Международные стандарты энергоэффективности электродвигателей. Замена устаревших электродвигателей на современные энергоэффективные Замена устаревших электродвигателей на современные энергоэффективные

Современные трехфазные энергосберегающие двигатели позволяют существенно снизить затраты на электроэнергию благодаря более высокому коэффициенту полезного действия. Другими словами такие двигатели способны выработать большее количество механической энергии из каждого затраченного киловатта электрической энергии. Более эффективное расходование энергии достигается за счет индивидуальной компенсации реактивной мощности. При этом конструкция энергосберегающих электродвигателей отличается высокой надежностью и длительным сроком службы.


Универсальный трехфазный энергосберегающие электродвигатель Вesel 2SIE 80-2B исполнение IMB14

Применение трехфазных энергосберегающих двигателей

Использовать трехфазные энергосберегающие двигатели можно практически во всех отраслях. От обычных трехфазных двигателей они отличаются лишь малым потреблением энергии. В условиях постоянного роста цен на энергоносители энергосберегающие электродвигатели могут стать по-настоящему выгодным вариантом как для небольших производителей товаров и услуг, так и для крупных промышленных предприятий.

Деньги, потраченные на приобретение трехфазного энергосберегающего двигателя, достаточно быстро возвратятся к вам в виде экономии средств, направляемых на приобретение электричества. Наш магазин предлагает вам получить дополнительную выгоду, приобретя качественный трехфазный энергосберегающий двигатель по действительно невысокой цене. Замена устаревших морально и физически электродвигателей на новейшие высокотехнологичные энергосберегающие модели – ваш очередной шаг на новый уровень рентабельности бизнеса.

В недавнем прошлом в разных странах мира действовали собственные стандарты энергоэффективности. Например, в Европе руководствовались нормами СЕМЕР, Россия ориентировалась на ГОСТ Р 5167 2000, США - на стандарт EPAct.

В целях гармонизации требований к энергоэффективности электродвигателей Международной энергетической комиссией (МЭК) и Международной организацией по стандартизации (ISO) был принят единый стандарт IEC 60034-30. Данный стандарт классифицирует низковольтные асинхронные электродвигатели и унифицирует требования к их энергетической эффективности.

Классы энергоэффективности

Стандарт IEC 60034-30 2008 определяет три международных класса энергоэффективности:

  • IE1 – стандартный класс (Standard Efficiency). Примерно эквивалентен европейскому классу EFF2.
  • IE2 – высокий класс (High Efficiency). Примерно эквивалентен классу EFF1 и классу EPAct в США для 60 Гц.
  • IE3 – премиум. Идентичен классу NEMA Premium для 60 Гц.

Стандарт распространяется почти на все промышленные трехфазные асинхронные электродвигатели с короткозамкнутым ротором. Исключение составляют двигатели:

  • работающие от частотного преобразователя;
  • встроенные в конструкцию оборудования (например, в насосный агрегат или вентилятор), когда невозможно провести независимое испытание.

Соотношение единого международного стандарта с нормами различных стран мира.

Распределение мощностей по различным стандартам

Стандарт IEC 60034-30 охватывает электродвигатели мощностью от 0,75 до 375 кВт с числом пар полюсов 2р = 2, 4, 6.

Показатели СЕМЕР распределялись по КПД для электродвигателей мощностью до 90 кВт и полюсностью 2р = 2, 4.

Нормы Epact – величина мощности от 0,75 до 150 кВт с парным числом полюсов 2р = 2, 4, 6.

Особенности стандартизации

Благодаря единому стандарту IEC заказчики электродвигателей во всем мире могут легко распознать оборудование с необходимыми параметрами.

Классы энергетической эффективности IE, описываемые стандартом IEC/EN 60034-30, основываются на результатах испытаний, проводимых в соответствии с международным стандартом IEC/EN 60034-2-1-2007. Этот стандарт определяет энергоэффективность, основываясь на показателях потерь мощности и КПД.

Отметим, что у российского рынка электродвигателей есть свои особенности. Отечественных производителей условно можно разбить на две группы. Одна группа указывает в качестве главного показателя КПД, другая не указывает ничего. Таким образом формируется недоверие к электрооборудованию, что служит барьером к приобретению российской продукции.

Методы определения энергоэффективности

Существует два метода определения КПД: прямой и косвенный. Прямой метод основан на экспериментальном измерении мощности и отличается некоторой неточностью. Новый стандарт предполагает использование косвенного метода, который опирается на следующие параметры:

  • исходная температура
  • нагрузочные потери, которые определяются с помощью измерений, оценки и математического расчета

Показатели КПД сопоставимы только при одинаковом методе определения значений. Косвенный метод подразумевает:

1. Измерение потерь мощности, рассчитанных по результатам нагрузочных испытаний.
2. Оценка потерь подводимой мощности при номинальной нагрузке до 1000 кВт.
3. Математический расчет: используется альтернативный косвенный метод с расчетом потерь Р (мощности). Определяется по следующей формуле:

η = Р2 /Р1=1-ΔР/Р1

где: Р2 - полезная мощность на валу двигателя; Р1 – активная мощность из сети; ΔР – суммарные потери в электродвигателях.

Более высокое значение КПД уменьшает потери и потребление электроэнергии электродвигателя и повышает его энергоэффективность.

Ряд российских стандартов, например, ГОСТ Р 54413-2011, можно соотнести с международными стандартами.


Отличия российских стандартов от международных заключаются:

  • в некоторых особенностях математических расчетов для определения параметров оборудования;
  • в различиях в единицах измерения;
  • в процессах испытаний;
  • в параметрах испытательного оборудования;
  • в условиях выполнения испытаний;
  • в особенностях эксплуатации.

В России приняты те же классы энергоэффективности, что и в Европе. Информация о классах содержится в паспортных данных, технической документации, маркировке и на шильдиках.

Другие полезные материалы:

В энергосберегающих двигателях за счет увеличения массы активных материалов (железа и меди) повышены номинальные значения КПД и cosj. Энергосберегающие двигатели используются, например, в США, и дают эффект при постоянной нагрузке. Целесообразность применения энергосберегающих двигателей должна оцениваться с учетом дополнительных затрат, поскольку небольшое (до 5%) повышение номинальных КПД и cosj достигается за счет увеличения массы железа на 30-35%, меди на 20-25%, алюминия на 10-15%, т.е. удорожания двигателя на 30-40%.

Ориентировочные зависимости КПД (h) и соs j от номинальной мощности для обычных и энергосберегающих двигателей фирмы Гоулд (США) приведены на рисунке.

Повышение КПД энергосберегающих электродвигателей достигается следующими изменениями в конструкции:

· удлиняются сердечники, собираемые из отдельных пластин электротехнической стали с малыми потерями. Такие сердечники уменьшают магнитную индукцию, т.е. потери в стали.

· уменьшаются потери в меди за счет максимального использования пазов и использования проводников повышенного сечения в статоре и роторе.

· добавочные потери сводятся к минимуму за счет тщательного выбора числа и геометрии зубцов и пазов.

· выделяется при работе меньше тепла, что позволяет уменьшить мощность и размеры охлаждающего вентилятора, что приводит к уменьшению вентиляторных потерь и, следовательно, уменьшению общих потерь мощности.

Электродвигатели с повышенным КПД обеспечивают уменьшение расходов на электроэнергию за счет сокращения потерь в электродвигателе.

Проведенные испытания трех «энергосберегающих» электродвигателей показали, что при полной нагрузке полученная экономия составила: 3,3% для электродвигателя 3 кВт, 6% для электродвигателя 7,5 кВт и 4,5% для электродвигателя 22 кВт.

Экономия при полной нагрузке приблизительно составляет 0,45 кВт, что при стоимости энергии 0,06 доллара/кВт. ч составляет 0,027 доллара/ч. Это эквивалентно 6% эксплуатационных затрат электродвигателя.

Цена обычного электродвигателя 7,5 кВт, приводимая в прайс-листах, составляет 171 доллар США, тогда как стоимость электродвигателя с повышенным КПД - 296 долларов США (надбавка к цене - 125 долларов США). Из приведенной таблицы следует, что период окупаемости для электродвигателя с повышенным КПД, рассчитанный на основе маргинальных издержек, составляет приблизительно 5000 часов, что эквивалентно 6,8 месяцев работы электродвигателя при номинальной нагрузке. При меньших нагрузках период окупаемости будет несколько больше.

Эффективность использования энергосберегающих двигателей будет тем выше, чем больше загрузка двигателя и чем ближе режим работы его к постоянной нагрузке.

Применение и замена двигателей на энергосберегающие должна оцениваться с учетом всех дополнительных затрат и сроков их эксплуатации.

Распечатать

Электропривод

Энергоэффективность электропривода. Комплексный подход

«Круглый стол» в рамках ПТА-2011

Почти половину всей электроэнергии, добываемой в мире, расходуют электродвигатели. И интерес КМ к теме энергоэффективности приводной техники вполне объясним. В сентябре в рамках выставки ПТА мы провели "круглый стол", посвященный этой проблеме. Сегодня публикуем первую часть дискуссии.

Энергоэффективные двигатели - мифы и реальность

Хотелось бы развенчать некоторые популярные мифы, созданные "успешными менеджерами", продающими двигатели с повышенным КПД или энергоэффективные двигатели (ЭЭД).

Что же такое энергоэффективные двигатели – это машины, КПД которых на 1–10% выше, чем у стандартных моторов. Причем, если речь идет о крупных двигателях, разница составляет 1–2%, а в моторах малой мощности она может достигать 7–10%.

Высокий КПД в двигателях достигается за счет:

Увеличения массы активных материалов – меди и стали;
- применения более тонкой и высококачественной электротехнической стали;
- использования меди вместо алюминия в качестве материала обмоток ротора;
- уменьшения воздушного зазора между ротором и статором с помощью высокоточного технологического оборудования;
- оптимизации зубцово-пазовой зоны магнитопроводов и конструкции обмоток;
- применения подшипников высокого качества;
- специальной конструкции вентилятора.

По данным статистики, стоимость самого двигателя составляет менее 2% от общих затрат на жизненный цикл (при работе 4000 часов ежегодно в течение 10 лет). На электроэнергию тратится примерно 97%. Около процента уходит на монтаж и техническое обслуживание.

Как видно из диаграммы, уже более десяти лет в Европе идет планомерное вытеснение низкоэффектиных двигателей моторами с повышенным КПД. С середины этого года в ЕС запрещено использование новых двигателей класса ниже IE2.

Преимущества и недостатки ЭЭД

В общем случае переход к применению ЭЭД позволяет:

Повысить КПД двигателя на 1–10%;
- увеличить надежность его работы;
- уменьшить время простоев и затраты на техническое обслуживание;
- повысить устойчивость двигателя к тепловым нагрузкам;
- улучшить перегрузочную способность;
- повысить устойчивость двигателя к различным нарушениям эксплуатационных условий: пониженному и повышенному напряжению, искажению формы волн (гармоникам), несбалансированностифаз и т. д.;
- увеличить коэффициент мощности;
- снизить уровень шума.

У машин с повышенным КПД по сравнению с обычными на 10 – 30% выше стоимость, несколько больше масса. Энергоэффективные двигатели имеют по сравнению с обычными двигателями меньшее скольжение (следствие чего – частота вращения немного больше) и более высокую величину пускового тока.

В некоторых случаях использование энергоэффективного двигателя не является целесообразным:

Если двигатель эксплуатируется непродолжительное время (менее 1–2 тыс.часов/год), внедрение энергоэффективного двигателя может не внести существенного вклада в энергосбережение;
- если двигатель эксплуатируется в режимах с частым запуском, сэкономленная электроэнергия может быть израсходована вследствие более высокого пускового тока;
- если двигатель работает с неполной нагрузкой (например, насосы), но на протяжении длительного времени, объемы энергосбережения в результате внедрения энергоэффективного двигателя могут оказаться незначительными по сравнению с потенциалом привода с переменной скоростью;
- каждый дополнительный процент КПД требует увеличения массы активных материалов на 3–6%. При этом момент инерции ротора возрастает на 20–50%. Поэтому высокоэффективные двигатели уступают обычным по динамическим показателям, если при их разработке специально не учитывается это требование.

Практика и расчеты показывают, что затраты окупаются за счет сэкономленной электроэнергии при эксплуатации в режиме S1 за год-полтора (при годовой наработке 7000 часов).

Энергоэффективность и надежность электрической машины неразрывно связаны. Обратная сторона энергоэффективности – это потери. Именно потери являются одним из превалирующих факторов, определяющих продолжительность эксплуатации двигателя. Возьмем только один аспект этой проблемы – тепловое воздействие на обмотки двигателя. Основная часть электрической энергии, которая в работу не преобразовывается, теряется в виде тепла. Рассматривая надежность изоляции обмоток, нужно знать «Правило восьми градусов» (на самом деле для разных классов изоляциии речь следует вести о 8 – 13 °С): превышение рабочей температуры двигателя на указанную выше величину сокращает его продолжительность жизни в 2 раза. Пример из практики. В вагонах московской монорельсовой дороги в результате инженерных просчетов первые опытные двигатели с изоляцией класса Н (180 °С) вынуждены были работать при температуре 215–220 °С. В таком режиме их хватало всего на несколько месяцев эксплуатации.

Двигатели, которые обладают повышенным КПД, меньше греются, а значит, дольше живут. Энергоэффективные двигатели – это двигатели повышенной надежности.

Ремонт или покупка

Еще одна важная проблема, возникающая при эксплуатации электродвигателей, – снижение КПД после капитального ремонта. Рынок ремонтных работ примерно в три раза превышает возможности производства новых двигателей. Для извлечения старой обмотки в большинстве случаев применяется тепловое воздействие на статор вместе со станиной. Такая операция значительно ухудшает свойства электротехнической стали, увеличивает ее магнитные потери. Исследования показали, что при капитальном ремонте КПД снижается на 0,5–2%, а иногда до 4–5%. Соответственно, эти потери начинают дополнительно греть двигатель, что очень плохо. На практике есть два варианта правильных действий. Экономически выгодный путь – покупка нового энергоэффективно- го двигателя. Второй вариант – высококачественный ремонт сгоревшего мотора. Это следует производить не в обычном рабочем цехе, а на специализированном предприятии.

Новые решения от АББ

АББ уделяет энергоэффективности двигателей очень большое внимание. Мы выпускаем моторы классов IE2 и IE3 и в алюминиевом, и в чугунном корпусе.

Двигатели класса IE3 АББ продаёт с начала этого года. Они востребованы у машиностроителей и промышленных предприятий, ориентированных на энергоэффективные технологии. Они хороши там, где требуется постоянная работа двигателя с нагрузкой, близкой к номинальной.

В четвертом квартале компания АББ выпускает на рынок серию M3BP высотой оси вращения 280–355 с классом энергоэффективности IE4 (SUPER PREMIUM EFFICIENCY). Серия M3BP – вершина конструкторских и технологических разработок компании АББ в области электромашиностроения. Сочетая в себе высокую эффективность, надежность и долгий срок службы, двигатели серии M3BP являются наиболее оптимальным и универсальным предложением для большинства отраслей и применений современной промышленности.

Важный вопрос – работа двигателя в составе частотно-регулируемого привода. Мы твердо занимаем место в первой тройке мировых производителей электроприводной техники. Важным преимуществом компании АББ является возможность проведения совместного испытания двигателей с преобразователями частоты.

При питании двигателя от преобразователя частоты очень важно уделять внимание таким вопросам, как прочность изоляции, применение изолированного подшипника и принудительное охлаждение двигателя.

Членами СЭВ было принято решение увеличить мощность двигателя на 1–2 ступени, не изменяя габарита, т. е., по сути, сохранив прежний объем двигателей. Речь идет о введении увязки СЭВ вместо действующей в Европе увязки CENELEC при внедрении серии 4А. Следующим негативным шагом в контексте обеспечения энергоэффективности явилось уменьшение заготовительных диаметров серии АИР по сравнению с серией 4А. Тогда, наверное, это было правильно, нужно было экономить электротехнические материалы, но сегодня мы столкнулись с проблемой, что в увязку СЭВ надо "вогнать" КПД, соответствующий классу IE2 или даже IE3. Наши тщательные проработки показали, что заготовительных диаметров младших машин увязки СЭВ не хватает для обеспечения класса IE3. И если Россия будет действовать в русле Еврокомиссии и ориентироваться на нормы МЭК 60034-30, пусть даже с отставанием на два-три года, то, когда дело дойдет до класса высшей энергоэффективности IE3, выяснится, что колоссальный ряд машин – с 90-й по 132-ю высоту – просто не сможет их обеспечить. Придется ломать увязку, все, что делалось тридцать лет, придется изменять. Это настоящая бомба замедленного действия. Хорошо хоть, что с габарита 160 и выше такой опасности нет. Несмотря на увеличенную мощность (либо уменьшенный объем при мощности CENELEC), мы все же сможем добиться класса энергоэффективности IE3. Отмечу, что если для средних габаритов у европейских производителей стоимость двигателей класса IE3 по сравнению с IE1 увеличивается на 30–40%, то для российской увязки стоимость машин возрастает существенно больше. Мы ограничены диаметром, а, значит, вынуждены чрезмерно увеличивать активную длину машины

О материалах и цене АЭД

Мы должны думать о цене электрических машин. Медь дорожает значительно быстрее стали. Поэтому мы предлагаем там, где возможно, использовать так называемые стальные двигатели (с меньшей площадью пазов), т. е. экономим медь.

Кстати, по тем же самым причинам НИПТИЭМ не является приверженцем двигателей с постоянными магнитами, поскольку магниты будут дорожать все больше и быстрее, чем медь. Хотя в равных объемах двигатель с постоянными магнитами обеспечивает больший КПД, чем асинхронник.

В сентябрьском номере КМ вышла статья о двигателях SEW Eurodrive, построенных по технологии Line Start Permanent Magnet, по замыслу создателей, объединяющей преимущества синхронной и асинхронной машин. По сути, это машины с постоянными магнитами, а короткозамкнутая клетка ротора используется при запуске, разгоняя машину до подсинхронной скорости. Такие двигатели при высшем классе энергоэффективности достаточно компактны. Мне кажется, они не получат массового применения, потому что постоянные магниты очень востребованы в иных отраслях, нежели общепром, и, по экспертной оценке, в дальнейшем в основном будут использоваться для выпуска спецтехники, на которую денег не жалеют.

Первые российские ЭЭД от РУСЭЛПРОМ

Серия 7AVE позиционируется как первая полномасштабная энергоэффективная серия РФ с габаритами от 112 до 315. Фактически вся она разработана. Габарит 160 полностью внедрен. Внедряются габариты 180 и 200. Начиная с габарита 250, около десяти типоразмеров машин ныне выпускаемой серии 5А, если пересчитать КПД на измеренные добавочные потери, соответствуют классу IE2; два типоразмера – классу IE3. В серии 7AVE названные типоразмеры будут более экономичными.

Замечу, что перед российскими учеными стоит очень сложная и увлекательная задача оптимального построения серии асинхронных машин, которая содержит несколько увязок (российская и европейская, повышенной мощности) 13 габаритов, три класса энергоэффективности, многочисленные модификации, то есть глобальная задача многообъектной оптимизации.

Фотографии предоставлены ООО "АББ"

Электропривод 02.10.2019 Золотую медаль за инновационную трансмиссию eAutoPowr и интеллектуальную систему e8WD получила компания John Deere от Сельскохозяйственного общества Германии (DLG). Еще за 39 продуктов и решений были отмечены серебряными наградами.

Электропривод 30.09.2019 Компания Sumitomo Heavy Industries достигла соглашения о приобретении производителя частотно-регулируемых приводов Invertek Drives. Как сообщается в релизе, это очередной шаг стратегии по развитию бизнеса, как с точки зрения увеличения портфеля, так и расширения охвата мирового рынка.

Экскурс в историю. Зарождение проблемы энергосбережения

Проблема сбережения энергетических ресурсов планеты была обозначена еще во второй половине XX века. Так в 70-х годах прошлого столетия во всем мире разразился энергетический кризис. Цены на нефть с 1972 по 1981 годы возрасли в 14,5 раз. И хотя большинство сложных моментов того времени были преодолены, проблема сбережения мирового топливно-энергетического комплекса получила статус глобальной особо значимой проблемы, и с каждым годом этому вопросу уделяется все больше и больше внимания.


Энергосбережение сегодня

За счет технологического развития, во всем мире значится быстрый рост потребления энергии. Чтобы ресурсов планеты хватило человечеству в будущем, люди ищут различные пути и решения: используются альтернативные природные источники энергии (ветер, вода, солнечные батареи), были изобретены экологичные технологии получения энергии путем переработки мусора и различных бытовых отходов, технологическое оборудование из года в год модернизируется с целью уменьшения потребляемой этим оборудованием энергии.

Энергоэффективность оборудования, в частном порядке касается каждого из нас. Ведь, от нее напрямую зависит сумма в ежемесячном счете за элетроэнергию. В Европе электроэнергия значительно дороже чем в России, поэтому каждый европеец пытается подбирать технологичное оборудование, потребялющее как можно меньше энергии. У нас же об этом задумывается гораздо меньшее количество людей, но и в нашей стране использвание энергосберегающих технологий способно благополучно сказаться на «толщине вашего кошелька». Оплачивая ежемесечные счета за электроэнергию мы не задумываемся, что годовые эксплутационные затраты – это внушительная сумма, которой могла бы быть потрачена на другие цели.

Энергоэффективность в вентиляции

Основной источник потребления электроэнергии в вентиляционных установка, как не трудно догадаться, является вентилятор, а конкретнее электродвигатель (или мотор), благодаря которому вращается крыльчатка вентилятора.

Класс энергоэффективности IE

Европейские стандарты электродвигалей DIN основаны на стандарте классификации энергоэффективности оборудования IEC (Международная электротехническая комиссия).


Согласно международным стандартам на сегодняшний день разработы четыре класса энергоэффективности двигателей IE1, IE2, IE3 и IE4. IE означает «International Energy Efficiency Class» - международный класс энергоэффективности


  • IE1 стандартный класс энергоэффективности.
  • IE2 высокий класс энергоэффективност.
  • IE3 сверхвысокий класс энергоэффективности.
  • IE4 максимально высокий класс энергоэффективности.

Ниже преведены кривые зависимости КПД двигателя, соответствующего класса энергетической эффективности, от номинальной мощности.


Начиная с 1 января 2017 года все европейские производители двигателей, согласно принятой директиве, будут производить электродвигатели класса энергоэффективности не ниже IE3

Выбор энергоэффективности двигателей при подборе установок в программе QC Ventilazione

ТМ QuattroClima предлагает вентиляционные установки с асинхронными двигателями класса IE2 и IE3, также EC-моторами премиум-класса IE4.

Выбор типа вентилятора осуществляется нажатием левой кнопки мыши на вкладку «Вентилятор».


Радиальный вентилятор с прямой передачей – асинхронный двигатель (стандартно IE2).

Радиальный вентилятор c прямой передачей и двигателем EC соответствует классу IE4.

Выбрать нужный класс энергоэффективности асинхронного двигателя можно здесь же, чуть ниже.

От теории к практике

Для наглядности, рассмотрим пример. Рассчитаем стандартную приточную установку расходом 20 000 м3/ч и свободным напором 500 Па в трех вариантах:

1) С асинхронным двигателем класса IE2

2) С асинхронным двигателем класса IE3

3) C EC-двигателем класса IE4

А затем сравним полученные результаты.

Установка с асинхронным двигателем класса IE2


Установка с асинхронным двигателем класса IE3


Установка с EC-двигателем класса IE4


В этом случае, программой подобралась секция из двух EC-вентиляторов.

Теперь сравним полученные результаты.

Техническая характеристика

Асинхронный двигатель Класс энергоэффективности IE2

Асинхронный двигатель Класс энергоэффективности IE3

EC-двигатель
Класс энергоэффективности IE4

КПД вентилятора, %

Номинальная мощность, кВт

Потребляемая мощность, кВт

Потребляемая мощность двигателя класса IE3 меньше аналогичного двигателя класса IE2 на 0,18 КВт. А разница мозностей двух EC-моторов и двигателя IE2 составляет уже 1,16 кВт.

В случае аналогичных расчетов для приточно-вытяжных вентиляционных большерасходных вентиляционных агрегатов разница потреблемых мощностей двигателей IE2 и IE3 может достигать 25-30 %. А если на объекте, используется десятки установок, то энергопотребление вентиляци можно снизить на порядок и, благодаря этому, сэкономить сотни тысяч, а то и миллионы рублей.

В следующих статьях мы расскажем о других способах уменьшения потребляемой электродвигателями мощности при подборе вентиляционных установок в программе QC Ventilazione. Ранее мы рассказывали о повышении энергетической эффективности малорасходных вентиляционных агрегатов с роторными рекуператорами. Прочитать статью можно .