Характеристики двигателей с последовательным возбуждением. Коллекторный электродвигатель постоянного тока Эл двигатели постоянного тока последовательного возбуждения

Схема двигателя. Схема двигателя последовательного возбуждения изображена на рис. 1.31. Ток, потребляемый двигателем из сети, протекает по якорю и обмотке возбуждения, соединенной с якорем последовательно. Поэтому I = I я = I в.

Также последовательно с якорем включен пусковой реостат R п, который, как и у двигателя параллельного возбуждения, после выпуска выводится.

Уравнение механической характеристики. Уравнение механической характеристики может быть получено из формулы (1.6). При токах нагрузки, меньших (0,8 – 0,9) I ном, можно считать, что магнитная цепь двигателя не насыщена и магнитный поток Ф пропорционален току I: Ф = kI, где k = const. (При больших токах коэффициент k несколько уменьшается). Заменяя в (1.2) Ф, получаем М = С м kI откуда

Подставим Ф в (1.6):

n = (1.11)

График, соответствующий (1.11), представлен на рис. 1.32 (кривая 1). При изменении момента нагрузки частота вращения двигателя резко изменяется – характеристики подобного типа называются «мягкими». При холостом ходе, когда М » 0, частота вращения двигателя безгранично возрастает и двигатель «идет вразнос».


Ток, потребляемый двигателем последовательного возбуждения, при увеличении нагрузки растет в меньшей степени, чем у двигателя параллельного возбуждения. Это объясняется тем, что одновременно с ростом тока растет поток возбуждения и вращающий момент становится равным моменту нагрузки при меньшем токе. Эта особенность двигателя последовательного возбуждения используется там, где есть значительные механические перегрузки двигателя: на электрифицированном транспорте, в подъемно-транспортных механизмах и других устройствах.

Регулирование частоты вращения. Регулирование частоты вращения двигателей постоянного тока, как указывалось выше, возможно тремя способами.

Изменение возбуждения можно осуществить включением реостата R р1 параллельно обмотке возбуждения (см. рис. 1.31) или включением реостата R р2 параллельно якорю. При включении реостата R р1 параллельно обмотке возбуждения магнитный поток Ф можно уменьшать от номинального до минимального Ф min . Частота вращения двигателя при этом будет увеличиваться (в формуле (1.11) уменьшается коэффициент k). Механические характеристики, соответствующие этому случаю, показаны на рис. 1.32, кривые 2, 3. При включении реостата параллельно якорю ток в обмотке возбуждения, магнитный поток и коэффициент k увеличиваются, а частота вращения двигателя уменьшается. Механические характеристики для этого случая изображены на рис. 1.32, кривые 4, 5. Однако регулирование вращения реостатом, включенном параллельно якорю, применяется редко, так как потери мощности в реостате и КПД двигателя уменьшается.

Изменение частоты вращения путем изменения сопротивления цепи якоря возможно при включении реостата R р3 последовательно в цепь якоря (рис. 1.31). Реостат R р3 увеличивает сопротивление цепи якоря, что ведет к уменьшению частоты вращения относительно естественной характеристики. (В (1.11) вместо R я надо подставить R я + R р3 .) Механические характеристики при этом способе регулирования представлены на рис. 1.32, кривые 6, 7. Подобное регулирование используется сравнительно редко из-за больших потерь в регулировочном реостате.

Наконец, регулирование частоты вращения изменением напряжения сети, как и в двигателях параллельного возбуждения, возможно только в сторону уменьшения частоты вращения при питании двигателя от отдельного генератора или управляемого выпрямителя. Механическая характеристика при этом способе регулирования изображена на рис. 1.32, кривая 8. При наличии двух двигателей, работающих на общую нагрузку, они с параллельного соединения могут переключаться на последовательное, напряжение U на каждом двигателе при этом уменьшается вдвое, соответственно уменьшается и частота вращения.

Тормозные режимы двигателя последовательного возбуждения. Режим генераторного торможения с отдачей энергии в сеть в двигателе последовательного возбуждения невозможен, так как получить частоту вращения n>n x не представляется возможным (n х = ).

Режим торможения противовключением можно получить, так же как в двигателе параллельного возбуждения, путем переключения выводов обмотки якоря или обмотки возбуждения.

Двигатели постоянного тока с последовательным возбуждением имеют меньшее распространение по сравнению с другими двигателями. Они используются в установках с нагрузкой, не допускающей режима холостого хода. Позже будет показано, что работа двигателя последовательного возбуждения в режиме холостого хода может привести к разрушению двигателя. Схема подключения двигателя показана на рис. 3.8.

Ток якоря двигателя одновременно является и током возбужде­ния, так как обмотка возбуждения ОВ включена последовательно
с якорем. Сопротивление обмотки возбуждения достаточно мало, так как при больших токах якоря намагничивающая сила, достаточная для создания номинального магнитного потока и номинальной индукции в зазоре, достигается малым количеством витков провода большого сечения. Катушки возбуждения располагаются на главных полюсах машины. Последовательно с якорем может быть включен дополнительный реостат , который может использоваться для ограничения пускового тока двигателя.

Скоростная характеристика

Естественная скоростная характеристика двигателей последовательного возбуждения выражается зависимостью при
U = U н = const. При отсутствии дополнительного реостата
в цепи якоря двигателя сопротивление цепи определяется суммой сопротивления якоря и обмотки возбуждения , которые достаточно малы. Скоростная характеристика описывается таким же уравнением, каким описывается скоростная характеристика двигателя с независимым возбуждением

Отличие заключается в том, что магнитный поток машины Ф создается током якоря I в соответствии с кривой намагничивания магнитной цепи машины. Для упрощения анализа предположим, что магнитный поток машины пропорционален току обмотки возбуждения, то есть току якоря . Тогда , где k – коэффициент пропорциональности.

Заменив магнитный поток в уравнении скоростной характеристики, получим уравнение:

.

График скоростной характеристики представлен на рис. 3.9.

Из полученной характеристики следует, что в режиме холостого хода, т. е. при токах якоря, близких нулю, частота вращения якоря в несколько раз превышает номинальное значение, а при стремлении тока якоря к нулю частота вращения стремится к бесконечности (ток якоря в первом слагаемом полученного выражения входит в знаменатель). Если считать формулу справедливой для весьма больших токов якоря, то можно сделать предположение, что . Полученное уравнение позволяет получить значение силы тока I , при котором частота вращения якоря будет равняться нулю. У реальных двигателей последовательного возбуждения при определенных значениях тока магнитопровод машины входит в насыщение, и магнитный поток машины изменяется незначительно при значительных изменениях тока.

Характеристика показывает, что изменение тока якоря двигателя в области малых значений приводит к значительным изменениям частоты вращения.

Характеристика механического момента

Рассмотрим характеристику момента двигателя постоянного тока с последовательным возбуждением. , при U = U н = const.

Как уже показано, . Если магнитная цепь машины не насыщена, магнитный поток пропорционален току якоря ,
а электромагнитный момент М будет пропорционален квадрату тока якоря .

Полученная формула с математической точки зрения представляет собой параболу (кривая 1 на рис. 3.10). Реальная характеристика проходит ниже теоретической (кривая 2 на рис. 3.10), так как из-за насыщения магнитной цепи машины магнитный поток не пропорционален току обмотки возбуждения или току якоря в рассматриваемом случае.

Характеристика момента двигателя постоянного тока с последовательным возбуждением представлена на рисунке 3.10.

КПД двигателя последовательного возбуждения

Формула, определяющая зависимость КПД двигателя от тока якоря, для всех двигателей постоянного тока одинакова и не зависит от способа возбуждения. У двигателей последовательного возбуждения при изменении тока якоря механические потери и потери в стали машины практически не зависят от тока I я. Потери же в обмотке возбуждения и в цепи якоря пропорциональны квадрату тока якоря. КПД достигает максимального значения (рис. 3.11) при таких значениях тока, когда сумма потерь в стали и механических потерь равна сумме потерь в обмотке возбуждения и цепи якоря.

При номинальном токе КПД двигателя несколько меньше максимального значения.

Механическая характеристика двигателя последовательного возбуждения

Естественная механическая характеристика двигателя последовательного возбуждения, т. е. зависимость частоты вращения от механического момента на валу двигателя , рассматривается при постоянном напряжении питания, равном номинальному напряжению U = U н = const. Если магнитная цепь машины не насыщена, как уже утверждалось, магнитный поток пропорционален току якоря, т. е. , и механический момент пропорционален квадрату тока . Ток якоря в этом случае равен

а частота вращения

Или .

Подставив вместо тока его выражение через механический момент, получаем

.

Обозначим и ,

получаем .

Полученное уравнение представляет собой гиперболу, пересекающую ось моментов в точке .

Так как или .

Пусковой момент таких двигателей в десятки раз больше номинального момента двигателя.

Рис. 3.12

Общий вид механической характеристики двигателя постоянного тока последовательного возбуждения представлен на рис. 3.12.

В режиме холостого хода частота вращения стремится к бесконечности. Это следует из аналитического выражения механической характеристики при М → 0.

У реальных двигателей последовательного возбуждения час­тота вращения якоря в режиме холостого хода может в несколько раз превышать номинальную частоту вращения. Такое превышение опасно и может привести к разрушению машины. По этой причине двигатели последовательного возбуждения эксплуатируются в ус­ловиях постоянной механической нагрузки, не допускающей режима холостого хода. Такой тип механической характеристики относят к мягким механическим характеристикам, т. е. к таким механическим характеристикам, которые предполагают значительное изменение скорости вращения при изменении момента на валу двигателя.

3.4.3. Характеристики двигателей постоянного тока
смешанного возбуждения

Схема подключения двигателя смешанного возбуждения представлена на рис. 3.13.

Д

Последовательная обмотка возбуждения ОВ2 может быть включенной так, что ее магнитный поток может совпадать по направлению с магнитным потоком параллельной обмотки ОВ1 или не совпадать. Если намагничивающие силы обмоток совпадают по направлению, то суммарный магнитный поток машины будет равен сумме магнитных потоков отдельных обмоток. Частота вращения якоря n может быть получена из выражения

.

В полученном уравнении и – магнитные потоки параллельной и последовательной обмоток возбуждения.

В зависимости от соотношения магнитных потоков и скоростная характеристика представляется кривой, которая занимает промежуточное положение между характеристикой того же двигателя при параллельной схеме возбуждения и характеристикой двигателя с последовательным возбуждением (рис. 3.14). Характеристика моментов займет также промежуточное положение между характеристиками двигателя последовательного и параллельного возбуждения.

В общем случае, с увеличением момента частота вращения якоря уменьшается. При определенном количестве витков последовательной обмотки можно получить очень жесткую механическую характеристику, когда частота вращения якоря практически не будет изменяться при изменении механического момента на валу.

Если магнитные потоки обмоток не совпадают по направлению (при встречном включении обмоток), то зависимость частоты вращения якоря двигателя от потоков опишется уравнением

.

При увеличении нагрузки ток якоря будет увеличиваться. При увеличении тока магнитный поток будет расти, а частота вращения n уменьшаться. Таким образом, механическая характеристика двигателей смешанного возбуждения с согласным включением обмоток является очень мягкой (см. рис. 3.14).

Схема двигателя постоянного тока последовательного возбуждения изображена на рисунке 6-15. Обмотка возбуждения двигателя включена последовательно с якорем, поэтому магнитный поток двигателя изменяется вместе с изменени-. ем нагрузки. Так как ток нагрузки велик, то обмотка возбуждения имеет небольшое число витков, это позволяет несколько упростить конструкцию пускового

реостата по сравнению с реостатом для двигателя параллельного возбуждения.

Скоростную характеристику (рис. 6-16) можно получить на основании уравнения скорости, которая для двигателя последовательного возбуждения имеет вид:

где - сопротивление обмотки возбуждения.

Из рассмотрения характеристики видно, что скорость двигателя сильно зависит от нагрузки. При увеличении нагрузки увеличивается падение напряжения на сопротивлении обмоток при одновременном увеличении магнитного потока, что приводит к значительному уменьшению скорости вращения. Это характерная особенность двигателя последовательного возбуждения. Значительное уменьшение нагрузки приведет к опасному для двигателя увеличению скорости вращения. При нагрузках менее 25% номинальной (и особенно на холостом ходу), когда ток нагрузки и магнитный поток из-за небольшого числа витков в обмотке возбуждения оказывается настолько слабым, что скорость вращения быстро возрастает до недопустимо больших значений (двигатель может «разнести»). По этой причине эти двигатели применяют лишь в тех случаях, когда их соединяют с приводимыми во вращение механизмами непосредственно или через зубчатую передачу. Применение ременной передачи недопустимо, так как ремень может оборваться либо соскочить, двигатель при этом полностью разгрузится.

Регулирование скорости вращения двигателя последовательного возбуждения может осуществляться изменением магнитного потока или изменением питающего напряжения.

Зависимость вращающего момента от тока нагрузки (механическую характеристику) двигателя последовательного возбуждения можно получить, если в формуле вращающего момента (6.13) магнитный поток выразить через ток нагрузки. В отсутствие магнитного насыщения поток пропорционален току возбуждения, а последний для данного двигателя является током нагрузки, т. е.

На графике (см. рис. 6-16) эта характеристика имеет форму параболы. Квадратичная зависимость вращающего момента от тока нагрузки является второй характерной особенностью двигателя последовательного возбуждения, благодаря которой эти двигатели легко переносят большие кратковременные перегрузки и развивают большой пусковой момент.

Рабочие характеристики двигателя приведены на рисунке 6-17.

Из рассмотрения всех характеристик следует, что двигатели последовательного возбуждения можно применять в тех случаях,

когда необходим большой пусковой момент или кратковременные перегрузки; исключена возможность их полной разгрузки. Они оказались незаменимыми как тяговые двигатели на электротранспорте (электровоз, метрополитен, трамвай, троллейбус), в подъемнотранспортных установках (краны и т. д.) и для пуска двигателей внутреннего сгорания (стартеры) в автомобилях и авиации.

Экономичное регулирование скорости вращения в широких пределах осуществляется в случае одновременной работы нескольких двигателей путем различных комбинаций включения двигателей и реостатов. Например, на малых скоростях они включаются последовательно, а на больших - параллельно. Необходимые переключения осуществляются оператором (водителем) поворотом ручки переключателя.


Электродвигатели – это машины, способные превращать электрическую энергию в механическую. В зависимости от типа потребляемого тока они делятся на двигатели переменного и постоянного тока. В данной статье речь пойдет о вторых, которые сокращенно называются ДПТ. Электродвигатели постоянного тока окружают нас каждый день. Ими оснащаются электроинструменты, работающие от батареек или аккумуляторов, электротранспорт, некоторые промышленные станки и многое другое.

Устройство и принцип работы

ДПТ по своему строению напоминает синхронный электродвигатель переменного тока, разница между ними только в типе потребляемого тока. Двигатель состоит из неподвижной части – статора или индуктора, подвижной части – якоря и щеточноколлекторного узла. Индуктор может быть выполненным в виде постоянного магнита, если двигатель маломощный, но чаще он снабжается обмоткой возбуждения, имеющей два или больше полюса. Якорь состоит из набора проводников (обмоток), закрепленных в пазах. В простейшей модели ДПТ использовались только один магнит и рамка, по которой проходил ток. Такую конструкцию можно рассматривать только в качестве упрощенного примера, тогда как современная конструкция – это усовершенствованный вариант, имеющий более сложное устройство и развивающий необходимую мощность.

Принцип работы ДПТ основан на законе Ампера: если в магнитное поле поместить заряженную проволочную рамку, она начнет вращаться. Ток, проходя по ней, образует вокруг себя собственное магнитное поле, которое при контакте с внешним магнитным полем начнет вращать рамку. В случае с одной рамкой вращение будет продолжаться, пока она не займет нейтральное положение параллельно внешнему магнитному полю. Чтобы привести систему в движение, нужно добавить еще одну рамку. В современных ДПТ рамки заменены якорем с набором проводников. На проводники подается ток, заряжая их, в результате чего вокруг якоря возникает магнитное поле, которое начинает взаимодействовать с магнитным полем обмотки возбуждения. В результате этого взаимодействия якорь поворачивается на определенный угол. Далее ток поступает на следующие проводники и т.д.
Для попеременной зарядки проводников якоря используются специальные щетки, выполненные из графита или сплава меди с графитом. Они играют роль контактов, которые замыкают электрическую цепь на выводы пары проводников. Все выводы изолированы между собой и объединены в коллекторный узел – кольцо из нескольких ламелей, находящееся на оси вала якоря. Во время работы двигателя щетки-контакты поочередно замыкают ламели, что дает возможность двигателю вращаться равномерно. Чем больше проводников имеет якорь, тем более равномерно будет работать ДПТ.

Двигатели постоянного тока делятся на:
— электродвигатели с независимым возбуждением;
— электродвигатели с самовозбуждением (параллельные, последовательные или смешанные).
Схема ДПТ с независимым возбуждением предусматривает подключение обмотки возбуждения и якоря к разным источникам питания, так что между собой они не связаны электрически.
Параллельное возбуждение реализовывается путем параллельного подключения обмоток индуктора и якоря к одному источнику питания. Двигатели этих двух типов обладают жесткими рабочими характеристиками. У них частота вращения рабочего вала не зависит от нагрузки, и ее можно регулировать. Такие двигатели нашли применение в станках с переменной нагрузкой, где важно регулировать скорость вращения вала
При последовательном возбуждении якорь и обмотка возбуждения подключены последовательно, поэтому значение электрического тока у них одинаковое. Такие двигатели более «мягкие» в работе, имеют больший диапазон регулирования скоростей, но требуют постоянной нагрузки на вал, иначе скорость вращения может достичь критической отметки. У них высокое значение пускового моменты, что облегчает запуск, но при этом скорость вращения вала зависит от нагрузки. Применяются они на электротранспорте: в кранах, электропоездах и городских трамваях.
Смешанный тип, при котором одна обмотка возбуждения подключается к якорю параллельно, а вторая – последовательно, встречается редко.

Краткая история создания

Первопроходцем в истории создания электрических двигателей стал М.Фарадей. Создать полноценную рабочую модель он не смог, зато именно ему принадлежит открытие, которое сделало это возможным. В 1821 году он провел опыт с использованием заряженной проволоки, помещенной в ртуть в ванную с магнитом. При взаимодействии с магнитным полем металлический проводник начинал вращаться, превращаю энергию электрического тока в механическую работу. Ученые того времени работали над созданием машины, работа которой основывалась бы на этом эффекте. Они хотели получить двигатель, работающий по принципу поршневого, то есть, чтобы рабочий вал двигался возвратно-поступательно.
В 1834 году был создан первый электрический двигатель постоянного тока, который разработал и создал русский ученый Б.С.Якоби. Именно он предложил заменить возвратно-поступательное движение вала его вращением. В его модели два электромагнита взаимодействовали между собой, вращая вал. В 1839 году он же успешно испытал лодку, оснащенную ДПТ. Дальнейшая история этого силового агрегата, по сути – это совершенствование двигателя Якоби.

Особенности ДПТ

Как и другие виды электродвигателей, ДПТ отличается надежностью и экологичностью. В отличие от двигателей переменного тока у него можно регулировать скорость вращения вала в широком диапазоне, частоту, к тому же он отличается легким запуском.
Двигатель постоянного тока можно использовать как собственно двигатель и как генератор. Также у него можно менять направление вращения вала путем изменения направления тока в якоре (для всех типов) или в обмотке возбуждения (для двигателей с последовательным возбуждением).
Регулирование скорости вращение достигается путем подключения в цепь переменного сопротивления. При последовательном возбуждении оно находится в цепи якоря и дает возможность сокращать обороты в соотношениях 2:1 и 3:1. Такой вариант подходит для оборудования, которое имеет длительные периоды простоя, потому что во время работы происходит значительный нагрев реостата. Увеличение оборотов обеспечивается подключением реостата в цепь обмотки возбуждения.
Для двигателей с параллельным возбуждением также используются реостаты в цепи якоря для понижения оборотов в пределах 50% от номинальных значений. Установка сопротивления в цепи обмотки возбуждения позволяет увеличивать обороты до 4 раз.
Использование реостатов всегда связано со значительными потерями тепла, поэтому в современных моделях двигателей они заменены на электронные схемы, позволяющие управлять скоростью без значительных потерь энергии.
КПД двигателя постоянного тока зависит от его мощности. Маломощные модели отличаются низкой эффективностью с КПД порядка 40%, тогда как двигатели с мощностью 1000 кВт могут иметь КПД, достигающий 96%.

Достоинства и недостатки ДПТ

К основным достоинствам двигателей постоянного тока относятся:
— простота конструкции;
— легкость в управлении;
— возможность регулирования частоты вращения вала;
— легкий запуск (особенно у двигателей с последовательным возбуждением);
— возможность использования в качестве генераторов;
— компактные размеры.
Недостатки:
— имеют «слабое звено» — графитовые щетки, которые быстро изнашиваются, что ограничивает срок службы;
— высокая себестоимость;
— при подключении к сети требуют наличия выпрямителей тока.

Сфера применения

Широкое применение двигатели постоянного тока нашли в транспорте. Они устанавливаются в трамваях, электричках, электровозах, паровозах, теплоходах, самосвалах, кранах и т.д. кроме того, их используют в инструментах, компьютерах, игрушках и подвижных механизмах. Часто их можно встретить и на производственных станках, где требуется регулирование частоты вращения рабочего вала в широком диапазоне.

В рассматриваемых двигателях обмотка возбуждения выполняется с малым числом витков, но рассчитана на большие токи. Все особенности этих двигателей связаны с тем, что обмотка возбуждения включается (см. рис. 5.2,в) последовательно с обмоткой якоря, в результате чего ток возбуждения равен току якоря и создаваемый поток Ф пропорционален току якоря:

где а =/(/ я) - нелинейный коэффициент (рис. 5.12).

Нелинейность а связана с формой кривой намагничивания двигателя и размагничивающим действием реакции якоря. Эти факторы проявляются при / я > , / ян (/ ян - номинальный ток якоря). При меньших токах а можно считать величиной постоянной, а при / я > 2/ я н двигатель насыщается и поток мало зависит от тока якоря.


Рис. 5.12.

Основные уравнения двигателя последовательного возбуждения в отличие от уравнений двигателей независимого возбуждения нелинейны, что связано, в первую очередь, с произведением переменных:

При изменении тока в якорной цепи изменяется магнитный поток Ф, наводя в массивных частях магнитопровода машины вихревые токи. Влияние вихревых токов может быть учтено в модели двигателя в виде эквивалентного короткозамкнутого контура, описываемого уравнением

а уравнение для цепи якоря имеет вид:

где w B , w B т - число витков обмотки возбуждения и эквивалентное число витков вихревых токов.

В установившемся режиме

Из (5.22) и (5.26) получим выражения для механической и электромеханической характеристик двигателя постоянного тока последовательного возбуждения:

В первом приближении механическую характеристику двигателя последовательного возбуждения, без учета насыщения магнитной цепи, можно представить в виде гиперболы, не пересекающей ось ординат. Если положить Л я ц = /? я + /? в = 0, то характеристика не будет пересекать и ось абсцисс. Такую характеристику называют идеальной. Реальная естественная характеристика двигателя пересекает ось абсцисс и вследствие насыщения магнитопровода при моментах больше М н спрямляется (рис. 5.13).

Рис. 5.13.

Характерной особенностью характеристик двигателя последовательного возбуждения является отсутствие точки идеального холостого хода. При уменьшении нагрузки скорость возрастает, что может привести к неконтролируемому разгону двигателя. Оставлять такой двигатель без нагрузки нельзя.

Важным достоинством двигателей последовательного возбуждения является большая перегрузочная способность на низких скоростях. При перегрузке по току в 2-2,5 раза двигатель развивает момент 3,0...3,5М н. Это обстоятельство определило широкое использование двигателей последовательного возбуждения в качестве привода электрических транспортных средств, для которых максимальные моменты необходимы при трогании с места.

Изменение направления вращения двигателей последовательного возбуждения не может быть достигнуто изменением полярности питания цепи якоря. В двигателях последовательного возбуждения при реверсировании нужно изменять направление тока в одной части якорной цепи: либо в обмотке якоря, либо в обмотке возбуждения (рис. 5.14).

Рис. 5.14.

Искусственные механические характеристики для регулирования скорости и момента могут быть получены тремя способами:

  • введением добавочного сопротивления в цепь якоря двигателя;
  • изменением питающего двигатель напряжения;
  • шунтированием обмотки якоря добавочным сопротивлением. При введении добавочного сопротивления в цепь якоря жесткость механических характеристик уменьшается и уменьшается пусковой момент. Этот способ используют при пуске двигателей последовательного возбуждения, получающих питание от источников с нерегулируемым напряжением (от контактных проводов и др.) В этом случае (рис. 5.15) необходимое значение пускового момента достигается последовательным закорачиванием секций пускового резистора посредством контакторов К1-КЗ.

Рис. 5.15. Реостатные механические характеристики двигателя последовательного возбуждения: /? 1до -R iao -сопротивления ступеней добавочного резистора в цепи якоря

Наиболее экономичным способом регулирования скорости двигателя последовательного возбуждения является изменение питающего напряжения. Механические характеристики двигателя смещаются вниз параллельно естественной характеристике (рис. 5.16). По форме эти характеристики подобны реостатным механическим характеристикам (см. рис. 5.15), однако, существует принципиальная разница - при регулировании изменением напряжения отсутствуют потери в добавочных резисторах и регулирование производится плавно.

Рис. 5.1

Двигатели последовательного возбуждения при использовании в качестве привода мобильных агрегатов во многих случаях получают питание от контактной сети или других источников питания с постоянным значением напряжения, подаваемого на двигатель, в этом случае регулирование производится посредством широтно-импульсного регулятора напряжения (см. § 3.4). Такая схема показана на рис. 5.17.

Рис. 5.17.

Независимое регулирование потока возбуждения двигателя последовательного возбуждения возможно, если зашунтировать обмотку якоря сопротивлением (рис. 5.18,а). В этом случае ток возбуждения в = я + / ш, т.е. содержит постоянную составляющую, не зависящую от нагрузки двигателя. При этом двигатель приобретает свойства двигателя смешанного возбуждения. Механические характеристики (рис. 5.18,6) приобретают большую жесткость и пересекают ось ординат, что позволяет получить устойчивую пониженную скорость при малых нагрузках на валу двигателя. Существенный недостаток схемы - это большие потери энергии в шунтирующем сопротивлении.


Рис. 5.18.

Для двигателей постоянного тока с последовательным возбуждением характерны два тормозных режима: динамического торможения и противовключения.

Режим динамического торможения возможен в двух случаях. В первом - якорная обмотка замыкается на сопротивление, а обмотка возбуждения питается от сети или другого источника через добавочное сопротивление. Характеристики двигателя в этом случае подобны характеристикам двигателя независимого возбуждения в режиме динамического торможения, (см. рис. 5.9).

Во втором случае, схема которого показана на рис. 5.19, двигатель при отключении контактов КМ и замыкании контактов КВ работает как генератор с самовозбуждением. При переходе из двигательного режима в тормозной необходимо сохранить направление тока в обмотке возбуждения во избежание размагничивания машины, так как при этом машина переходит в режим самовозбуждения. Механические характеристики такого режима представлены на рис. 5.20. Существует граничная скорость со ф, ниже которой самовозбуждение машины не происходит.

Рис.5.19.

Рис. 5.20.

В режиме противовключения в цепь якоря включают добавочное сопротивление. На рис. 5.21 приведены механические характеристики двигателя для двух вариантов противовключения. Характеристика 1 получается, если при работе двигателя в направлении «вперед» В (точка с) изменить направление тока в обмотке возбуждения и ввести в цепь якоря добавочное сопротивление. Двигатель переходит в режим противовключения (точка а) с тормозным моментом М торм.

Рис.5.21.

Если привод работает в режиме спуска груза, когда задача привода подтормаживать механизм подъема при работе в направлении «назад» Н, то двигатель включают в направлении «вперед» В, но с большим добавочным сопротивлением в цепи якоря. Работе привода соответствует точка b на механической характеристике 2. Работа в режиме противовключения сопряжена с большими потерями энергии.

Динамические характеристики двигателя постоянного тока последовательного возбуждения описывает система уравнений, вытекающих из (5.22), (5.23), (5.25) при переходе к операторной форме записи:

В структурной схеме (рис. 5.22) коэффициент а = Д/ я) отражает кривую насыщения машины (см. рис. 5.12). Влиянием вихревых токов пренебрегаем.

Рис. 5.22.

Определить передаточные функции двигателя последовательного возбуждения аналитическим путем достаточно сложно, поэтому анализ переходных процессов производят методом компьютерного моделирования на основе схемы, приведенной на рис. 5.22.

Двигатели постоянного тока смешанного возбуждения имеют две обмотки возбуждения: независимую и последовательную. Вследствие этого их статические и динамические характеристики сочетают характерные свойства двух рассматриваемых ранее видов двигателей постоянного тока. К какому из видов больше принадлежит тот или иной двигатель смешанного возбуждения зависит от соотношения намагничивающих сил, создаваемых каждой из обмоток: в/ п.в = в / п.в я> где в’ п. в - число витков обмотки независимого и последовательного возбуждения.

Исходные уравнения двигателя смешанного возбуждения:

где / в, R B , w b - ток, сопротивление и число витков обмотки независимого возбуждения; L m - взаимная индуктивность обмоток возбуждения.

Уравнения установившегося режима:

Откуда уравнение электромеханической характеристики можно записать в виде:

В большинстве случаев обмотка последовательного возбуждения выполняется на 30...40% МД С, тогда скорость идеального холостого хода превышает номинальную скорость двигателя примерно в 1,5 раза.