроцилиндра в другой, что приводит к перемещению шарнирно соединенного с жестко насаженным на баллер румпелем плунжера и повороту баллера. При ударе волны о перо руля давление в одном из гидроцилиндров возрастает и предохранительный клапан перепускает часть рабочей жидкости в другой цилиндр, амортизируя удар. Специальное устройство обеспечивает автоматический возврат пера руля в первоначальное положение после спада давления в гидроцилиндре. На многих судах установлены сдвоенные плунжерные гидравлические рулевые приводы. Параллельно работающие две пары гидроцилиндров и два насоса обеспечивают возможность перекладки руля любой парой гидронасосов. В этом случае на судне может отсутствовать вспомогательный привод руля.

Румпель гидравлического лопастного рулевого привода, выполненный в виде крылатки с лопастями, находится в закрытом цилиндрическом корпусе, разделенном неподвижными перегородками на несколько рабочих камер, заполненных рабочей жидкостью (на рис. 2, г две камеры). Зазоры между лопастями и корпусом, неподвижными перегородками и баллером уплотняются. При перекачке рабочей жидкости из одних полостей камер в другие создается разность давлений, вызывающая поворот румпеля и баллера.

Винтовой гидравлический привод (рис. 2, д) состоит из неподвижного корпуса, средняя часть которого выполняет роль цилиндра. В цилиндр помещен кольцевой поршень: его внутренняя поверхность имеет в верхней части винтовые, а в нижней - продольные канавки. На головку баллера жестко надет стакан с продольными канавками. Другой стакан с винтовыми канавками неподвижно прикреплен к крышке корпуса. При подаче жидкости в рабочую полость цилиндра поршень получает поступательное движение, перемещаясь по винтовым канавкам неподвижного стакана, поворачивается и через стакан с продольными канавками поворачивает баллер.

Кроме перечисленных на промысловых судах изредка встречаются рулевые приводы других типов, в основном в качестве вспомогательных или аварийных. В исключительных аварийных ситуациях могут быть применены две румпельтали.

Таль - это два блока, между которыми натянут трос (лопарь, рис. 2, е). Конец лопаря, за который производят тягу, называют ходовым , а закрепленный конец - коренным . Блок состоит из корпуса, внутри которого находятся один или несколько шкивов, вращающихся на оси (нагеле). Тали могут быть различной конструкции. Наиболее простым видом тали является гордень неподвижный одношкивный блок, позволяющий изменить направление тяги (направляющий блок). Гордень не дает выигрыша в усилии.

Другой вид - хваттали это двух и одношкивные блоки, причем коренной конец лопаря закреплен на одношкивном блоке.

Тали, состоящие из блоков с одинаковым числом шкивов, называют ганцами , а из блоков с числом шкивов более трех в каждом блоке - гинями . При работе тали во всех ветвях лопаря возникает усилие, равное усилию, приложенному к ходовому концу, поэтому общее усилие, передаваемое талью, равно сумме усилий в ветвях подвижного блока, включая усилие и в ходовом конце, если он сходит с этого блока. Один блок тали скобой крепят к предусмотренному в шпангоуте отверстию, другой - к сектору или румпелю. Ходовые лопари через систему направляющих блоков выводят к ближайшей лебедке. Принцип работы аналогичен работе штуртросового привода .

Дистанционное управление рулевой машиной из рулевой рубки обеспечивают телединамические передачи, называемые рулевыми телепередачами или рулевыми телемоторами. На современных промысловых судах нашли применение гидравлические и электрические рулевые телепередачи. Часто они дублируются или комбинируются в электрогидравлические.

Электрическая телепередача состоит из специального контроллера, расположенного в рулевой тумбе и связанного электрической системой с пусковым устройством рулевой машины. Управление контроллером осуществляется с помощью штурвала, рукоятки или кнопки.

Гидравлическая телепередача состоит из ручного насоса, приводимого в работу штурвалом, и системы трубок, связывающих насос с пусковым устройством рулевой машины. Рабочей жидкостью системы служат незамерзающая смесь воды с глицерином или минеральное масло.

Управление главным и вспомогательным рулевыми приводами (работающими от источника энергии) - независимо и производится с ходового мостика, а также из румпельного отделения. Время перехода с главного на вспомогательный привод не должно превышать 2 мин. При наличии постов управления главным рулевым приводом в рулевой и промысловой рубках выход из строя системы управления с одного поста не должен препятствовать управлению с другого поста. Время перекладки полностью погруженного руля или поворотной насадки главным приводом (при наибольшей скорости переднего хода) с 35° одного борта на 30° другого не должно превышать 28 с, вспомогательным (при скорости, равной половине наибольшей скорости переднего хода или 7 уз, в зависимости от того, какое значение больше) с 15° одного борта на 15° другого - 60 с, аварийным (при скорости не менее 4 уз) не ограничивается.

Угол,перекладки руля определяют по установленному у каждого поста управления аксиометру. Кроме того, на секторе рулевого привода или других деталях, жестко связанных с баллером, наносят шкалу для определения действительного положения руля. Автоматическую согласованность между скоростью, направлением вращения и положением штурвала и скоростью, стороной и углом перекладки руля обеспечивает сервомотор.

Ограничители перекладки руля выполняют в виде выступов на пере руля и ахтерштевне, которые упираются друг в друга при максимально допускаемом угле перекладки руля, или в виде книц, приваренных к палубе, в которые упирается сектор привода руля. Все механические рулевые приводы дополнительно имеют конечные выключатели, отключающие механизмы прежде, чем руль дойдет до ограничителя поворота. В гидравлическом плунжерном приводе ограничителем поворота руля служат донышки гидроцилиндров привода.

Тормоз (стопор) руля предназначен для удержания руля при аварийном ремонте или при переходе с одного привода на другой. Наиболее часто применяют ленточный стопор, зажимающий непосредственно баллер руля. Секторные приводы имеют колодочные стопоры, в которых тормозная колодка прижимается к специальной дуге на секторе. В гидравлических приводах роль стопора выполняют клапаны, перекрывающие доступ рабочей жидкости к приводам.

Удержание судна на заданном курсе при благоприятных погодных условиях без участия рулевого обеспечивает авторулевой, принцип работы которого основан на применении гирокомпаса или магнитного компаса. Органы обычного управления связаны с авторулевым. Когда судно ложится на заданный курс, руль по аксиометру устанавливают в нулевое положение и включают авторулевой. Если под действием ветра, волнения или течения судно отклоняется от заданного курса, электродвигатель системы, получив импульс от датчика компаса, обеспечивает возвращение судна на заданный курс. При изменении курса или маневрировании авторулевой отключают и переходят на обычное рулевое управление.

Морской сайт Россия нет 20 ноября 2016 Создано: 20 ноября 2016 Обновлено: 20 ноября 2016 Просмотров: 24786

Рулевое устройство служит для изменения направления движения судна или удерживать его на заданном курсе.

В последнем случае задачей рулевого устройства является противодействие внешним силам, таким как ветер или течение, которые могут привести к отклонению судна от заданного курса.

Рулевые устройства известны с момента возникновения первых плавучих средств. В древности рулевые устройства представляли собой большие распашные весла, укрепленные на корме, на одном борту или на обоих бортах судна.

Во времена средневековья их стали заменять шарнирным рулем, который помещался на ахтерштевне в диаметральной плоскости судна. В таком виде он и сохранился до наших дней.

Рулевое устройство состоит из руля, баллера, рулевого привода, рулевой передачи, рулевой машины и поста управления (рис. 1.34).

Рулевое устройство должно иметь два привода: главный и вспомогательный.

Главный рулевой привод - это механизмы, исполнительные приводы перекладки руля, силовые агрегаты рулевого привода, а также вспомогательное оборудование и средства приложения крутящего момента к баллеру (например, румпель или сектор), необходимые для перекладки руля с целью управления судном в нормальных условиях эксплуатации.

Вспомогательный рулевой привод - это оборудование необходимое для управления судном в случае выхода из строя главного рулевого привода, за исключением румпеля, сектора или других элементов, предназначенных для той же цели.
Главный рулевой привод должен обеспечивать перекладку руля с 350 одного борта на 350 другого борта при максимальной эксплуатационной осадке и скорости переднего хода судна не более чем за 28 секунд.

Вспомогательный рулевой привод должен обеспечивать перекладку руля с 150 одного борта на 150 другого борта не более чем за 60 секунд при максимальной эксплуатационной осадке судна и скорости, равной половине его максимальной эксплуатационной скорости переднего хода.

Управление вспомогательным рулевым приводом должно быть предусмотрено из румпельного отделения. Переход с главного на вспомогательный привод должен выполняться за время, не превышающее 2 минуты.

Руль - основная часть рулевого устройства. Он располагается в кормовой части и действует только на ходу судна. Основной элемент руля - перо, которое по форме может быть плоским (пластинчатым) или обтекаемым (профилированным).

По положению пера руля относительно оси вращения баллера различают (рис. 1.35):

обыкновенный руль - плоскость пера руля расположена за осью вращения;

полубалансирный руль - только большая часть пера руля находится позади оси вращения, за счет чего возникает уменьшенный момент вращения при перекладке руля;

балансирный руль - перо руля так расположено по обеим сторонам оси вращения, что при перекладке руля не возникают какие-либо значительные моменты.

В зависимости от принципа действия различают пассивные и активные рули. Пассивными называются рулевые устройства, позволяющие производить поворот судна только во время хода, точнее сказать, во время движения воды относительно корпуса судна.

Винторулевой комплекс судов не обеспечивает их необходимую маневренность при движении на малых скоростях. Поэтому на многих судах для улучшения маневренных характеристик используются средства активного управления, которые позволяют создавать силу тяги в направлениях, отличных от направления диаметральной плоскости судна. К ним относятся: активные рули, подруливающие устройства, поворотные винтовые колонки и раздельные поворотные насадки.

Активный руль - это руль с установленным на нем вспомогательным винтом, расположенным на задней кромке пера руля (рис. 1.36). В перо руля встроен электродвигатель, приводящий во вращение гребной винт, который для защиты от повреждений помещен в насадку.
За счет поворота пера руля вместе с гребным винтом на определенный угол возникает поперечный упор, обусловливающий поворот судна. Активный руль используется на малых скоростях до 5 узлов.
При маневрировании на стесненных акваториях активный руль может использоваться в качестве основного движителя, что обеспечивает высокие маневренные качества судна. При больших скоростях винт активного руля отключается, и перекладка руля осуществляется в обычном режиме.

Раздельные поворотные насадки (рис. 1.37). Поворотная насадка - это стальное кольцо, профиль которого представляет элемент крыла. Площадь входного отверстия насадки больше площади выходного.
Гребной винт располагается в наиболее узком ее сечении. Поворотная насадка устанавливается на баллере и поворачивается до 40° на каждый борт, заменяя руль.
Раздельные поворотные насадки установлены на многих транспортных судах, главным образом речных и смешанного плавания, и обеспечивают их высокие маневренные характеристики.

(рис. 1.38). Необходимость создания эффектив- ных средств управления носовой оконечностью судна привела к оборудованию судов подруливающими устройствами.
ПУ создают силу тяги в направлении, перпендикулярном диаметральной плоскости судна независимо от работы главных движителей и рулевого устройства.
Подруливающими устройствами оборудовано большое количество судов самого разного назначения. В сочетании с винтом и рулем ПУ обеспечивает высокую маневренность судна, возможность разворота на месте при отсутствии хода, отход или подход к причалу практически лагом.

В последнее время получила распространение электродвижущаяся система AZIPOD (Azimuthing Electric Propulsion Drive), которая включает в себя дизель-генератор, электромотор и винт (рис. 1.39).

Дизель-генератор, расположенный в машинном отделении судна, вырабатывает электроэнергию, которая по кабельным соединениям передается на электро-мотор. Элетромотор, обеспечивающий вращение винта, расположен в специальной гондоле. Винт находится на горизонтальной оси, уменьшается количество механических передач. Винторулевая колонка имеет угол разворота до 3600, что значительно повышает управляемость судна.

Достоинства AZIPOD:

экономия времени и средств при постройке;

великолепная маневренность;

уменьшается расход топлива на 10 - 20 %;

уменьшается вибрация корпуса судна;

из-за того, что диаметр гребного винта меньше - эффект кавитации снижен;

отсутствует эффект резонанса гребного винта.

Один из примеров использования AZIPOD - танкер двойного действия (рис. 1.40), который на открытой воде двигается как обычное судно, а во льдах двигается кормой вперёд как ледокол. Для ледового плавания кормовая часть DAT оснащена ледовым подкреплением для ломки льда и AZIPOD.

На рис. 1.41. показана схема расположения приборов и пультов управления: один пульт для управления судном при движении вперед, второй пульт для управления судном при движении кормой вперед и два пульта управления на крыльях мостика.

Перед каждым выходом в море рулевое устройство готовят к работе: тщательно осматривают все детали, устраняют обнаруженные неисправности, трущиеся части очищают от старой смазки и смазывают вновь.
Затем под руководством вахтенного помощника капитана проверяют исправность рулевого устройства в действии путем пробной перекладки руля. Перед перекладкой надо убедиться, что под кормой чисто и никакие плавсредства и посторонние предметы не мешают повороту пера руля.
Одновременно проверяют легкость вращения руля и отсутствие даже незначительных заеданий. Во всех положениях пера руля сличается соответствие показаний рулевых указателей и время, затрачиваемое на перекладку.

Румпельное отделение всегда должно быть на замке. Ключи от него хранятся в штурманской рубке и в машинном отделении на специально отведенных постоянных местах, аварийный ключ - у входа в румпельное отделение в запертом шкафчике с застекленной дверцей.

Между ходовым мостиком и румпельным отделением должны быть установлены две независимо действующие линии связи.

По прибытии в порт и по окончании швартовки руль ставят в прямое положение, выключают энергию на рулевой двигатель, осматривают рулевой привод и если все найдено в должном порядке, закрывают румпельное отделение.

Назначение технических средств управления

На судах ВВП и их типы.

Основные требования к технических средствам управления для судов внутреннего и смешанного (река-море) плавания определяются правилами Российского речного Регистра (РРР), Федерального органа классификации судов внутреннего и смешанного (река-море) плавания. В этих требованиях учитывается тип и класс судов.

Технических средства управления предназначены для обеспечения движения, управления и удержания судна на заданной линии пути. К ним относятся:

Система управления двигательно–движетельной установкой;

Рулевое устройство;

Якорное и швартовое устройства.

Одним из основных элементов технических средств управления является рулевое устройство.

Рулевое устройство служит для изменения направления движения судна и удержания судна на линии заданного пути.

Оно состоит:

Из органа управления (штурвал, джойстик);

Системой передачи;

Исполнительных элементов.

Управляемость судов обеспечивается с помощью исполнительных элементов рулевых устройств. В качестве исполнительных элементов рулевых устройств на судах ВВП могут применяться:

Рули различных типов;

Поворотные винтовые насадки;

Водометные движетельно-рулевые устройства.

Кроме того на некоторых типах судов могут применяться:

Подрулевающие устройства;

Крыльчатые движетельно-рулевые устройства;

Активные и фланкирующие рули.

Рули судов, их формы и типы.

Наибольшее распространение в качестве исполнительного элемента получили рули различных типов.

В состав руля может входить: перо руля, опоры, подвесы, баллер, румпель и др. вспомогательные устройства (сорлинь, гельмпорт, рудерпис).

Р у л и в зависимости от его формы и расположения оси вращения подразделяют на простые, полубалансирные и балансирные; по количеству опор – на подвесные, одноопорные и многоопорные. У простого руля все перо расположено сзади от оси баллера, у полубалансирного и балансирного рулей часть пера расположена впереди от оси баллера, образуя полубалансирную и балансирую части (рис.4.1).

По форме профиля рули подразделяются на пластичные и обтекаемые (профилированные). Наибольшее распространение на судах внутреннего плавания нашли балансирные обтекаемые прямоугольные рули.

Руль характеризуется: высотой h p – расстоянием, измеренным по оси баллера, между нижней кромкой руля и точкой пересечения оси баллера с верхней частью контура руля; длиной l p руля; смещением Δ l p части площади руля вперед относительно оси баллера (у полубалансирных рулей обычно Δ l p до 1/3 l p , у балансирных Δ l p до 1/2 l p ).

Рис.4.1 Рули

Важнейшей характеристикой пера руля является его суммарная площадь ∑S p . Фактическая площадь руля характеризуется выражением

S p ф = h p · l p (4.1)

Суммарная требуемая площадь руля, обеспечивающая управляемость судна выражается уравнением

S p т = LT (4.2)

где - коэффициент пропорциональности;

L – длина судна;

Т – наибольшая осадку судна.

Для обеспечения управляемости судна требуемая суммарная площадь руля должна быть равна фактической площади руля, т.е.

Рулевое устройство предназначено для обеспечения управляемости судном (устойчивости на курсе и поворотливости).

Общий вид рулевого устройства показан на рис.6.20. В состав рулевого устройства входят руль, привод руля, привод управления.

Вруль входит перо руля и баллер. Основой пера руля является мощная вертикальная балка –рудерпис . С рудерписом соединены горизонтальные рёбра жесткости и петли. По сечению рули делятся на пластинчатые и обтекаемые. Обтекаемый руль - пустотелый в сечении имеет каплевидную форму, улучшает управляемость, увеличивает КПД винта, обладая собственной

Рис. 6.19.Основные типы рулей: а – обыкновенный небалансирный; б – балансирный; в – балансирный подвесной; г – полубалансирный полуподвесной.

плавучестью, уменьшает нагрузку на подшипники. Из-за этих преимуществ практически все морские суда имеют обтекаемые рули. По положению оси вращения рули делятся на: небалансирные, полубалансирные и балансирные, По методу крепления к корпусу судна - обыкновенные, подвесные и полуподвесные (рис.6.19). У балансирных и полубалансирных рулей часть площади руля (до 20%) расположена в нос от оси вращения руля, что уменьшает момент и мощность, необходимую для поворота руля и нагрузку на подшипники.

Баллер служит для передачи вращающего момента на перо руля и его поворота. Баллер – прямой или изогнутый стержень, который крепится одним концом к перу руля с помощью фланца или конуса, а другой конец входит через гельмпортовую трубу и сальник в корпус судна. Баллер поддерживается подшипниками, на его верхний конец насажен румпель – одноплечий или двуплечий рычаг.

Рулевой привод связывает баллер руля с рулевой машиной и состоит из румпеля и соответствующей передачи к нему от рулевой машины. Наибольшее применение имеет гидравлический плунжерный привод рис. 6.21 и рулевая машина с качающимися цилиндрами рис. 6.23. Находят применение зубчатосекторный привод(устаревший тип), румпельный и винтовой (рис.6.22).

Рис. 6.20. Рулевое устройство.

1 – перо руля; 2 – рудерпис; 3 – баллер; 4 – нижний подшипник; 5 – рулевая машина; 6 – гельпортовая труба.

От рулевого устройства зависит безопасность судна, поэтому требуется, чтобы кроме основного привода был и запасной. Основной привод должен обеспечивать поворот руля на полном ходу судна с 35° одного борта до 30° другого борта за 28 сек (механический ограничитель поворота руля на 35 о, а конечный выключатель на 30 о). Запасной привод должен обеспечивать перекладку руля при половинной скорости (но не менее 7 узлов) с 20° на 20° другого борта за 60 сек. Аварийный привод должен быть предусмотрен, если какая-либо ватерлиния проходит выше палубы румпельной (помещения, где размещена рулевая машина).

Учитывая особую важность рулевого устройства для безопасности судна, на современных судах обычно устанавливают два одинаковых привода, которые соответствуют требованиям к основному приводу (рис. 6.21). Это значительно повышает надёжность рулевого устройства, так как в этом случае возможна взаимная замена узлов.

При гидроприводе поворот руля осуществляется за счёт подачи масла высокого давления в один из гидроцилиндров и под действием плунжера поворачивается румпель и руль (из противоположного гидроцилиндра масло свободно сливается).

Рис. 6.21. Общий вид (а) и схема действия электрогидравлической рулевой машины (б): 1-баллер, 2 – румпель, 3 – цилиндр, 4 – плунжер, 5 – электродвигатель, 6 – масляный насос, 7 – пост управления.

Рис. 6.22. Рулевые приводы: а – румпельный; б – винтовой; в – секторный.

1- перо руля; 2- баллер; 3- румпель; 4- штуртрос; 5- зубчатый сектор; 6- пружинный амортизатор;

7-винтовой шпиндель; 8- ползун.

Ручной румпельный привод (рис.6.22.а ) применяется на катерах. Так как тросы намотаны на барабан в противоположных направлениях, то при вращении штурвала с барабаном один трос удлиняется, а второй укорачивается, что заставляет поворачиваться румпель и руль.

Винтовой привод (рис.6.22.б ) применяется на небольших судах. Так как резьба на шпинделе в районе ползунов противоположного направления, то при вращении шпинделя в одну сторону ползуны сближаются, а при вращении в другую - удаляются друг от друга. Это заставляет поворачиваться румпель и руль.

Зубчато-секторный привод раннее достаточно широко применялся (рис.6.22.в ). Приводится в движение электромотором через редуктор. В этом приводе румпель как всегда жёстко посажен на баллер, а зубчатый сектор свободно вращается на баллере. Румпель связан с сектором пружинным аммортизатором, что смягчает удары волн передаваемые от пера руля на редуктор

Привод управления рулевой машины связывает штурвал, расположенный в рулевой рубке и рулевую машину. Наиболее распространены электрический и гидравлический приводы.


Рис. 6.23. Рулевой привод с качающимися цилиндрами

В узкостях на малом ходу судно плохо слушается руля, так как малая скорость набегающего на руль потока резко уменьшает поперечную гидродинамическую силу на руле. Поэтому в этих случаях обычно прибегают к помощи буксиров или на судне устанавливают средства активного управления (САУ): подруливающие устройства, выдвижные поворотные винтовые колонки, активные рули, поворотные насадки.

Подруливающие устройства (рис. 6.24.а) обычно устанавливают в носовой части судна, а иногда и в кормовой. Для того, чтобы ниша в корпусе не создавала дополнительного сопротивления на ходу судна, она закрывается жалюзями.

Выдвижная рулевая колонка обеспечивает упор в любом направлении, поэтому она часто используется на малых судах и плавсредствах для удержания на одном месте на больших глубинах. На малых глубинах возможно повреждение колонки.

Активный руль (рис.6.25) – это установленный в пере руля небольшой винт с приводом от электродвигателя или гидродвигателя, расположенного в капсуле, встроенной в руль. В некоторых случаях привод винта осуществляется от электродвигателя, расположенного в румпельной через вал, который проходит через полый баллер. При неработающем главном двигателе руль может поворачиваться до 90 о и создавать упор в нужном направлении при работе вспомогательного винта. Иногда этот вариант САУ используется, когда необходимо обеспечить малую скорость судна порядка 2 – 4 узлов

Рис. 6.24. Подруливающее устройство (а) и выдвижная поворотная движительно-рулевая колонка (б).

Поворотная насадка (рис. 6.25.б) представляет собой обтекаемое кольцеобразное тело, внутри которого вращается винт. При повороте насадки отклоняется отбрасываемая винтом струя воды, что вызывает поворот судна. Поворотная насадка значительно улучшает поворотливость на малых ходах и особенно на заднем ходу. Это объясняется тем, что вся струя воды отклоняется насадкой как на переднем, так и на заднем ходу, в отличие от руля. Кроме того, в ряде случаев насадка позволяет увеличить КПД винта.

К

рыльчатый движитель, как было показано в первой части, позволяет перемещаться судну в любом направлении.

Рис.6.25 Активный руль (а) и поворотная насадка (б): 1- перо руля; 2- вспомогательный винт; 3- электродвигатель;4- баллер; 5- электрокабель; 6- гребной винт; 7-насадка поворотная.

Все большую популярность приобретают азимутальные комплексы “AZIPOD”, которые устанавливаю на пассажирских судах и даже на суда арктического плавания. Типичная компоновка предусматривает: две кормового расположения поворотные винторулевые колонки, удерживающие гондолы, вмещающие в себя электродвигатели, приспособленные для вращения “тянущих” гребных винтов (ВФШ) (рис.6.26). Мощность каждой из колонок до 24000 квт.

Рис.6.26. Винторулевые колонки типа “AZIPOD”

Специальный гидравлический привод обеспечивает поворот каждой из гондол на 360° с угловой скоростью до 8° за секунду. Управление вращением винтов дает возможность выбрать любой режим работы в диапазоне от “полного вперед” до “полного назад”. Существенно, что режим “полный назад” может быть обеспечен судну без разворота колонок-гондол на 180°.

Ходовой режим” -используется при движении судна с относительно большой скоростью; гондолы при этом поворачиваются синхронно (углы совместной перекладки в пределах ±35°). Отмечается высокая гидродинамическая эффективность такого рулевого комплекса: управляемость судна остается приемлемой даже при остановке вращения винтов. Ходовой режим допускает экстренное торможение (за счет реверса – без поворота колонок);

Режим маневрирования” (мягкая форма) – используется при движении судна с относительно малой скоростью. В этом режиме одна из гондол сохраняют функцию “маршевого” устройства, вторую разворачивают на 90°, заставляя работать в качестве мощного кормового подруливающего устройства;

Режим маневрирования” (жесткая форма ) – винты, переложенные на правый и левый борт (+45° и –45°), заставляют вращаться “вперед” или “назад”. Если винт правой гондолы рабо­тает “вперед”, левой – “назад”, возникает поперечная управляющая сила в направлении правого борта; в симметричной ситуации – в направлении левого борта.