Сан шина что такое и как работает. Что такое CAN-шина, и для чего она нужна? Защита от угона

CAN шина является одним из устройств, обеспечивающих возможность более упрощенной установки противоугонной системы в автомобиле. Зная особенности монтажа КАН модуля, произвести его можно самостоятельно.

[ Скрыть ]

Что такое CAN шина и принцип работы

Автомобильный электронный КАН модуль представляет собой сеть контроллеров, предназначенных для объединения всех управляющих блоков машины в одну сеть. Основная особенность заключается в том, что объединение элементов происходит с использованием одного проводника. Сам цифровой интерфейс на авто включает в себя пару кабелей, именуемых CAN. Информация, которая поступает по каналам от одного блока к другому, передается в зашифрованном виде.

Где находится устройство

Место установки CAN шины зависит от конкретной модели автомобиля, этот момент надо уточнять в сервисном руководстве к машине. Он может располагаться в моторном отсеке или в салоне, под панелью приборов. Подробно на фото показаны примеры расположения КАН интерфейсов.

Кан модуль в одном из жгутов со штатной проводкой Расположение шины в багажном отсеке Шина КАН под приборной панелью автомобиля

Обычно блок управления сигнализацией ставится под контрольным щитком либо за «приборкой» в салоне машины.

Функции

Функции, выполняющиеся интерфейсом КАН:

  • возможность подключать к электросети транспортного средства и настраивать любые устройства, в том числе автосигнализации;
  • более упрощенный алгоритм подключения и работы дополнительного оборудования и систем, установленных в автомобиле;
  • возможность одновременной передачи и получения цифровой информации и ее анализа от различных источников;
  • снижение величины воздействия внешних помех на работу основных и дополнительных систем;
  • более быстрое подключение функции автозапуска противоугонной системы;
  • ускорение процесса передачи данных к конкретным устройствам и механизмам машины.

Режимы

Цифровая система может функционировать в нескольких режимах:

  1. Автономный или фоновый. При его активации все системы выключены, но на КАН интерфейс подается питание. Значение напряжения достаточно низкое, поэтому такой режим работы не позволит разрядить АКБ.
  2. Режим пуска. Он работает, когда водитель устанавливает ключ в замок и прокручивает его в положение зажигания либо кликает по . Производится включение функции стабилизации питания. Напряжение начинает поступать на датчики и регуляторы.
  3. Активный режим функционирования. При его включении обмен информации начинает происходить между всеми датчиками и регуляторами. Когда активирован активный режим, значение потребления энергии может возрасти до 85 мА.
  4. Режим отключения либо засыпания. При остановке мотора все датчики и системы, подключенные к интерфейсу КАН, перестают работать. Производится их отключение от электросети машины.

Характеристики

Отдельно следует сказать об основных характеристиках скорости работы интерфейса:

  • общая величина скорости передачи данных с информацией составляет 1 мб/с;
  • при отправке информации между микропроцессорными устройствами этот показатель составит 500 кб/с;
  • скорость получения данных к автомобильной системе «Комфорт» составляет 100 кб/с.

Разновидности и устройство

По устройству КАН шина представляет собой разъем, к которому могут подключаться блоки:

  • сигналки (с функцией автоматического запуска либо без нее);
  • управления силовым агрегатом;
  • работой антиблокировочной системы;
  • подушек безопасности;
  • управления автоматической трансмиссией;
  • панели приборов и т. д.

По типу использующихся идентификаторов КАН модули разделяются на два класса:

  1. CAN2, 0A. Это маркировка интерфейсов, поддерживающих одиннадцатибитный формат обмена информацией. Данный класс устройств не позволяет определить ошибки на сигналы от 29-битных модулей.
  2. CAN2, 0B. Таким образом маркируются устройства, работающие в одиннадцатибитном формате. Но их основная особенность заключается в возможности передачи информации об ошибке на микропроцессорный модуль при выявлении 29-битного идентификатора.

По разновидностям цифровые интерфейсы делятся на несколько категорий:

  1. Для мотора машины. При подключении интерфейса обеспечивается быстрая связь по каналу передачи информации. Назначение устройства состоит в синхронизации работы микропроцессорного блока к другим системам. К примеру, мотору и трансмиссии.
  2. Системы Комфорт. Предназначение данного типа устройств состоит в соединении всех систем, которые относятся к этой категории.
  3. Информационно-командные шины. Скорость передачи особо не отличается. Предназначение интерфейса состоит в обеспечении связи между системами, предназначенными для обслуживания. Например, между микропроцессорным модулем и навигационным устройством или мобильным гаджетом.

Подробно о способах передачи информации между устройствами по КАН модулю сказано в ролике канала «Электротехника и электроника для программистов».

Преимущества сигнализации с CAN шиной

Достоинства, характерные для КАН интерфейсов:

  1. Легкость монтажа дополнительного оборудования, к примеру, противоугонного комплекса на авто. Благодаря КАН шине автовладельцу надо просто соединить несколько разъемов, а не подключать провода к каждой отдельной системе.
  2. Быстродействие интерфейса. Устройство позволяет обеспечить оперативный обмен данными между узлами и блоками.
  3. Высокая устойчивость по отношению к воздействию внешних помех.
  4. Все интерфейсы характеризуются многоуровневой системой мониторинга и контроля. Ее наличие позволяет обеспечить защиту от возникновения ошибок, которые появляются в ходе приема и передачи информации.
  5. Во время работы КАН интерфейс автоматически раскидывает скорость по различным каналам. Благодаря этому обеспечивается эффективная работа основных узлов и систем, подключенных к нему.
  6. Повышенная безопасность системы. При необходимости интерфейс сможет заблокировать незаконный доступ, который попытаются получить злоумышленники к противоугонному комплексу авто.
  7. Большой выбор КАН модулей. Потребитель может подобрать устройство для любой модели транспортного средства, даже для Запорожца.

Подробно о преимуществах использования CAN модулей можно узнать из ролика, снятого каналом DIYorDIE.

Недостатки сигнализации с CAN шиной

Минусы, характерные для этих устройств:

  1. Наличие ограничений в плане объема передающейся информации. Современные транспортные средства оснащены множеством электронных приборов и устройств. В результате роста их числа увеличивается нагрузка канала, по которому передаются данные. Это приводит к росту времени отклика.
  2. Большинство информации, которая передается через интерфейс, имеет определенное назначение. На полезные данные в шине отводится только небольшая часть перенаправляющегося трафика.
  3. Возможны проблемы в плане отсутствия стандартизации. Это обусловлено использованием протокола высшего уровня.

Как установить и подключить сигнализацию к CAN шине?

Наличие данного интерфейса позволяет соединить противоугонный комплекс с «мозгами» автомобиля более быстро. Выполнить эту задачу можно своими руками.

Подготовительные работы

При подготовке надо точно узнать, где находится микропроцессорный модуль управления охранной системой. Если процедура ее монтажа выполнялась в гаражных условиях, то поиск будет несложным. В случае когда установка производилась специалистами, надо уточнить месторасположения устройства.

Пошаговая инструкция

Процесс подключения охранного комплекса к КАН интерфейсу выполняется так:

  1. Автосигнализация должна быть установлена на машине и соединена со всеми системами и компонентами авто.
  2. Надо найти толстый провод с оранжевой окантовкой. Этот проводник соединяется с цифровым интерфейсом.
  3. Модуль охранного комплекса подключается к указанному контакту. Для этого используется разъем.
  4. Выполняется установка микропроцессорного блока сигналки в надежном и сухом месте. Устройство закрепляется. Необходимо заизолировать места соединений всех проводников, а также сами кабели, чтобы предотвратить их перетирание и повреждение изоляции. После подключения производится проверка.
  5. На последнем этапе необходимо произвести настройку всех каналов, чтобы охранный комплекс функционировал без перебоев. Процедура регулировки параметров выполняется с помощью сервисного руководства, которое входит в комплектацию сигналки.

Пользователь sigmax69 в ролике показал, как выполняется процедура подключения противоугонного комплекса с помощью КАН модуля на примере автомобиля Хендай Солярис.

Неисправности CAN шины

О неполадках в работе КАН интерфейса могут сообщить следующие признаки:

  • на контрольном щитке одновременно появились несколько световых индикаторов, указывающих на неисправности;
  • на приборке нет информации о температуре хладагента, уровне горючего в баке и т. д.;
  • появился индикатор Чек Энджин.

Как проверить?

При его отсутствии можно воспользоваться мультиметром:

  1. Сначала необходимо найти провода витой пары интерфейса. Обычно они оснащаются черной либо серо-оранжевой изоляцией. Первый вариант — высокий уровень, второй — низкий.
  2. С использованием тестера выполняется диагностика напряжения на контактах, зажигание при этом должно быть активировано. Диагностика должна показать величину напряжения в диапазоне от 0 до 11 вольт, как правило, это 4,5 В.
  3. Затем зажигание в автомобиле отключается, от АКБ отсоединяется клеммный зажим с минусовым контактом.
  4. Производится замер величины сопротивления между кабелями. Если этот параметр стремится к нулю, это говорит о наличии короткого замыкания в интерфейсе. В случае когда величина напряжения движется к бесконечности, это свидетельствует об обрыве. Тогда выполняется поиск дефекта.
  5. Замыкание в интерфейсе может происходить в результате выхода из строя одного из управляющих модулей. Тогда необходимо по очереди отключить каждое устройство и повторно произвести замер сопротивления.

Как устранить?

Если CAN шина повреждена, необходимо найти вышедшие из строя контакты и отремонтировать их. Процедура восстановления работоспособности выполняется посредством перепайки. Поврежденные провода также подлежат замене, как и проводники, на которых стерлась изоляция.

Видео «Диагностика авто с помощью CAN шины»

Канал KV Avtoservice подробно рассказал о процедуре выполнения компьютерной проверки машины с использованием КАН интерфейса.

Бортовые системы электроники в современных легковых и грузовых автомобилях обладают огромным количеством дополнительных устройств и исполнительных механизмов. Для того, чтобы обмен информацией между всеми устройствами был максимально эффективен, в автомобиле должна быть надежная коммуникационная сеть. В начале 80-ых годов 20 века компания Bosch и разработчик Intel предложили новый сетевой интерфейс – Controller Area Network, который в народе называется Can-шина.

1 О принципе работы сетевого интерфейса CAN-шина

Кан-шина в автомобиле предназначена для обеспечения подключения любых электронных устройств, которые способны передавать и получать определенную информацию. Таким образом, данные о техническом состоянии систем и управляющие сигналы проходят по витой паре в цифровом формате. Такая схема позволила снизить негативное влияние внешних электромагнитных полей и существенно увеличить скорость передачи данных по протоколу (правила, по которым блоки управления различными системами способны обмениваться информацией).

Кроме того, различных систем автомобиля своими руками стала проще. За счет применения подобной системы в составе бортовой сети автомобиля высвободилось определенное количество проводников, которые способны обеспечивать связь по различным протоколам, например, между блоком управления двигателем и диагностическим оборудованием, системой сигнализации. Именно наличие Кан-шины в автомобиле позволяет владельцу своими руками выявлять неисправности контроллеров и ошибки с помощью специального диагностического оборудования.

CAN-шина это специальная сеть, с помощью которой осуществляется передача и обмен данными между различными узлами управления. Каждый из узлов состоит из микропроцессора (CPU) и CAN-контроллера, с помощью которого реализуется исполняемый протокол и обеспечивается взаимодействие с сетью автомобиля. Шина Кан имеет минимум две пары проводов – CAN_L и CAN_H, по которым и передаются сигналы посредством трансиверов – приемо-передатчиков, способных усиливать сигнал от управляющих устройств сети. Кроме того, трансиверы выполняют и такие функции как:

  • регулировка скорости передачи данных посредством усиления или уменьшения подачи тока;
  • ограничение тока для предотвращения повреждения датчика или замыкания линий передачи;
  • тепловая защита.

На сегодняшний день признаны два вида трансиверов – High Speed и Fault Tolerant. Первый тип наиболее распространен и соответствует стандарту (ISO 11898-2), он позволяет передавать данные со скоростью до 1МБ в секунду. Второй тип приемопередатчиков позволяет создать энергосберегающую сеть, со скоростью передачи до 120 Кб/сек, при этом подобные передатчики не имеют чувствительности к каким-либо повреждениям на самой шине.

2 Особенности работы сети

Следует понимать, что данные по CAN-сети передаются в виде кадров. Наиболее важные из них – это поле идентификатора (Identifire) и система данных (Data). Наиболее часто используемый тип сообщения по Кан-шине – Data Frame. Данный тип передачи данных состоит из так называемого арбитражного поля и определяет приоритетную передачу данных в том случае, если сразу несколько узлов системы передают данные на CAN-шину.

Каждое из подключенных к шине устройств управления имеет свое входное сопротивление, а общая нагрузка рассчитывается из суммы всех подключенных к шине исполняемых блоков. В среднем, входное сопротивление систем управления двигателем, которые подключаются на CAN-шину, составляет 68-70 Ом, а сопротивление информационно-командной системы может составлять до 3-4 ОМ.

3 Кан-интерфейс и диагностика системы

Системы управления CAN имеют не только различное нагрузочное сопротивление, но и разную скорость передачи сообщений. Этот факт усложняет обработку однотипных сообщений внутри бортовой сети. Для упрощения диагностики на современных автомобилях используется межсетевой интерфейс (преобразователь сопротивления), который либо выполнен в качестве отдельного управляющего блока, либо встроен в ЭБУ двигателя автомобиля.

Подобный преобразователь также предназначен для ввода или вывода определенной диагностической информации по проводу "К"-линия, который подключается во время диагностики или изменения параметров работы сети либо в диагностический разъем либо непосредственно к преобразователю.

Важно отметить, что определенных стандартов для разъемов сети Can на сегодняшний день не существует. Поэтому каждый из протоколов определяет свой тип разъемов на CAN-шине, в зависимости от нагрузки и других параметров.

Таким образом, при проведении диагностических работ своими руками используется унифицированный разъем типа OBD1 или OBD2, который можно встретить на большинстве современных иномарок и отечественных автомобилей. Однако, некоторые модели автомобилей, например Volkswagen Golf 5V, Audi S4, не имеют межсетевого интерфейса. Кроме того, схема блоков управления и CAN-шины индивидуальна для каждой марки и модели авто. Для того, чтобы провести диагностику CAN-системы своими руками, используется специальная аппаратура, которая состоит из осциллографа, анализатора CAN и цифрового мультиметра.

Работы по выявлению неисправностей начинаются со снятия напряжения сети (снятие минусовой клеммы АКБ). Далее определяется изменение сопротивления между проводами шины. Самыми распространенными видами неисправности Кан-шины в автомобиле является замыкание или обрыв линии, выход из строя резисторов нагрузки и снижение уровня передачи сообщений между элементами сети. В некоторых случаях без применения анализатора Can выявить неисправность не получается.

В современных машинах используются электронные блоки управления (ЭБУ, ECU - Electronic Control Unit) для контроля и управления различными системами машины, такими как гидравликой, коробкой передач и двигателем.
Аналогично тому, как компьютеры могут быть соединены в одну сеть, блоки управления в машине тоже можно объединить.

Преимущества сетевого соединения:

  • Более чувствительная система управления
  • Получение более полных и надежных данных
  • Обнаружение неисправностей и управление настройками производится средствами программного обеспечения.

Например, ЭБУ двигателя может обмениваться с другими ЭБУ машины по системе сети CAN .

Система CAN :Controller Area Network - сеть контроллеров. CAN разработан компанией Robert Bosch GmbH в середине 1980-х и в настоящее время получил широкое применение в автомобильной, авиационной, тракторостроительной и других видах промышленности.

Электронная система связи CAN, которая объединяет все блоки управления машиной в сеть с общим кабелем(шиной) и состоящая из одной пары проводов, называется шиной CAN. Закодированные данные посылаются от блоков управления на шину CAN.

Рисунок - CAN шина из 4-х блоков управления.

Выше показана шина CAN, состоящая из 4-х блоков управления. На концах общего кабеля (шины) устанавливается согласующие сопротивления (терминаторы, резисторы) Обычно сопротивление каждого резистора составляет 120 Ом. Применение согласующих резисторов на концах системы позволяет избежать отражение сигнала в конце линии тем самым обеспечивая нормальную работу всей CAN сети.

Передача сигналов в шине CAN осуществляется посредством двух скрученных между собой проводов (витая пара, Twisted Pair) Применение витой пары проводов, обусловлено дифференциальной передачей данных и высокой защитой такого решения от внешних помех.

В нашем случае блок №2 отправляет один сигнал по двум витым проводам в шину CAN, причем у этого сигнала будет различное напряжение на каждом проводе витой пары. Другие блоки в сети читают сигнал и определяют какому блоку оно предназначено и какую команду нужно выполнить (Блоки №1 и №4)

Передача одного и того же сигнала на два провода (CAN High и CAN low) с разным напряжением происходит методом "дифференциальной передачи данных". В состоянии покоя напряжение на проводе CAN High и CAN low составляет 2,5 В. Такое состояние называется "рецессивное" и упрощенно соответствует значению бита "0" При переходе в активное "доминантное" состояние (такое состояние может создать любой элемент сети) напряжение на проводе CAN High будет повышаться не меньше чем на 1 В до 3,5 В, а CAN low понижаться - тоже на 1 В до 1,5В. Чтобы "понимать" разницу напряжений между CAN High и CAN low, каждый блок управления подключается к шине CAN через трансивер, где происходит преобразование разности напряжений U CAN Hi и U CAN Lo в итоговое напряжение U DIFF . Разница между CAN High и CAN low будет 2В и будет восприниматься принимающими блоками управления как значение бита, равное "1". Такая "дифференциальная передача" сигнала, исключает влияние базового напряжения 2,5 В и другие скачки напряжений из-за различных помех на работу блоков управления. Например, происходит просадка напряжения в бортовой сети на 1,5 В из-за включения мощного потребителя в сеть: U CAN Hi и U CAN Lo в состоянии покоя 2,5 -1,5 = 1 В (U DIFF = 1 - 1 = 0 - Значение бита "0") Разница, при переходе в доминантное состояние U CAN Hi = 2,5 +1 -1,5 = 2 В; U CAN Lo =2,5 -1 -1,5 = 0 В. Итого U DIFF = 2 - 0 = 2 В (Значение бита "1"), даже такая нереальная просадка не повлияла на работу.

Рисунок - Принцип линии CAN

Так происходит передача сигналов по шине CAN. Сами эти сигналы представляют собой "кадры" (сообщения), которые принимаются всеми элементами сети CAN. Полезная информация в кадре состоит из идентификационного поля (идентификатора) длиной 11 бит (стандартный формат) или 29 бит (расширенный формат, надмножество предыдущего) и поля данных длиной от 0 до 8 байт. Идентификационное поле говрит о содержимом пакета и служит для определения приоритета при попытке одновременной передачи несколькими сетевыми узлами. Также в кадре (сообщении) помимо полезной информации содержится служебная информация. Она представлена полями проверки, полем отзыва и другим полями. В конце кадра содержится "поле конец сообщения"

В шине CAN сообщения от блоков управления должны передаваться в общую шину, то для исключения конфликтов между блоками, каждый узел перед отправкой кадра проверяет сеть на передачу доминантного бита. Устройство передающее доминантный бит считается приоритетным. Таким образом устройство будет дожидаться освобождения линии CAN. С одной стороны такой алгоритм работы повышает быстродействие, но с другой при неправильной работе одного из блоков управления возможна полная "загрузка" CAN шины и невозможность отправки сообщении другими блоками, элементами сети CAN (Линия для них будет всегда занята).

Рисунок -Структура сообщения

Напоследок пример работы:

Переключением кнопки инициируем команду блока управления №1 передачу сообщений в шину CAN. Блок №2 получает сообщение и расшифровав в сообщении что кадр пришел для него с командой включить свет. Подается бортовое напряжение на потребитель.

Рисунок - Принцип коммуникации через CAN

Вот такой принцип работы шины CAN без конкретных углублений. Также стоит отметить, что шина CAN может иметь свои особенности, зависящее от области применения и фирмы производителя. В статье я рассказал о наиболее часто встречающейся шине CAN, которую можно встретить в современных грузовых и легковых автомобилях, тракторах и разнообразной спец технике.

Шина CAN-bus была создана в конце 80-х годов фирмой Robert Bosch GmbH (Германия) как решение для распределенных систем, работающих в режиме реального времени. Отличительной особенностью шины является ее высокая помехозащищенность. Дополнительным преимуществом шины CAN выступает ее устойчивость к механическим повреждениям - замыкание проводников шины на общий провод, питание или между собой не приводит к выходу из строя устройств. Более того, некоторые модификации шины способны функционировать при обрыве одного из проводников.

CAN-шина в промышленных сетях

Полевая шина CAN (Controller Area Network) характеризуется высокими скоростью передачи данных и помехоустойчивостью, а также способностью обнаруживать любые возникающие ошибки. Благодаря этому CAN сегодня широко используется в таких областях, как автомобильный и железнодорожный транспорт, промышленная автоматика, авиация, системы доступа и контроля. По данным ассоциации CiA (CAN in Automation, www.can-cia.de), в настоящее время в эксплуатации находится около 300 млн CAN-узлов по всему миру. В Германии CAN-шина занимает первое место по популярности среди остальных полевых шин.

Характеристики протокола CAN Преимущества CAN

Общая тенденция в области автоматизации состоит в замене традиционной централизованной системы управления на распределенное управление путем размещения интеллектуальных датчиков и исполнительных механизмов рядом с управляемым процессом. Это вызвано ростом числа проводов связи, увеличением количества соединений, сложностью диагностики ошибок и проблемами с надежностью. Связь между узлами такой системы осуществляется с помощью полевой шины. CAN - это система связи для многоконтроллерных систем. Рассмотрим более подробно преимущества CAN и причины, по которым CAN приобретает все большее распространение.

Испытанный стандарт. Протокол CAN активно используется уже более 20 лет, что очень важно для таких консервативных областей как железнодорожный транспорт или судостроение. CAN был разработан в 1980 г. фирмой Robert Bosch для автомобильной промышленности. CAN-интерфейс регламентирован международными стандартами ISO 11898 для высокоскоростных и ISO 11519-1 для низкоскоростных приложений. Низкая стоимость определяется хорошим соотношением цена/производительность, также широкой доступностью CAN-контроллеров на рынке. Надежность определяется линейной структурой шины и равноправностью ее узлов, так называемой мультимастерностью (Multi Master Bus), при которой каждый узел CAN может получить доступ к шине. Любое сообщение может быть послано одному или нескольким узлам. Все узлы одновременно считывают с шины одну и ту же информацию, и каждый из них решает, принять данное сообщение или игнорировать его. Одновременный прием очень важен для синхронизации в системах управления. Отказавшие узлы отключаются от обмена по шине.



Высокая помехоустойчивость достигается благодаря подавлению синфазных помех дифференциальным приемопередатчиком, работе встроенных механизмов обнаружения ошибок (одна необнаруженная ошибка за 1000 лет при ежедневной 8-часовой работе сети на скорости 500 Кбит/с), повтору ошибочных сообщений, отключению неисправных узлов от обмена по шине и устойчивости к электромагнитным помехам.

Гибкость достигается за счет простого подключения к шине и отключения от шины CAN-узлов, причем общее число узлов не лимитировано протоколом нижнего уровня. Адресная информация содержится в сообщении и совмещена с его приоритетом, по которому осуществляется арбитраж. В процессе работы возможно изменение приоритета передаваемого сообщения. Следует также отметить возможность программирования частоты и фазы передаваемого сигнала и арбитраж, не разрушающий структуру сообщений при конфликтах. На физическом уровне есть возможность выбора разнотипных линий передачи данных: от дешевой витой пары до оптоволоконной линии связи.

Работа в реальном времени становится возможной благодаря механизмам сетевого взаимодействия (мультимастерность, широковещание, побитовый арбитраж) в сочетании с высокой скоростью передачи данных (до 1 Мбит/с), быстрой реакцией на запрос передачи и изменяемой длиной сообщения от 0 до 8 байт.

Приложения CAN

CAN является идеальным решением для любого приложения, где микроконтроллеры обмениваются сообщениями друг с другом и с удаленными периферийными устройствами. Изначально CAN использовался в автомобилях для обеспечения критичного по времени управления и обмена информацией между двигателем и коробкой передач при гарантированном времени ожидания сообщения и допуске каждого из участников сети к работе с текущими данными. Наряду с достаточно дорогими высокоскоростными решениями существуют и экономичные решения для подключения к сети инерционных устройств, которые работают в шкале времени сотен микросекунд (система управления дверьми, подъемник окна, управление зеркалом). При этом мощные жгуты электрических проводов заменяются двухпроводной CAN-сетью, узлами которой являются, в том числе, тормозные огни и указатели поворота.

Широкое применение CAN нашел в промышленной автоматике, где имеется большое число устройств управления, датчиков, механизмов, электроприводов и других объектов, которые связаны единым технологическим циклом (системы отопления и кондиционирования, насосы, конвейеры, лифты, эскалаторы, транспортеры и т. д.). Важной особенностью таких систем является возможность диагностики и управления объектами, расположенными на большой территории, по адаптивным алгоритмам. В результате достигается существенное уменьшение потребляемой мощности, шума, износа оборудования. Подобная картина наблюдается и в железнодорожных бортовых системах, где решающую роль играет обмен данными между подсистемами при наборе скорости, торможении, управлении дверьми и диагностике.

Физический уровень

Физический уровень CAN-шины представляет собой соединение «монтажное И» между всеми устройствами, подключенными к ней. Дифференциальные сигнальные линии называются CAN_H и CAN_L и в статическом состоянии находятся под потенциалом 2,5 В. Лог. 1 (рецессивный бит) обозначает состояние шины, при котором уровень на линии CAN_H выше, чем уровень CAN_L. При лог. 0 (доминантный бит) уровень на линии CAN_H ниже, чем уровень CAN_L. Принято следующее соглашение о состоянии шины: пассивное состояние шины соответствует уровню лог. 1, а активное - уровню лог. 0. Когда сообщения не передаются по шине, она находится в пассивном состоянии. Передача сообщения всегда начинается с доминантного бита. Логика работы шины соответствует «проводному И»: доминантный бит «0» подавляет рецессивный бит «1» (рис. 12.1).

Рис. 12.1. Логика работы CAN шины

При физической реализации конкретного проекта с CAN необходимо определить свойства шины и ее узлов: где располагаются обрабатывающие устройства, какими свойствами они обладают, какие датчики и исполнительные механизмы присутствуют в системе, являются они интеллектуальными или нет, что можно сказать об их физическом расположении. В зависимости от условий эксплуатации могут использоваться однопроводная линия (в пределах печатной платы), двухпроводная линия, витая пара или волоконно-оптическая линия. При дифференциальном методе формирования сигналов двухпроводная линия позволяет значительно повысить помехоустойчивость. При использовании дифференциальных напряжений CAN-сеть продолжает функционировать в чрезвычайно шумной среде или при обрыве одной из сигнальных линий. Даже при простой витой паре дифференциальные входы CAN эффективно нейтрализуют шум.

Максимальная скорость передачи данных составляет 1 Мбит/с при длине шины 40 м и около 40 Кбит/с при длине шины 1000 м.

Разновидности CAN

В настоящее время доступны различные устройства с CAN-интерфейсом, которые помимо передачи данных из одной точки в другую позволяют реализовать синхронизацию процессов и обслуживание по приоритетам. Более ранние реализации CAN-контроллеров используют кадры с 11-разрядным идентификатором и возможностью адресации до 2048 сообщений и соответствуют спецификации CAN V. 2.0A. Такие контроллеры носят название Basic CAN и характеризуются сильной загруженностью центрального процессора (ЦПУ), так как каждое входящее сообщение запоминается в памяти и ЦПУ решает, нужны ему данные сообщения или нет (рис. 12.2). Контроллеры Basic CAN содержат один передающий буфер и один или два приемных буфера сообщений. Чтобы послать или получить сообщение, требуется задействовать ЦПУ через прерывания «сообщение_послано» и «сообщение_получено». В результате проверки каждого входящего сообщения загрузка ЦПУ очень велика, что ограничивает реальную скорость обмена по сети. По этой причине такие контроллеры используются в сетях CAN с низкой скоростью обмена и/или малым количеством сообщений.

Рис. 12.2. Структура контроллера Basic CAN

Большинство выпускаемых сегодня CAN-контроллеров используют расширенные кадры сообщений с идентификатором длиной 29 разрядов, что позволяет адресовать до 536 млн сообщений. Такие контроллеры соответствуют спецификации CAN V. 2.0B (active) и называются контроллеры Full-CAN. В них предусмотрен буфер для нескольких сообщений, причем каждое сообщение имеет свою маску, и фильтрация осуществляется по соответствию идентификатора маске.

В случае Full-CAN ЦПУ максимально разгружено, поскольку не обрабатывает ненужные сообщения (рис. 12.3). При приеме сообщения с идентификатором, соответствующим маске, оно запоминается в специальной зоне двухпортового ОЗУ, и работа ЦПУ прерывается. Full-CAN имеет также специальный тип сообщения, которое означает: «у кого бы ни находилась эта информация, пожалуйста, пошлите ее сейчас же». Контроллер Full-CAN автоматически прослушивает все сообщения и посылает запрошенную информацию.

Рис. 12.3. Структура контроллера Full-CAN

До недавнего времени в промышленности был широко распространен Basic CAN с 11-разрядным идентификатором. Этот протокол допускает простую связь между микроконтроллерами и периферийными устройствами при скорости обмена вплоть до 250 Кбит/с. Однако при стремительном удешевлении CAN-контроллеров использование Full-CAN стало оправданным и для связи с медленными устройствами. Если в промышленных приложениях требуется высокоскоростной (до 1 Мбит/с) обмен данными, то непременно следует использовать Full-CAN.

Арбитраж узлов CAN-шины

CAN имеет много уникальных свойств, отличающих его от других шин. В протоколе CAN осуществляется посылка сообщений по общей CAN-шине, при этом отсутствуют адреса отправителя и получателя сообщения. Каждый узел постоянно «просматривает» шину и осуществляет локальную фильтрацию при приеме, используя битовые маски, и решает, какие сообщения извлекать из шины.

В результате, узел принимает и обрабатывает только те сообщения, которые предназначены именно для него.

Каждое сообщение имеет свой приоритет, значение которого содержится в идентификаторе сообщения. Кроме того, идентификаторы используются для обозначения типа сообщения. Сообщению с младшим номером идентификатора соответствует высший приоритет; наивысшим приоритетом обладает сообщение с идентификатором, состоящим полностью из нулей. Передача сообщения начинается с отправки на шину идентификатора. Если доступ к шине требуют несколько сообщений, то сначала будет передано сообщение с наиболее высоким приоритетом, то есть с меньшим значением идентификатора, независимо от других сообщений и текущего состояния шины. Каждый узел перед передачей сообщения проверяет, работает ли узел с более высоким приоритетом. Если да, то он возвращается в состояние приемника и пытается передать сообщение в другое время. Это свойство имеет особое значение при использовании в системах управления реального времени, поскольку значение приоритета жестко определяет время ожидания.

Если передача узла А приостанавливается узлом B, посылающим сообщение с более высоким приоритетом, то, как только шина освободится, будет сделана другая попытка передачи сообщения от узла A. Этот принцип получил название CSMA/CA: Carrier Sense Multiple Access/Collision Avoidance (общий доступ с опросом/предотвращение конфликтов). Такой режим в отличие от Ethernet не позволяет конфликтующим узлам в шине выяснять отношения, а сразу выявляет победителя и сокращает время обмена.

Итак, благодаря арбитражу шины сообщение с высшим приоритетом передается первым, обеспечивая функционирование системы в реальном масштабе времени и быструю передачу информации. Распределение приоритетов между различными типами сообщений задается разработчиком при проектировании сети.

Формат сообщений

Если не учитывать процедуру повтора сообщения, принятого с ошибкой, существует два вида связи между узлами: один узел передает информацию, а другой получает, или узел A запрашивает узел B о данных и получает ответ.

Рис. 12.4. Кадр данных (Data Frame)

Для передачи данных служит кадр данных - Data Frame (рис. 12.4), который содержит:

  • идентификатор, указывающий на тип сообщения («скорость_двигателя», «температура_масла») и на приоритет доступа к шине. Поле идентификатора содержит различное количество бит в зависимости от разновидности протокола: в стандартном формате CAN V2.0A предусмотрен 11-разрядный идентификатор, а в расширенном CAN V2.0B - 29-разрядный;
  • поле данных, содержащее соответствующее сообщение («скорость_двигателя»= 6000 об/мин, «температура_масла»=110 °C) длиной до восьми байт;
  • два байта контрольной суммы - Cyclic Redundancy Check (CRC) для выявления и коррекции ошибок передачи.

Для запроса информации узел CAN использует кадр запроса данных Remote Frame (рис. 12.5), который содержит:

  • идентификатор, определяющий тип запрашиваемой информации («скорость_ двигателя», «температура_масла») и приоритет сообщения;
  • два байта контрольной суммы CRC .

Рис. 12.5. Кадр запроса данных Remote Frame

В этом случае за идентификатором не следуют данные и код длины данных не имеет прямого отношения к количеству байт данных. Узел, которому предложено передать информацию (датчик температуры масла), передает кадр данных, содержащий требуемую информацию. Таким образом, если узел А направляет узлу В кадр запроса с идентификатором «температура_масла», то узел В опрашивает датчик температуры и направляет узлу А кадр данных, содержащий идентификатор «температура_масла» и требуемую информацию.

Дополнительная информация, содержащаяся в кадре, позволяет определить формат и синхронизацию протокола передачи сообщения и тип посылки:

  • какое сообщение послано - запрос о данных или собственно данные определяют бит удаленного запроса передачи (RTR для 11-разрядного идентификатора и SRR для 29-разрядного);
  • код длины данных, сообщающий, сколько байтов данных содержит сообщение; все узлы принимают кадр данных, но те из них, которым эта информация не нужна, ее не сохраняют;
  • для обеспечения синхронизации и контроля кадр содержит поля начала кадра Start of Frame, конца кадра End of Frame и подтверждения Acknowledgement Field;
  • вход в режим синхронизации на шине осуществляется первым битом поля Start of Frame, далее синхронизация поддерживается фронтом при смене уровня посылаемых битов;
  • используется механизм битстаффинга - вставка дополнительного бита при следующих подряд пяти нулях или единицах.

Обнаружение ошибок

Сигнализация об ошибках происходит путем передачи кадра ошибки Error Frame. Он инициируется любым узлом, обнаружившим ошибку. CAN-контроллеры используют метод статистической обработки ошибок. Каждый узел содержит счетчики ошибок при передаче и приеме Transmit Error Counter и Receive Error Counter. Если передатчик или приемник обнаруживают ошибку, значение соответствующего счетчика увеличивается. Когда значение счетчика превышает некоторый предел, текущая передача прерывается. Узел выдает сигнал об ошибке в виде Error Frame, где выставляет активный доминантный флаг ошибки длиной 6 бит. После этого узел, передача которого была прервана, повторяет сообщение. Ненадежным или частично поврежденным узлам разрешено посылать лишь пассивный рецессивный флаг ошибки.

В CAN существует несколько разновидностей ошибок. Из них три типа на уровне сообщений:

  • CRC Error - ошибка контрольной суммы (при несовпадении принятой в поле CRC и вычисленной контрольных сумм).
  • Form Error - ошибка формата кадра при несоответствии принятого сообщения формату CAN.
  • Acknowledgement Error - ошибка подтверждения приема сообщения, если ни один из узлов не подтвердил правильного получения сообщения.

Кроме того, существует два типа ошибок на битовом уровне:

  • Bit Error - обнаружение активным узлом расхождения между посланным в шину уровнем и фактическим значением за счет реализации узлом механизма самоконтроля.
  • Stuff Error - наличие в поле сообщения шести следующих подряд бит 0 или 1 (ошибка битстаффинга).

Благодаря этим механизмам обнаружения и коррекции ошибок вероятность пропуска ошибки крайне мала. Например, при скорости 500 Кбит/с, загруженности шины 25 % и использовании в течение 2000 часов в год возникает лишь одна необнаруженная ошибка за 1000 лет. Кроме того, в шине невозможна ситуация блокировки неисправным узлом работы всей сети. Такие узлы обнаруживаются и отключаются от обмена по шине.

Для того чтобы упорядочить работу всех контроллеров, которые облегчают управление и повышают контроль вождения автомобилем, используется CAN-шина. Подключить такое устройство к сигнализации машины можно своими руками.

[ Скрыть ]

Что такое CAN-шина и принцип ее работы

КАН-шина представляет собой сеть контроллеров. Устройство используется для объединения всех управляющих модулей автомобиля в одну рабочую сеть с общим проводом. Этот девайс состоит из одной пары кабелей, которая называется CAN. Информация, передающаяся по каналам из одного модуля на другой, отправляется в закодированном виде.

Схема подключения устройств к CAN-шине в Мерседесе

Какие функции может выполнять CAN-шина:

  • подключение к автомобильной бортовой сети любых девайсов и устройств;
  • упрощение алгоритма подсоединения и функционирования вспомогательных систем машины;
  • блок может одновременно получать и передавать цифровые данные из разных источников;
  • использование шины снижает воздействие внешних электромагнитных полей на функционирование основных и вспомогательных систем машины;
  • CAN-шина позволяет ускорить процедуру передачи информации к определенным устройствам и узлам автомобиля.

Эта система работает в нескольких режимах:

  1. Фоновый. Все устройства отключены, но на шину подается питание. Величина напряжения слишком мала, поэтому разрядить аккумуляторную батарею шина не сможет.
  2. Режим запуска. Когда автолюбитель вставляет ключ в замок и проворачивает его либо жмет кнопку Старта, происходит активация устройства. Включается опция стабилизации питания, которое подается на контроллеры и датчики.
  3. Активный режим. В этом случае между всеми контроллерами и датчиками происходит обмен данными. При работе в активном режиме параметр потребления энергии может быть увеличен до 85 мА.
  4. Режим засыпания или отключения. При глушении силового агрегата контроллеры КАН перестают функционировать. При включении режима засыпания все узлы машины отключаются от бортовой сети.

Канал Виалон СУшка в своем видео рассказал о КАН-шине и что надо знать про ее эксплуатацию.

Плюсы и минусы

Какими преимуществами обладает КАН-шина:

  1. Простота установки устройства в автомобиль. Владельцу машины не придется тратиться на монтаж, поскольку выполнить эту задачу можно самостоятельно.
  2. Быстродействие устройства. Девайс позволяет быстро обмениваться информацией между системами.
  3. Устойчивость к воздействию помех.
  4. Все шины обладают многоуровневой системой контроля. Ее использование дает возможность предотвратить появление ошибок при передаче и приеме данных.
  5. В процессе функционирования шина автоматически разбрасывает скорость по разным каналам. Это позволяет обеспечить оптимальную работу всех систем.
  6. Высокая безопасность устройства, при надобности система блокирует несанкционированный доступ.
  7. Большой выбор устройств различных типов от разных производителей. Можно подобрать вариант, предназначенный для конкретной модели авто.

Какие недостатки характерны для устройства:

  1. В девайсах бывают ограничения по объему передаваемых данных. В современных автомобилях используется множество электронных девайсов. Их большое количество приводит к высокой загруженности канала передачи информации. Это становится причиной увеличения времени отклика.
  2. Большая часть отправляющихся по шине данных обладает конкретным назначением. На полезную информацию отводится маленькая часть трафика.
  3. При использовании протокола высшего уровня автовладелец может столкнуться с проблемой отсутствия стандартизации.

Виды и маркировки

Самым популярным типом шин являются устройства, разработанные Робертом Бошем. Девайс может функционировать последовательно, то есть сигнал передается за сигналом. Такие устройства называются Serial BUS. В продаже можно встретить и параллельные шины Parallel BUS. В них передача данных осуществляется по нескольким каналам связи.

О разновидностях, принципе действия, а также возможностях КАН-шины можно узнать из видео, снятого каналом DIYorDIE.

С учетом разных типов идентификаторов можно выделить несколько видов устройств:

  1. КАН2, 0А Актив. Так маркируются устройства, которые поддерживают 11-битный формат обмена данными. Эти узлы не обозначают ошибки на импульсы 29-битного узла.
  2. КАН2, 0В Актив. Так маркируются девайсы, функционирующие в 11-битном формате. Основное отличие заключается в том, что при обнаружении идентификатора на 29 бит в системе они будут передавать на управляющий модуль сообщение об ошибке.

Надо учесть, что в современных машинах такие типы устройств не применяются. Это связано с тем, что работа системы должна быть согласованной и логичной. А в данном случае она может функционировать при нескольких скоростях передачи импульсов — на 125 либо 250 кбит/с. Более низкая скорость используется для управления дополнительных устройств, таких как осветительные приборы в салоне, электрические стеклоподъемники, стеклоочистители и т. д. Высокая скорость нужна для обеспечения рабочего состояния трансмиссии, силового агрегата, системы ABS и т. д.

Разновидность функций шин

Рассмотрим, какие существуют функции у различных девайсов.

Девайс для автомобильного двигателя

При соединении устройства обеспечивается быстрый канал передачи данных, по которому информация распространяется со скоростью 500 кбит/с. Основное предназначение шины заключается в синхронизации работы управляющего модуля, к примеру, коробки передач и мотора.

Устройство типа Комфорт

Скорость передачи данных по этому каналу более низкая и составляет 100 кбит/с. Функция такой шины заключается в соединении всех устройств, относящихся к данному классу.

Информационно-командный девайс

Скорость передачи данных такая же, как и в случае с устройствами типа Комфорт. Главная задача шины заключается в обеспечении связи между обслуживающимися узлами, к примеру, мобильным девайсом и системой навигации.

Шины от разных производителей приведены на фото.

1. Устройство для автомобильного ДВС 2. Интерфейсный анализатор

Могут ли быть проблемы в работе CAN-шин?

В современном авто цифровая шина используется постоянно. Она работает одновременно с несколькими системами, причем по ее каналам связи постоянно передается информация. Со временем в работе устройства могут возникнуть неполадки. В результате анализатор данных будет функционировать неверно. При обнаружении неполадок автовладелец должен найти причину.

По каким причинам возникают сбои в работе:

  • повреждение или обрыв электроцепей устройства;
  • произошло замыкание в системе на аккумулятор либо массу;
  • могли замкнуть системы КАН-Хай или КАН-Лоу;
  • произошло повреждение прорезиненых перемычек;
  • разряд аккумуляторной батареи или снижение напряжения в бортовой сети, вызванное некорректной работой генераторного устройства;
  • произошла поломка катушки зажигания.

При поиске причин учитывайте, что неисправность может заключаться в некорректной работе вспомогательных устройств, устанавливающихся дополнительно. К примеру, причина может заключаться в неправильном функционировании противоугонной системы, контроллеров и девайсов.

О ремонте CAN-шины приборной панели в автомобиле Форд Фокус 2 можно узнать из ролика, снятого пользователем Brock — Video Corporation.

Процесс поиска неисправности осуществляется так:

  1. Сначала автовладелец производит диагностику состояния системы. Целесообразно осуществить компьютерную проверку, чтобы выявить все неполадки.
  2. На следующем этапе производится диагностика уровня напряжения и сопротивления электрических цепей.
  3. Если все в порядке, то проверяется параметр сопротивления прорезиненых перемычек.

Диагностика работоспособности КАН-шины требует определенных навыков и опыта, поэтому процедуру поиска неисправностей лучше доверить специалистам.

Как подключить сигнализацию по CAN-шине

Для подключения КАН-шины своими руками к автосигнализации машины с автозапуском либо без него надо знать, где находится блок управления противоугонной системой. Если установка сигнализации осуществлялась самостоятельно, то процесс поиска не вызовет сложностей у автовладельца. Управляющий модуль обычно ставится под приборной панелью в районе рулевого колеса либо за контрольным щитком.

Как произвести процедуру подключения:

  1. Противоугонная система должна быть установлена и подключена ко всем узлам и элементам.
  2. Найдите толстый кабель оранжевого цвета, он подключается к цифровой шине.
  3. Адаптер противоугонной системы подсоединяется к контакту найденной шины.
  4. Производится монтаж устройства в надежном и удобном месте, девайс фиксируется. Надо заизолировать все электрические цепи, чтобы не допустить их перетирания и утечки тока. Производится диагностика правильности выполненной задачи.
  5. На завершающем этапе настраиваются все каналы для обеспечения рабочего состояния системы. Также надо задать функциональный ряд устройству.