Как определить сопротивление воздуха? Сила сопротивления воздуха Как найти работу силы сопротивления воздуха.

3.5. Законы сохранения и изменения энергии

3.5.1. Закон изменения полной механической энергии

Изменение полной механической энергии системы тел происходит при совершении работы силами, действующими как между телами системы, так и со стороны внешних тел.

Изменение механической энергии ∆E системы тел определяется законом изменения полной механической энергии :

∆E = E 2 − E 1 = A внеш + A тр(сопр) ,

где E 1 - полная механическая энергия начального состояния системы; E 2 - полная механическая энергия конечного состояния системы; A внеш - работа, совершаемая над телами системы внешними силами; A тр(сопр) - работа, совершаемая силами трения (сопротивления), действующими внутри системы.

Пример 30. На некоторой высоте покоящееся тело имеет потенциальную энергию, равную 56 Дж. К моменту падения на Землю тело имеет кинетическую энергию, равную 44 Дж. Определить работу сил сопротивления воздуха.

Решение. На рисунке показаны два положения тела: на некоторой высоте (первое) и к моменту падения на Землю (второе). Нулевой уровень потенциальной энергии выбран на поверхности Земли.

Полная механическая энергия тела относительно поверхности Земли определяется суммой потенциальной и кинетической энергии:

  • на некоторой высоте

E 1 = W p 1 + W k 1 ;

  • к моменту падения на Землю

E 2 = W p 2 + W k 2 ,

где W p 1 = 56 Дж - потенциальная энергия тела на некоторой высоте; W k 1 = 0 - кинетическая энергия покоящегося на некоторой высоте тела; W p 2 = 0 Дж - потенциальная энергия тела к моменту падения на Землю; W k 2 = 44 Дж - кинетическая энергия тела к моменту падения на Землю.

Работу сил сопротивления воздуха найдем из закона изменения полной механической энергии тела:

где E 1 = W p 1 - полная механическая энергия тела на некоторой высоте; E 2 = W k 2 - полная механическая энергия тела к моменту падения на Землю; A внеш = 0 - работа внешних сил (внешние силы отсутствуют); A сопр - работа сил сопротивления воздуха.

Искомая работа сил сопротивления воздуха, таким образом, определяется выражением

A сопр = W k 2 − W p 1 .

Произведем вычисление:

A сопр = 44 − 56 = −12 Дж.

Работа сил сопротивления воздуха является отрицательной величиной.

Пример 31. Две пружины с коэффициентами жесткости 1,0 кН/м и 2,0 кН/м соединены параллельно. Какую работу нужно совершить, чтобы растянуть систему пружин на 20 см?

Решение. На рисунке показаны две пружины с разными коэффициентами жесткости, соединенные параллельно.

Внешняя сила F → , растягивающая пружины, зависит от величины деформации составной пружины, поэтому расчет работы указанной силы по формуле для вычисления работы постоянной силы неправомерен.

Для расчета работы воспользуемся законом изменения полной механической энергии системы:

E 2 − E 1 = A внеш + A сопр,

где E 1 - полная механическая энергия составной пружины в недеформированном состоянии; E 2 - полная механическая энергия деформированной пружины; A внеш - работа внешней силы (искомая величина); A сопр = 0 - работа сил сопротивления.

Полная механическая энергия составной пружины представляет собой потенциальную энергию ее деформации:

  • для недеформированной пружины

E 1 = W p 1 = 0,

  • для растянутой пружины

E 2 = W p 2 = k общ (Δ l) 2 2 ,

где k общ - общий коэффицент жесткости составной пружины; ∆l - величина растяжения пружины.

Общий коэффициент жесткости двух пружин, соединенных параллельно, есть сумма

k общ = k 1 + k 2 ,

где k 1 - коэффициент жесткости первой пружины; k 2 - коэффициент жесткости второй пружины.

Работу внешней силы найдем из закона изменения полной механической энергии тела:

A внеш = E 2 − E 1 ,

подставив в данное выражение формулы, определяющие E 1 и E 2 , а также выражение для общего коэффициента жесткости составной пружины:

A внеш = k общ (Δ l) 2 2 − 0 = (k 1 + k 2) (Δ l) 2 2 .

Выполним расчет:

A внеш = (1,0 + 2,0) ⋅ 10 3 ⋅ (20 ⋅ 10 − 2) 2 2 = 60 Дж.

Пример 32. Пуля массой 10,0 г, летящая со скоростью 800 м/с, попадает в стену. Модуль силы сопротивления движению пули в стене постоянен и составляет 8,00 кН. Определить, на какое расстояние пуля углубится в стену.

Решение. На рисунке показаны два положения пули: при ее подлете к стене (первое) и к моменту остановки (застревания) пули в стене (второе).

Полная механическая энергия пули яв­ляется кинетической энергией ее движения:

  • при подлете пули к стене

E 1 = W k 1 = m v 1 2 2 ;

  • к моменту остановки (застревания) пули в стене

E 2 = W k 2 = m v 2 2 2 ,

где W k 1 - кинетическая энергия пули при подлете к стене; W k 2 - кинетическая энергия пули к моменту ее остановки (застревания) в стене; m - масса пули; v 1 - модуль скорости пули при подлете к стене; v 2 = 0 - величина скорости пули к моменту остановки (застревания) в стене.

Расстояние, на которое пуля углубится в стену, найдем из закона изменения полной механической энергии пули:

E 2 − E 1 = A внеш + A сопр,

где E 1 = m v 1 2 2 - полная механическая энергия пули при подлете к стене; E 2 = 0 - полная механическая энергия пули к моменту ее остановки (застревания) в стене; A внеш = 0 - работа внешних сил (внешние силы отсутствуют); A сопр - работа сил сопротивления.

Работа сил сопротивления определяется произведением:

A сопр = F сопр l cos α ,

где F сопр - модуль силы сопротивления движению пули; l - расстояние, на которое углубится пуля в стену; α = 180° - угол между направлениями силы сопротивления и направлением движения пули.

Таким образом, закон изменения полной механической энергии пули в явном виде выглядит следующим образом:

− m v 1 2 2 = F сопр l cos 180 ° .

Искомое расстояние определяется отношением

l = − m v 1 2 2 F сопр cos 180 ° = m v 1 2 2 F сопр

l = 10,0 ⋅ 10 − 3 ⋅ 800 2 2 ⋅ 8,00 ⋅ 10 3 = 0,40 м = 400 мм.

Все составляющие сопротивления воздуха трудно определяются аналитически. Поэтому в практике нашла применение эмпирическая формула, имеющая для диапазона скоростей движения, характерного для реального автомобиля, следующий вид:

где с х – безразмерный коэффициент обтекаемости воздухом , зависящий от формы тела; ρ в – плотность воздуха ρ в = 1,202…1,225 кг/м 3 ; А – площадь миделева сечения (площадь поперечной проекции) автомобиля, м 2 ; V – скорость автомобиля, м/с.

В литературе встречается коэффициент сопротивления воздуха k в :

F в = k в А V 2 , где k в х ρ в /2 , –коэффициент сопротивления воздуха, Нс 2 /м 4 .

и фактор обтекаемости q в : q в = k в · А.

Если вместо с х подставить с z , то получим аэродинамическую подъемную силу.

Площадь миделева сечения для авто:

А=0,9 · В max · Н ,

где В max – наибольшая колея автомобиля, м; Н – высота автомобиля, м.

Сила приложена в метацентре, при этом создаются моменты.

Скорость сопротивления потока воздуха с учетом ветра:

, где β – угол между направлениями движения автомобиля и ветра.

С х некоторых автомобилей

ВАЗ 2101…07

Оpel astra Sedan

ВАЗ 2108…15

Land Rover Free Lander

ВАЗ 2102…04

ВАЗ 2121…214

грузовик

грузовик с прицепом

      1. Сила сопротивления подъему

F п = G а sin α.

В дорожной практике величину уклона обычно оценивают величиной подъема полотна дороги, отнесенную к величине горизонтальной проекции дороги, т.е. тангенсом угла, и обозначают i , выражая полученное значение в процентах. При относительно небольшой величине уклона допустимо в расчетных формулах при определении силы сопротивления подъему использовать не sin α., а величину i в относительных значениях. При больших значениях величины уклона замена sin α величиной тангенса (i /100) недопустима.

      1. Сила сопротивления разгону

При разгоне автомобиля происходит разгон поступательно движущейся массы авто и разгон вращающихся масс, увеличивающих сопротивление разгону. Это увеличение можно учесть в расчетах, если считать, что массы автомобиля движутся поступательно, но использовать некую эквивалентную массу m э, несколько большей m a (в классической механике это выражается уравнением Кенига)

Используем метод Н.Е. Жуковского, приравняв кинетическую энергии поступательно движущейся эквивалентной массы сумме энергий:

,

где J д – момент инерции маховика двигателя и связанных с ним деталей, Н·с 2 ·м (кг·м 2); ω д – угловая скорость двигателя, рад/с; J к –момент инерции одного колеса.

Так как ω к = V а / r k , ω д = V а · i кп · i o / r k , r k = r k 0 ,

то получим
.

Момент инерции J узлов трансмиссии автомобилей, кг· м 2

Автомобиль

Маховик с коленвалом J д

Ведомые колеса

(2 колеса с тормозными барабанами), J к1

Ведущие колеса

(2 колеса с тормозными барабанами и с полуосями) J к2

Произведем замену: m э = m а · δ,

Если автомобиль загружен не полностью:
.

Если автомобиль идет накатом: δ = 1 + δ 2

Сила сопротивления разгону автомобиля (инерции): F и = m э · а а = δ · m а · а а .

В первом приближении можно принять: δ = 1,04+0,04 i кп 2

Решение.

Для решения задачи рассмотрим физическую систему «тело – гравитационное поле Земли». Тело будем считать материальной точкой, а гравитационное поле Земли - однородным. Выделенная физическая система является незамкнутой, т.к. во время движения тела взаимодействует с воздухом.
Если не учитывать выталкивающую силу, действующую на тело со стороны воздуха, то изменение полной механической энергии системы равняется работе силы сопротивления воздуха, т.е. ∆ E = A c .

Нулевой уровень потенциальной энергии выберем на поверхности Земли. Единственной внешней силой в отношении системы «тело – Земля» является сила сопротивления воздуха, направленная вертикально вверх. Начальная энергия системы E 1 , конечная E 2 .

Работа силы сопротивления A.

Т.к. угол между силой сопротивления и перемещением равен 180° , то косинус равен -1, поэтому A = - F c h . Приравняем A.

Рассматриваемую незамкнутую физическую систему можно также описать теоремой от изменении кинетической энергии системы взаимодействующих между собой объектов, согласно которой изменение кинетической энергии системы равно работе, совершенной внешними и внутренними силами при ее переходе из начального состояния в конечное. Если не учитывать выталкивающую силу, действующую на тело со стороны воздуха, а внутренней – сила тяжести. Следовательно ∆ E к = A 1 + A 2 , где A 1 = mgh – работа силы тяжести, A 2 = F c hcos 180° = - F c h – работа силы сопротивления; ∆ E = E 2 – E 1 .