Построение индикаторных диаграмм. Индикаторная диаграмма двигателя внутреннего сгорания строится с использованием данных расчета рабочего процесса Индикаторная диаграмма двс

Построение индикаторных диаграмм

Индикаторные диаграммы строятся в координатах p-V .

Построение индикаторной диаграммы двигателя внутреннего сгорания производится на основании теплового расчета.

В начале построения на оси абсцисс откладывают отрезок АВ, соответствующий рабочему объему цилиндра, а по величине равный ходу поршня в масштабе, который в зависимости от величины хода поршня проектируемого двигателя может быть принят 1:1, 1,5:1 или 2:1.

Отрезок ОА, соответствующий объему камеры сгорания,

определяется из соотношения:

Отрезок z"z для дизелей (рис. 3.4) определяется по уравнению

Z,Z=OA(p-1)=8(1,66-1)=5.28мм, (3.11)

давлений = 0,02; 0,025; 0,04; 0,05; 0,07; 0,10 МПа в мм так, чтобы

получить высоту диаграммы, равную 1,2…1,7 ее основания.

Затем по данным теплового расчета на диаграмме откладывают в

выбранном масштабе величины давлений в характерных точках а, с, z", z,

b, r. Точка z для бензинового двигателя соответствует pzT .

Индикаторная диаграмма четырехтактного дизельного двигателя

По наиболее распространенному графическому методу Брауэра политропы сжатия и расширения строят следующим образом.

Из начала координат проводят луч ОК под произвольным углом к оси абсцисс (рекомендуется приинмать = 15…20°). Далее из начала координат проводят лучи ОД и ОЕ под определенными углами и к оси ординат. Эти углы определяют из соотношений

0.46 = 25°, (3.13)

Политропу сжатия строят с помощью лучей ОК и ОД. Из точки С проводят горизонталь до пересечения с осью ординат; из точки пересечения - линию под углом 45° к вертикали до пересечения с лучом ОД, а из этой точки - вторую горизонтальную линию, параллельную оси абсцисс.

Затем из точки С проводят вертикальную линию до пересечения с лучом ОК. Из этой точки пересечения под углом 45?°к вертикали проводим линию до пересечения с осью абсцисс, а из этой точки??вторую вертикальную линию, параллельную оси ординат, до пересечения со второй горизонтальной линией. Точка пересечения этих линий будет промежуточной точкой 1 политропы сжатия. Точку 2 находят аналогично, принимая точку 1 за начало построения.

Политропу расширения строят с помощью лучей ОК и ОЕ, начиная от точки Z", аналогично построению политропы сжатия.

Критерием правильности построения политропы расширения является приход ее в ранее нанесенную точку b.

Следует иметь в виду, что построение кривой политропы расширения следует начинать с точки z , а не z..

После построения политропы сжатия и расширения производят

скругление индикаторной диаграммы с учетом предварения открытия выпускного клапана, опережения зажигания и скорости нарастания давления, а также наносят линии впуска и выпуска. Для этой цели под осью абсцисс проводят на длине хода поршня S как на диаметре полуокружность радиусом R=S/2. Из геометрического центра Оґ в сторону н.м.т. откладывается отрезок

где L - длина шатуна, выбирается из табл. 7 или по прототипу.

Луч О 1.С 1 проводят под углом Q о =, 30° соответствующим углу

опережения зажигания (= 20…30° до в.м.т.), а точку С 1 сносят на

политропу сжатия, получая точку c1.

Для построения линий очистки и наполнения цилиндра откладывают луч О 1?В 1 под углом g =66°. Этот угол соответствует углу предварения открытия выпускного клапана или выпускных окон. Затем проводят вертикальную линию до пересечения с политропой расширения (точка b 1?).

Из точки b 1. проводят линию, определяющую закон изменения

давления на участке индикаторной диаграммы (линия b 1.s ). Линия аs ,

характеризующая продолжение очистки и наполнения цилиндра, может

быть проведена прямой. Следует отметить, что точки s. b 1. можно также

найти по величине потерянной доли хода поршня y .

as =y .S . (3.16)

Индикаторная диаграмма двухтактных двигателей так же, как и двигателей с наддувом, всегда лежит выше линии атмосферного давления.

В индикаторной диаграмме двигателя с наддувом линия впуска может быть выше линии выпуска.

  • 2. Процессы газообмена 2-х и 4-х тактных дизельных двигателей. Понятие наддува. Импульсный газотурбинный и наддув при постоянном давлении. Коэффициент избытка воздуха.
  • 3. Генераторы судовой электростанции. Техническое обслуживание щеточного аппарата синхронного генератора.
  • 2. Принцип работы холодильной установки. Холодильные агенты и хладоносители.
  • 3. Техническое обслуживание кислотных аккумуляторных батарей (акб).
  • 4. Техническое обслуживание судовых помещений.
  • 1. Международная конвенция о грузовой марке 1966 года.
  • 3. Измерение сопротивления изоляции электрооборудования. Техническое обслуживание распределительных устройств.
  • 4.Техническое обслуживание судовых систем.
  • 1.Категории затопленных отсеков. Влияние свободной поверхности на остойчивость на больших углах крена.
  • 2.Судовые паровые котлы: классификация, устройство водотрубных, огнетрубных, комбинированных и утилизационных котлов, устройства для сжигания топлива в котлах.
  • Процесс сгорания топлива
  • Подача воздуха
  • Сгорание топлива
  • 3. Средства, обеспечивающие распределение нагрузки при параллельной работе генераторов.
  • 4.Осмотр судна в доке и на плаву.
  • 1. Конструктивные меры противопожарной безопасности.
  • 2.Основные термодинамические процессы для идеальных газов.
  • 3.Судовые силовые трансформаторы.
  • 4.Техническое обслуживание дизелей и их отдельных сборочных единиц и деталей.
  • 1. Конвенция солас.
  • 2. Цикл Карно.
  • 3. Техническое обслуживание взрывозащищенного электрооборудования и сетей. Осмотры электрооборудования
  • 4.Очистки, осмотры и испытания котлов.
  • 1. Международный кодекс по спасательным средствам. Индивидуальные и коллективные спасательные средства.
  • 3. Аварийные дизель - генераторы и система их автоматического запуска.
  • 4.Техническое обслуживание элементов котла.
  • 1. Международная конвенция марпол по предотвращению загрязнения с судов. Судовые документы по пзм, сроки их действия, возобновление документов.
  • 2.Основные понятия о машинах и механизмах. Кинематическая пара, кинематическая цепь. Виды передач.
  • 3. Классификация полупроводниковых преобразователей электроэнергии.
  • 4.Техническое обслуживание вспомогательных механизмов и оборудования.
  • 2. Сопротивление материалов: виды деформаций, напряжений, нагрузок.
  • 3. Частотные преобразователи для управления асинхронными электродвигателями.
  • 4.Смазывание вспомогательных механизмов и оборудования, техническое обслуживание подшипников.
  • 1. Судовые системы, предназначенные для предотвращения возникновения или распространения пожара. Средства пожаротушения на судах и их классификация. Противопожарное снабжение.
  • 2.Детали машин: детали и узлы общего и специального назначения, виды соединений.
  • 3. Щитовые электроизмерительные приборы (эп). Подключение электроизмерительных приборов. Погрешность результата измерения.
  • 4.Техническое обслуживание холодильных установок. Удаление хладона. Наполнение системы хладоном и дозарядка.
  • 1. Классификация судовых помещений по назначению. Размещение помещений в основном корпусе судна.
  • 2. Основные неподвижные и подвижные детали судовых дизелей.
  • 3. Электрическое освещение – основное и аварийное. Судовые электронагревательные и отопительные приборы и устройства. Обслуживание и предъявляемые к ним требования.
  • 4. Система технического обслуживания судна. Общие требования по то судна. План-графики по то стс и к.
  • 1. Судовые документы, требуемые ктм рф. Судовые документы, выдаваемые рмрс России в соответствии с требованиями мк солас 74/88 с поправками. Мппсс-72 и регламента радиосвязи 1997 г.
  • 2. Подготовка дизельной установки к действию после длительной стоянки, во время которой производились работы, связанные с разборкой. Подготовка дизельной установки к действию в зимнее время.
  • 3. Режимы работы судовых электроприводов. Факторы, обеспечивающие нормальную работу судовых электрических машин. Защита электродвигателей в электроприводах.
  • 4. Надзор за судами в эксплуатации. Использование результатов в процессе технического надзора за судами.
  • 2. Работа дизеля в режимах и условиях, отличных от нормальных. Подготовка к манёврам и остановка дизельной установки.
  • 3. Приборы контроля и сигнализации. Датчики и индикаторы, применяемые в судовых системах. Аварийно-предупредительная сигнализация (апс).
  • 4. Виды и порядок прохождения инструктажа по технике безопасности.
  • 1. Мкуб - его цели и требования. Основные резолюции имо по внедрению мкуб.
  • International Management Code for the Safe Operation of Ships and for Pollution Prevention (International Safety Management (ism) Code) » - мкуб
  • 2. Ввод дизеля в режим эксплуатационной нагрузки. Работа гд и обслуживающих его систем в сложных условиях.
  • 3. Средства автоматики и дистанционного управления. Готовность к действию и ввод в действие электрических систем автоматики. Основные требования к системам дау.
  • 4. Техника безопасности при обслуживании дизельных установок.
  • 1. Система управления безопасностью судоходной компании. Назначенное лицо. Национальные нормативные документы по внедрению мкуб.
  • 2. Контроль и регулировка параметров рабочего процесса судовых дизелей.
  • 3. Техническая документация по судовому электрооборудованию, виды технической документации. Электрические схемы и чертежи, их отличие друг от друга.
  • 4. Работа главной дизельной установки в аварийных условиях и во время обкатки.
  • 1. Международная конвенция марпол-73/78: правила регистрации операций с нефтью и нефтепродуктами. Ответственность и контроль.
  • 2.Подготовка котла к действию, обслуживание котла в действии, вывод котла из действия.
  • 3. Проверки работы адг, сети аварийного освещения, авральной и пожарной сигнализации, водонепроницаемых дверей; периодичность проверок.
  • 1. Кодекс торгового мореплавания рф. Устав службы на судах ммф. Дисциплинарный устав.
  • 2. Обслуживание котла на режимах, отличных от нормальных. Водный режим котла. Меры предосторожности при упуске воды из котла. Хранение бездействующего котла.
  • 3. Электробезопасность. Защита от поражения электрическим током, защитное заземление. Диэлектрические средства защиты, периодичность проверок их на электрическую прочность.
  • 4. Контроль технического состояния корпусных конструкций. Виды и методы неразрушающего контроля и диагностики технического состояния корпуса и конструкций судна.
  • 2.Типы насосов, входящих в состав судовых систем. Птэ насосов по типам.
  • 3. Функции элементов сар и назначение. Система дистанционного автоматического управления гд.
  • 4. Требования птэ по технической эксплуатации и обслуживанию машинных и котельных помещений. Предремонтная дефектация элементов корпуса судна, организация и этапы выполнения.
  • 1. «Наставление по предотвращению загрязнения с судов». Пломбирование клапанов на судне. Бункеровочные операции.
  • 2. Работа гд с выключенными цилиндрами. Регулировка параметров рабочего процесса гд.
  • 4. Взаимодействие должностных лиц в процессе ремонта. Доковый ремонт. Доковый ремонт
  • 2. Работа гд с перегрузкой. Работа гд в режиме холостого хода. Подготовка гд к маневрам и остановке.
  • 3. Аварийный безбатарейный телефон для связи мостик-цпу- румпельная. Частоты судовой рабочей носимой укв.
  • 4. Написание ремонтной ведомости. Проведение тендера на ремонт судна. Распределение обязанностей на предстоящий ремонт судна.
  • 2. Указания по техническому обслуживанию вентиляторов и поршневых компрессоров.
  • 3. Общая характеристика рулевых электроприводов и требования к ним.
  • 4. Испытания судна после ремонта. Окончание ремонта на заводе. Гарантийный период после ремонта.
  • 1. Якорное устройство, назначение и состав. Общие сведения и классификация. Швартовное устройство. Общие сведения, назначение и классификация. Якорное устройство.
  • Якорная цепь.
  • 2. Указания по техническому обслуживанию теплообменных аппаратов, фильтров, сосудов под давлением и тормозных устройств.
  • 3. Подготовка грузовых устройств к работе. Электрическое торможение грузоподъемников переменного тока.
  • Среднее эффективное Ре давление это давление которое зависит от количества топлива впрыскиваемого в цилиндр.

    Эффективная мощность Ре - мощность, снимаемая с соединительного фланца вала двигателя, т. е. отдаваемая валопроводу, генератору или любому потребителю энергии на данном режиме работы

    Индикаторная мощность Рz - мощность развиваемая газами внутри рабочих цилиндров двигателя, называют индикаторной.

    3. Основные электрические величины – электрический ток, напряжение, мощность

    электрического тока, единицы измерения.

    ЭЛЕКТРИ́ЧЕСКИЙ ТОК - УПОРЯДОЧЕННОЕ НЕКОМПЕНСИРОВАННОЕ ДВИЖЕНИЕ СВОБОДНЫХ ЭЛЕКТРИЧЕСКИ ЗАРЯЖЕННЫХ ЧАСТИЦ ПОД ВОЗДЕЙСТВИЕМ ЭЛЕКТРИЧЕСКОГО ПОЛЯ.

    НАПРЯЖЕНИЕ – КОЛЛИЧЕСТВО ЭНЕРГИИ ЗАТРАЧИВАЕМОЕ НА ПЕРЕМЕЩЕНИЕ ИЗ ОДНОЙ ТОЧКИ В ДРУГУЮ.

    МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА – СКОРОСТЬ ИЗМЕНЕНИЯ ЭНЕРГИИ. МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА РАВНА РАБОТЕ ЭЛЕКТРИЧЕСКОГО ТОКА, ПРОИЗВОДИМОЙ В ТЕЧЕНИЕ ОДНОЙ СЕКУНДЫ.

    4. Общие требования к техническому обслуживанию стс и к.

    ПОД СУДОВЫМИ ТЕХНИЧЕСКИМИ СРЕДСТВАМИ ПОНИМАЮТСЯ УСТАНОВКИ, АГРЕГАТЫ, МЕХАНИЗМЫ И ДРУГОЕ ОБОРУДОВАНИЕ СУДНА, ОБЕСПЕЧИВАЮЩИЕ ЕГО РАБОТОСПОБНОСТЬ В СООТВЕТСТВИИ С НАЗНАЧЕНИЕМ.

    1. Общие положения 1.1. Техническая эксплуатация судовых технических средств и конструкций (СТС и К) должна производиться в соответствии с инструкциями заводов-изготовителей и требованиями настоя­щих Правил.

    1.2. Все операции связанные с вводом в действие, изменени­ем режимов работы, выводом из действия, проворачиванием и разборкой технических средств, должны производиться с разре­шения, по указанию или с извещением должностных лиц (капитана, вахтенного помощника капитана, старшего механи­ка, вахтенного механика, ответственного по заведованию), если это предусмотрено соответствующими пунктами Правил или другими документами, регламентирующими действия судового экипажа. 1.3. Бездействия, связанные с техническим использованием, обслуживанием и ремонтом СТСиК должны регистрироваться вахтенным механиком в машинном журнале. 1.4. На судне должен быть организован учет технического со­стояния СТСиК а также учет наличия и движения сменно-запасных частей и предметов, материально-технического снабжения по заведованиям.

    1.5. При в воде в действие оборудования, убедиться что оборудование исправно, КИП исправны и так далее.

    БИЛЕТ 2.

    1. Посадка и остойчивость судна, теоретические основы. Остойчивость, метацентрическая высота. Информация об остойчивости.

    ОСТО́ЙЧИВОСТЬ - способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия.

    Судно плавает на поверхности воды под действием двух основных сил: силы тяжести и Архимедовой силы. Сила тяжести -“тянет судно вниз”, равна его весу и приложена к центру тяжести судна ЦТ. Сила плавучести или Архимедова сила –“выталкивает судно из воды”, равна его водоизмещению и приложена в центре подводного объема ЦВ судна.

    В “прямом” положении судна эти силы уравновешивают друг друга и лежат на одной вертикальной линии. При крене форма подводной части корпуса изменится, ЦВ сместится в сторону накрененного борта, и возникнет так называемыйвосстанавливающий момент, который противодействует крену. При наклонении судна ЦВ как бы поворачивается вокруг точки, называемой метацентром m.

    Расстояние от метацентра m до центра тяжести ЦТ (метацентрическая высота) является характеристикой остойчивости судна. Чем меньше судно, тем больше должна быть метацентрическая высота. Чем ниже расположен центр тяжести, тем судно остойчивее. Существует простое правило: КАЖДЫЙ КИЛОГРАММ ПОД ВАТЕРЛИНИЕЙ ПОВЫШАЕТ ОСТОЙЧИВОСТЬ, А КАЖДЫЙ КИЛОГРАММ НАД ВАТЕРЛИНИЕЙ УХУДШАЕТ ЕЕ.

  • Индикаторная диаграмма ДВС (рис.1) строится с использованием данных расчета процессов рабочего цикла двигателя. При построении диаграммы необходимо выбрать масштаб с таким расчетом, чтобы получить высоту равной 1,2... 1,7 ее основания.

    Рис.1 Индикаторная диаграмма дизельного двигателя

    Рис. 1 Индикаторная диаграмма дизельного двигателя

    В начале построения на оси абсцисс (основание диаграммы) в масштабе откладывается отрезок S а = S с + S,

    где S – рабочий ход поршня (от ВМТ до НМТ).

    Отрезок S с, соответствующий объему камеры сжатия (V с), определяется по выражению S с = S / - 1.

    Отрезок S соответствует рабочему объему V h цилиндра, а по величине равен ходу поршня. Отметить точки, соответствующие положению поршня в ВМТ, точки А, В, НМТ.

    По оси ординат (высота диаграммы) откладывается давление в масштабе 0,1 МПа в миллиметре.

    На линии ВМТ наносятся точки давлений р г, р с, р z .

    На линии НМТ наносятся точки давлений р а, р в.

    Для дизельного двигателя необходимо еще нанести координаты точки, соответствующей концу расчетного процесса сгорания. Ордината этой точки будет равна р z , а абсцисса определяется по выражению

    S z = S с   , мм. (2.28)

    Построение линии сжатия и расширения газов можно проводить в такой последовательности. Произвольно между ВМТ и НМТ выбирается не менее 3 объемов или отрезков хода поршня V х1 , V х2 , V х3 (или S х1 , S х2 , S х3).

    И подсчитывается давление газов

    На линии сжатия

    На линии расширения

    Все построенные точки плавно соединяются между собой.

    Затем производится скругление переходов (при каждом изменении давления на стыках расчетных тактов), учитываемое при расчетах коэффициентом полноты диаграммы.

    Для карбюраторных двигателей скругление в конце сгорания (точка Z) проводится по ординате р z = 0,85 Р z mах.

    2.7 Определение среднего индикаторного давления по индикаторной диаграмме

    Среднее теоретическое индикаторное давление р" i представляет собой высоту прямоугольника, равного площади индикаторной диаграммы в масштабе давления

    МПа (2.31)

    где F i - площадь теоретической индикаторной диаграммы, мм 2 , ограниченная линиями ВМТ, НМТ, сжатия и расширения, может быть определена с помощью планиметра, методом интегрирования, либо другим способом; S - длина индикаторной диаграммы (ход поршня), мм (расстояние между линиями ВМТ, НМТ);

     p - масштаб давления, выбранный при построении индикаторной диаграммы, МПа / мм.

    Действительное индикаторное давление

    р i = р i ΄ ∙ φ п, МПа, (2.32)

    где  п - коэффициент неполноты площади индикаторной диаграммы; учитывает отклонение действительного процесса от теоретического (скругление при резком изменении давлений, для карбюраторных двигателей  п =0,94.. .0,97; для дизелей  п = 0,92.. .0,95);

    р = р r - р а - среднее давление насосных потерь в процессе впуска и выпуска для двигателей без наддува.

    После определения р i по индикаторной диаграмме сравнивают его с ранее подсчитанным (формула 1.4) и определяют расхождение в процентах.

    Среднее эффективное давление р е равно

    р е = р i – р мп,

    где р мп определено по формуле 1.6.

    Тогда подсчитайте мощность по зависимости
    и сравните с заданной. Расхождение должно быть не более 10…15%, если больше следует пересчитать процессы.

    В четырехтактном двигателе рабочие процессы происходят следующим образом:

    • 1. Такт впуска. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздухоочистителя в полость цилиндра через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 - 0.095 МПа, а температура 40 - 60 С.
    • 2. Такт сжатия. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.
    • 3. Такт расширения, или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6-9 МПа, а температура 1800-2000 С. Под действием давления газов поршень 2 перемещается от ВМТ в НМТ - происходит рабочий ход. Около НМТ давление снижается до 0.3-0.5 МПа, а температура до 700 - 900 С.
    • 4. Такт выпуска. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан 6 отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11-0.12 МПа, а температура до 500-700 С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

    Индикаторную диаграмму, снятую с помощью прибора-индикатора, называют индикаторной диаграммой (рис.1).

    Рис. 1

    Рассмотрим диаграмму:

    • 0-1 - заполнение цилиндра воздухом (при внутреннем смесеобразовании) или рабочей смесью (при внешнем смесеобразовании) при давлении несколько ниже атмосферного из-за гидродинамического сопротивления впускных клапанов и всасывающего трубопровода,
    • 1-2 - сжатие воздуха или рабочей смеси,
    • 2-3"-3 - период горения рабочей смеси,
    • 3-4 - рабочий ход поршня (расширение продуктов сгорания), совершается механическая работа,
    • 4-5 - выхлоп отработавших газов, падение давления до атмосферного происходит практически при постоянном объеме,
    • 5-0 - освобождение цилиндра от продуктов сгорания.

    В реальных тепловых двигателях преобразование теплоты в работу связано с протеканием сложных необратимых процессов (имеются трение, химические реакции в рабочем теле, конечные скорости поршня, теплообмен и др.) Термодинамический анализ такого цикла невозможен Гельман В.М., Москвин М.В. Сельскохозяйственные тракторы и автомобили. - М.: Агропромиздат, 1987, ч I и П..

    Индицирование двигателя. Определение мощности

    Индикаторные диаграммы, снятые с соблюдением необходимых условий, позволяют определить индикаторную мощность и распределение ее по цилиндрам двигателя, исследовать газораспределение, работу форсунок, топливных насосов, а также определить максимальное давление цикла p z , давление сжатия р с и др.

    Снятие индикаторных диаграмм производят после прогрева двигателя при установившемся тепловом режиме. После снятия каждой диаграммы индикатор должен быть отключен от цилиндра 3-ходовым краном индикатора и индикаторным клапаном на двигателе. Барабаны индикатора останавливают отключением шнура от привода. Периодически после снятия нескольких диаграмм поршень индикатора и его шток надо слегка смазывать. Не следует производить индицирование двигателя при волнении моря свыше 5 баллов. При снятии индикаторных диаграмм привод индикатора должен быть исправным, индикаторные краны полностью открыты. Диаграммы рекомендуется снимать одновременно со всех цилиндров; если последнее невозможно, то последовательное снятие их надо производить в возможно более короткий срок при постоянной частоте вращения коленчатого вала двигателя.

    Перед индицированием необходимо проверить исправность индикатора и его привода. Поршень и втулка индикатора должны иметь полное прилегание; смазанный поршень при снятой пружине из верхнего положения должен опускаться в цилиндре медленно и равномерно под действием собственного веса. Поршень и втулку индикатора смазывают только цилиндровым или моторным маслом, но не приборным, которое входит в комплект индикатора и предназначено для смазывания сочленений пишущего механизма и верхней части штока поршня. Пружину и гайку (колпачок), зажимающую пружину, надо завернуть полностью. Высота подъема пишущего штифта индикатора должна быть пропорциональна давлению газов в индицируемом цилиндре, а угол поворота барабана - пропорционален ходу поршня. Зазоры в шарнирных соединениях передаточного механизма должны быть небольшими, что проверяется легким покачиванием рычага при неподвижном поршне, а также должен отсутствовать мертвый ход. При сообщении индикатора с рабочей полостью цилиндра при неподвижном барабане пишущий штифт индикатора должен чертить вертикальную прямую линию.

    Индикатор связан с приводом либо специальным индикаторным шнуром, либо специальной стальной лентой размером 8 х 0,05 мм. Шнур для привода - льняной, плетеный; перед установкой новый шнур вытягивают в течение суток, подвешивая к нему груз массой 2 - 3 кг. При неудовлетворительном состоянии шнура получаются значительные искажения индикаторной диаграммы. Стальную ленту применяют для двигателей с числом оборотов 500 об/мин и выше, а также если число оборотов меньше 500 об/мин, но соединение индикатора и привода имеет вид ломаной линии длиной 2 - 3 м. Пригодность шнура с точки зрения его вытяжки проверяют снятием диаграммы сжатия при выключенной подаче топлива. Если линия сжатия совпадает с линией расширения, то шнур пригоден к работе. Длину индикаторного шнура необходимо отрегулировать так, чтобы в крайних положениях барабан не доходил до упора. При коротком шнуре происходит его обрыв, при длинном - диаграмма имеет укороченный вид („обрезанный”), так как в конце хода поршня барабан будет неподвижен. Во время индицирования шнур должен быть постоянно в натянутом положении.

    При проведении атмосферной линии необходимо следить за тем, чтобы она располагалась на расстоянии 12 мм от нижней кромки бумаги для индикаторов модели 50 и 9 мм - модели 30. В этом случае пишущий механизм будет работать в наиболее оптимальном диапазоне измерений и вести правильную запись линии всасывания под линией атмосферного давления. Длина диаграммы должна быть не более 90% наибольшего хода барабана.

    Индикаторный шнур должен лежать в плоскости качания рычага индикаторного привода. В среднем положении рычага шнур должен быть перпендикулярен его оси. Индикатор следует установить так, чтобы шнур не задевал трубопроводы, машинные решетки и другие детали. Если же он задевает, и это не устраняется изменением положения индикатора, то устанавливают переходный ролик. При этом необходимо сохранить перпендикулярность шнура от ролика к оси рычага индикатора привода при среднем положении последнего. Нажим карандаша (пишущего штифта) должен быть отрегулирован так, чтобы он не рвал бумагу, а оставлял тонкий ясно видимый след. Медный штифт должен быть всегда хорошо заточен. Сильный нажим карандаша вызывает увеличение площади диаграмм. Бумага должна плотно прилегать к индикаторному барабану.

    Перед установкой индикатора во избежание засорения каналов и поршня необходимо тщательно продуть индикаторный клапан двигателя. Перед снятием диаграммы продувку повторить через 3-ходовой кран индикатора. Перед индицированием двигателя индикатор должен быть хорошо прогрет. Невыполнение этого требования приводит к искажению индикаторных диаграмм. При установке и снятии индикатора нельзя пользоваться ударным инструментом при зажатии и отдаче накидной гайки. Для этого служит специальный ключ, входящий в комплект индикатора.

    Индикаторы и индикаторные пружины не реже 1 раза в два года должны проверяться органами надзора и иметь свидетельство о годности. Состояние индикаторного привода проверяют на работающем двигателе снятием диаграмм сжатия при выключенной подаче топлива. При правильно отрегулированном индикаторном приводе линии сжатия и расширения должны совпадать. При обнаружении дефектов в механизме газораспределения в период анализа индикаторных диаграмм необходимо принять меры по их устранению. После исправления дефектов произвести повторное индицирование и обработку (анализ) индикаторных диаграмм.

    Обычные индикаторные диаграммы для анализа изменения рабочего процесса двигателей, работающих с переменной нагрузкой. Снимают серией на непрерывной ленте, следуют одна за другой через установленный интервал.

    Снятые индикаторные диаграммы перед обработкой анализируются, так как из-за недостатков регулировки двигателя или в связи с неисправностью индикатора, его привода или нарушением правил индицирования индикаторные диаграммы могут иметь различные искажения.

    Планиметрирование.

    Индикаторные диаграммы обрабатывают в такой последовательности: настраивают планиметр и планиметрируют все диаграммы; определяют их площади; замеряют длины всех диаграмм и значения ординат р с и p z , подсчитывают р i , для каждого цилиндра. Планиметр настраивают по площади круга, очерченного планкой, прилагаемой к планиметру. В случае отсутствия специальной планки показания планиметра проверяют по квадрату на миллиметровой бумаге. Планиметрирование производят на гладкой доске, покрытой листом бумаги. При установке планиметра его рычаги по отношению к диаграмме располагают под углом 90°. При обводе диаграммы угол между рычагами планиметра должен составлять 60 - 120°.

    Длину индикаторной диаграммы измеряют по атмосферной линии. Ход привода следует выбирать таким, чтобы длина диаграммы равнялась 70 и 90 - 120 мм для индикаторов моделей 30 и 50 соответственно.

    При отсутствии планиметра среднее индикаторное давление р i находится с достаточной точностью методом трапеции. Для этого диаграмму разбивают вертикальными линиями на 10 равных частей. Среднее индикаторное давление определяют по формуле

    pi = Σ h /(10m),

    где Σ h - сумма высот h1,h2 h10,

    мм; т - масштаб индикаторной пружины, мм/МПа. Способ измерения ординат h, p z и р с показан на рис. 4.6. При снятии индикаторных диаграмм в каждом отдельном случае для сравнительной оценки распределения нагрузки по цилиндрам надо учитывать температуру отработавших газов.

    Каждый участок делят пополам и посередине измеряют его высоту. При оформлении результатов индицирования на бланке снятой диаграммы дизеля необходимо указывать название судна, дату индицирования, марку дизеля, номер цилиндра, масштаб пружины, длину и площадь диаграммы, полученные параметры p z , р с , р,-, N е , n . Обработанные индикаторные диаграммы каждого двигателя вклеивают в „Журнал индицирования” с соответствующим анализом результатов индицирования. В пояснительном тексте должны быть указаны выявленные недостатки регулировки двигателя и принятые меры по их устранению. По окончании рейса,.Журнал индицирования” и комплект обработанных диаграмм надо представлять в МСС флота вместе с рейсовым машинным отчетом. При обработке диаграмм, снятых с высокооборотных дизелей, необходимо делать поправку на погрешность пишущего механизма индикатора, которая в отдельных случаях может достигать 0,02-0,04 МПа (прибавляется к основному значению).

    Анализ процесса сгорания по диаграммам и осциллограммам

    Индикаторная диаграмма – это графическая изображение зависимости давления в цилиндре от хода поршня.

    Способы получения(снятия) индикаторных диаграмм

    Для получения индикаторных диаграмм используются механические индикаторы либо электронные системы измерения давления газов в цилиндре и топлива в процессе впрыскивания (MIP Calculator , pressure analyzer )(NK-5 " Аутроника " и Cyldet ABB ). Для получения полноценных индикаторных диаграмм с помощью механического индикатора двигатель д.б. оборудован индикаторным приводом.

    Виды индикаторных диаграмм

    С помощью механических индикаторов можно получить следующие виды индикаторных диаграмм: нормальные, смещенные, диаграммы-гребенки, сжатия, газообмена и развернутые.

    Нормальные индикаторные диаграммы служат для определения среднего индикаторного давления и общего анализа характера протекания индикаторного процесса.

    Рис. 1 Виды индикаторных диаграмм

    Смещенные диаграммы используют для анализа процесса сгорания, выявления недостатков в работе топливной аппаратуры, оценки правильности установки угла опережения подачи топлива, а также для определения максимального давления сгорания p z и давления начала видимого сгорания р" с которое обычно приравнивают к давлению сжатия р с . Смещенную диаграмму снимают путем присоединения индикаторного шнура с приводом соседнего цилиндра, если его кривошип заклинен под углом 90 или 120°, или с помощью привода с поворотной головкой, или быстро поворачивая барабан индикатора за шнур рукой.

    Диаграммы-гребенки служат для определения давления в конце сжатия р с и максимального давления сгорания р г на двигателях, не имеющих индикаторных приводов. При этом барабан индикатора при помощи шнура поворачивают рукой. Для определения р с диаграмму снимают при выключенной подаче топлива в цилиндр.

    Диаграммы сжатия как указывалось, используются для проверки индикаторного привода. По ним можно также определить давление р с и оценить герметичность поршневых колец по величине площадки между линией сжатия 1 и линией расширения 2.

    Диаграммы газообмена снимают обычным способом, но применяют слабые пружины с масштабом 1 кгс/см 2 = 5 мм (и более) и нормальный («паровой») поршень. По таким диаграммам анализируют процессы выпуска, продувки и наполнения цилиндра. Верхняя часть диаграммы ограничивается горизонтальной линией, так как поршень индикатора, находясь под воздействием слабой пружины, достигает крайнего верхнего положения и остается в нем до снижения давления в цилиндре до 5 кгс/см 2 .

    Развернутые диаграммы служат для анализа процесса сгорания в районе ВМТ, а также для определения р, в двигателях, не имеющих индикаторного привода. Развернутые диаграммы снимают электрическим пли механическим индикатором с независимым от вала двигателя приводом (например, от часового механизма).

    Для снятия всех вышеперечисленных диаграмм за исключением гребёнки требуется индикаторный привод

    Искажения индикаторных диаграмм возникают чаще всего при заедании поршня индикатора (рис. 2, а), установке слабой (рис. 2, б) или жесткой пружины (рис. 2, в), ослаблении гайки крепления пружины индикатора, вытяжке индикаторного шнура (рис. 2, г) или большой его длине (рис. 2, д).

    Рис. 2. Искажения индикаторных диаграмм


    Обработка индикаторных диаграмм производится с целью определения по ним значений среднего индикаторного давления р i , максимального давления сгорания p z и давления в конце сжатия р с . Наиболее просто определяются параметры p z и р с по диаграммам-гребенкам и смещенным диаграммам. Для этого масштабной линейкой с диаграммы снимают ординаты от атмосферной линии до соответствующих точек (см. рис. 1, б, в) или, при ее отсутствии, простой линейкой. В последнем случае значения р z и р с будут равны:

    где т - масштаб пружины.

    Максимальное давление сгорания можно определить также по нормальной индикаторной диаграмме, а давление, в конце сжатия - по диаграмме сжатия.

    Среднее индикаторное давление определяют по нормальным или развернутым индикаторным диаграммам. По развернутым диаграммам p i находят графоаналитическим способом, перестроением развернутой диаграммы в нормальную или при помощи специальной номограммы.

    По нормальной индикаторной диаграмме значение р i определяют по формуле

    (130)

    где F i - площадь индикаторной диаграммы, мм 2 ;

    т - масштаб пружины индикатора, мм/(кгс/см 2 );

    l - длина диаграммы, мм.

    Длину каждой индикаторной диаграммы замеряют между касательными к крайним точкам контура диаграммы, которые проводятся перпендикулярно атмосферной линии. Площадь диаграммы измеряют планиметром.

    Следует отметить, что при определении среднего индикаторного давления р i по индикаторной диаграмме погрешность измерения может достигать 10-15% и более. Вместе с тем в судовых малооборотных дизелях при нормальном техническом состоянии систем топливоподачи и наддува соотношения между давлениями р i р τ , p z , индексом топливного насоса и цикловой подачей топлива g ц обычно сохраняются достаточно стабильными продолжительное время. Поэтому любой из указанных параметров может быть выбран для оценки нагрузки цилиндра.

    В связи с этим некоторые дизелестроительные заводы установку индикаторных приводов считают нецелесообразной , а в разработанной для этих двигателей системе диагностики для оценки нагрузки цилиндров используется величина р z .

    Поэтому наиболее распространёнными видами индикаторных диаграмм, снятых механическим индикатором являются гребёнки и развернутые «от руки».

    Диаграмма-гребёнка позволяет определить давление конца сжатия (р с ) и максимальное давление цикла (p z ), причём для снятия р с необходимо отключение подачи топлива на данный цилиндр. Отключение цилиндра приведёт к снижению мощности и оборотов двигателя, ГТН и давления наддува, что в свою очередь скажется на величине давлении сжатия. Для измерения давления сжатия предпочтительнее диаграмма развёрнутая «от руки». Данная диаграмма при определённо навыке напоминает развернутую диаграмму снятую при помощи индикаторного привода, но связь между давлением и ходом поршня отсутствует.

    Полученные значения p с и p z необходимо проанализировать. Для получения более точных выводов одновременно со снятием диаграммы необходимо записать следующие данные: температуры газов за цилиндрами, перед и после турбины, давление и температуру наддувочного воздуха, обороты двигателя и турбины, указатель нагрузки двигателя. Желательно знать расход топлива на момент снятия диаграммы.

    Лучший способ анализа состояния двигателя – это сравнить замеренные величины с величинами полученными при заводских или ходовых испытания двигателя при той же нагрузке.

    В случае отсутствия данных испытаний необходимо сравнить полученные значения со средним.

    Например Таблица 1

    Дата

    Дв-ль

    ГНТ

    Доп значения

    Время

    Обороты

    р н

    Пар/№ц

    ср.зн.

    p z бар

    165

    156

    167

    156

    175

    164

    163,8

    Δp z

    0,71%

    -4,78%

    1,93%

    -4,78%

    6,82%

    0,10%

    3,5%*

    p c бар

    124

    120

    125

    128

    127

    122

    124,3

    Δp c

    0,27%

    3,49%

    0,54%

    2,95%

    2,14%

    1,88%

    2,5%*

    T г °С

    370

    390

    380

    390

    372

    350

    375,3

    ΔT г

    -1,42%

    3,91%

    1,24%

    3,91%

    0,89%

    -6,75%

    5,0%*

    Индекс ТНВД

    Действие

    Кольца,
    клапана

    TР↓

    ϕ↓

    *РД 31.21.30-97 Правила технической эксплуатации СТС и К стр. 99

    p z бар

    T г °С

    Действие

    ТР

    ϕ↓

    ТР↓

    Рис. 3. Диагностический комплекс фирмы «Аутроника » НК-5


    Комплекс НК-5 фирмы «Аутроника» . С помощью комплекса (рис. 3) можно получить наиболее полную информацию о протекании рабочего процесса во всех цилиндрах двигателя и распознать возникающие в нем нарушения, в том числе в работе топливовпрыскивающей аппаратуры. С этой целью предусмотрен датчик 6 высокого давления, устанавливаемый на топливопроводе высокого давления у форсунки, а также датчики: 4 - давления наддува; 5 - ВМТ и угла поворота вала; 7 - давления газов (3 - промежуточные усилители сигналов датчиков). Результаты измерений.в виде кривых давлений и цифровых значений измеренных параметров выводятся на цветной дисплей 1 и печатающее устройство 2 . Встроенный в систему микропроцессор позволяет данные измерений сохранять в памяти и в дальнейшем сопоставлять новые данные с

    прежними или эталонными.

    В качестве примера кривые давлений газов в цилиндре и в топливопроводе у форсунки (рис. 4) иллюстрируют типичные нарушения в протекании процессов. Эталонная кривая 1 отражает характер изменения давлений на рассматриваемом режиме работы двигателя при технически исправном состоянии, кривая 2 характеризует действительный процесс с теми или иными искажениями, вызванными неисправностями.

    Подтекание иглы форсунки (рис. 4, а) в связи с ухудшением распыливания топлива приводит к небольшому увеличению угла φ z , снижению давления р z и значительному догоранию топлива на линии расширения. Кривая расширения идет более полого и выше эталонной. Увеличиваются температура выпускных газов t г и давление р ехр на линии расширения на координате 36° после ВМТ.

    При запаздывании вспрыскивания топлива (рис. 4, б) смещаются вправо начало видимого сгорания и весь процесс сгорания топлива. Одновременно снижается давление р z растет температура t г и давление р ехр . Аналогичная картина наблюдается при износе плунжерной пары топливного насоса и потере плотности его всасывающего клапана. В последнем случае уменьшается цикловая подача топлива и соответственно несколько снижается давление p i

    Вследствие ранней подачи топлива (рис. 4, в) весь процесс сгорания смещается влево в сторону опережения, уменьшается угол φ г и растет давление р z . Поскольку процесс становится более экономичным, несколько увеличивается p i . Раннюю подачу подтверждает и кривая давлений топлива у форсунки (рис. 4, г).

    Изменения в кривой давления топлива вследствие увеличения цикловой подачи (рис. 4, д) сопровождаются ростом величин р ф т a х и продолжительности подачи φ ф .

    Падение скорости нарастания давления топлива Δр ф /Δφ на участке от начала его подъема до момента открытия иглы, а также общее падение давления впрыскивания (рис. 4, е) вызывает уменьшение угла опережения подачи φ нп и максимального давления р ф max . Причина заключается в увеличении протечек топлива через плунжерную пару, пару игла-направляющая форсунки вследствие их износа или в потере плотности клапанов насоса, штуцерных соединений топливопровода. Закоксовывание сопловых отверстий или чрезмерное увеличение вязкости топлива (рис. 4, ж) приводит к росту давления впрыскивания вследствие роста сопротивления истечения топлива из отверстий.

    220

    -15 40 -5 ВМТ 5 10 15 f, 9 №8


    Рис.4. Давление газов в цилиндре и топлива в трубопроводе высокого давления

    Рис. 6.4. Давление газов в цилиндре и топлива в топливопроводе у форсунки 220

    -15 40 -5 ВМТ 5 10 15 f, 9 №8