Система изменения степени сжатия топливной смеси современного двс. Подробное объяснение принципа работы двигателя с переменным сжатием Infiniti Двигатель инфинити с изменяемой степенью сжатия

Второе поколение кроссовера Infiniti QX50 получило кучу новшеств, самым важным из которых стал уникальный мотор - 2,0 литровая «турбочетверка» VC-Turbo с изменяемой степенью сжатия. Идея создания бензинового мотора, где степень сжатия в цилиндрах была бы величиной непостоянной, не нова. Так, при разгоне, когда требуется наибольшая отдача двигателя, можно на несколько секунд пожертвовать его экономичностью, уменьшив степень сжатия, - это позволит предотвратить детонацию, самопроизвольное возгорание топливной смеси, которое может возникнуть при высоких нагрузках. При равномерном движении степень сжатия, напротив, желательно повысить, чтобы добиться более эффективного сгорания топливной смеси и снижения расхода горючего - в этом случае нагрузка на мотор невелика и опасность возникновения детонации минимальна. В общем, в теории все просто, однако реализовать эту идею на практике оказалось не так уж легко. И японские конструкторы стали первыми, кто сумел довести замысел до серийного образца.

Суть разработанной корпорацией Nissan технологии в том, чтобы, в зависимости от требуемой отдачи мотора, непрерывно изменять максимальную высоту подъема поршней (так называемую верхнюю мертвую точку - ВМТ), что в свою очередь приводит к уменьшению или росту степени сжатия в цилиндрах. Ключевой деталью этой системы является особое крепление шатунов, которые соединяются с коленчатым валом через подвижный блок коромысел. Блок в свою очередь связан с эксцентриковым управляющим валом и электромотором, который по команде электроники приводит этот хитрый механизм в движение, меняя наклон коромысел и положение ВМТ поршней во всех четырех цилиндрах одновременно.

Разница степени сжатия в зависимости от положения ВМТ поршня. На левой картинке мотор находится в экономичном режиме, на правой - в режиме максимальной отдачи. A: когда требуется изменение степени сжатия, электромотор поворачивает и перемещает рычаг привода. B: приводной рычаг поворачивает управляющий вал. C: когда вал вращается, он действует на рычаг, связанный с коромыслом, изменяя угол наклона последнего. D: в зависимости от положения коромысла, ВМТ поршня поднимается или опускается, таким образом изменяя степень сжатия.

В результате при разгоне степень сжатия уменьшается до 8:1, после чего мотор переходит в экономичный режим работы со степенью сжатия 14:1. Его рабочий объем при этом меняется от 1997 до 1970 см3. «Турбочетверка» нового Infiniti QX50 развивает мощность 268 л. с. и крутящий момент в 380 Нм - ощутимо больше, чем 2,5 литровый V6 предшественника (его показатели - 222 л. с. и 252 Нм), расходуя при этом на треть меньше бензина. Кроме того, VC-Turbo на 18 кг легче атмосферной «шестерки», занимает меньше места под капотом и достигает максимума крутящего момента в зоне более низких оборотов.

Кстати, система регулировки степени сжатия не только повышает эффективность работы мотора, но и снижает уровень вибраций. Благодаря коромыслам шатуны при рабочем ходе поршней занимают почти вертикальное положение, в то время как у обычных двигателей они ходят из стороны в сторону (из-за чего шатуны и получили свое название). В результате даже без уравновешивающих валов этот 4-цилиндровый агрегат работает так же тихо и плавно, как V6. Но изменяемое положение ВМТ при помощи сложной системы рычагов - не единственная особенность нового мотора. Меняя степень сжатия, этот агрегат также способен переключаться между двумя рабочими циклам: классическим Отто, по которому функционирует основная масса бензиновых двигателей, и циклом Аткинсона, встречающимся в основном у гибридов. В последнем случае (при высокой степени сжатия) из-за большего хода поршней рабочая смесь сильнее расширяется, сгорая с большей эффективностью, в результате растет КПД и снижается расход бензина.

Двигаясь вверх или вниз, нижний рычаг меняет положение поршня относительно камеры сгорания.

Помимо двух рабочих циклов, этот мотор также использует две системы впрыска: классический распределенный MPI и непосредственный GDI, который повышает эффективность сгорания топлива и позволяет избежать детонации при высоких степенях сжатия. Обе системы работают попеременно, а при высоких нагрузках - одновременно. Положительный вклад в повышение КПД двигателя вносит и особое покрытие стенок цилиндров, которое наносится методом плазменного напыления, а затем закаливается и хонингуется. В результате получается ультрагладкая «зеркальная» поверхность, на 44% уменьшающая трение поршневых колец.

И какова выгода?

По словам инженеров, VC-T должен стать на 27% экономичнее текущих атмосферных V6 серии VQ, которые он постепенно заменит. Значит, паспортный расход в комбинированном цикле будет находиться в пределах 7 литров. И все-таки оценить реальный вклад новой технологии в экономичность пока невозможно, слишком уж различаются моторы VC-T и VQ. Объем, наличие наддува, количество цилиндров - все по-разному. Поэтому в реальных преимуществах японской разработки еще предстоит разобраться, но, как и любая революция, она интересна уже сама по себе.

Еще одна уникальная особенность мотора VC-Turbo - это интегрированная в его верхнюю опору система активного подавления вибраций Active Torque Road, основой которой является возвратно-поступательный актуатор. Эта система управляется датчиком ускорений, фиксирующим колебания двигателя и в ответ генерирует гасящие вибрации в противофазе. Активные опоры в Infiniti впервые использовали в 1998 году на дизельном моторе, но та система оказалась слишком громоздкой, поэтому не получила распространения. Проект пролежал под сукном до 2009 года, пока японские инженеры не взялись за его усовершенствование. На то, чтобы решить проблему избыточного веса и размеров гасителя колебаний, ушло еще 8 лет. Но результат впечатляет: благодаря ATR 4-цилиндровый агрегат нового Infiniti QX50 работает на 9 дБ тише, чем V6 его предшественника!

Одной из тех, кто максимально близко подошел к созданию серийного мотора с изменяемой степенью сжатия, была марка Saab. У шведов, правда, относительно друг друга смещались верхняя и нижняя часть блока цилиндров. А в моторе Infiniti/Nissan изменения затронули конструкцию кривошипно-шатунного механизма.

ЧИТАЙТЕ ТАКЖЕ НА САЙТЕ

Диоды - это электронные устройства, которые пропускают электрический ток только в одном направлении. Благодаря этому свойству диоды используются для преобразования переменного тока в постоянный. В автомобильной электрической системе диоды можно найти...

Автомобильный регулятор напряжения контролирует напряжение, генерируемое автомобильным генератором для подзарядки аккумулятора. Регулятор заставляет генератор поддерживать напряжение от 13,5 до 14,5 Вольт. Этого достаточно, чтобы безопасно подзарядит...

Принципиальная схема электрооборудования автомобилей "Москвич -408" и "Москвич-412" приведена на рисунке ниже. Напряжение в системе равно 12 В. На автомобилях устанавливается аккумуляторная батарея 6СТ-42. ...

Изобретение относится к машиностроению, прежде всего к тепловым машинам, а именно к поршневому двигателю внутреннего сгорания (ДВС) с переменной степенью сжатия. Технический результат изобретения заключается в усовершенствовании кинематики механизма передачи усилий поршневого ДВС, таким образом, чтобы обеспечивать возможность регулирования степени сжатия при одновременном снижении реакции в опорах и сил инерции второго порядка. ДВС согласно изобретению имеет подвижно установленный в цилиндре поршень, который шарнирно соединен с шатуном. Движение шатуна передается на кривошип коленчатого вала. При этом, с целью обеспечения возможности управляемого изменения степени сжатия и хода поршня, между шатуном и кривошипом предусмотрено передаточное звено, которое выполнено с возможностью управления его движением с помощью управляющего рычага. Передаточное звено выполнено в виде поперечного рычага, соединенного с кривошипом посредством шарнира, который расположен в промежуточном положении на участке между двумя опорными точками. В одной из опорных точек поперечный рычаг соединен с шатуном, а в другой - с управляющим рычагом. Управляющий рычаг также шарнирно соединен с дополнительным кривошипом или эксцентриком, которые осуществляют управляющие движения, смещая ось качения управляющего рычага, чем обеспечивают изменение степени сжатия ДВС. Помимо этого ось качения управляющего рычага может совершать непрерывное циклическое движение, синхронизированное с вращением коленчатого вала. При этом, в случае соблюдения определенных геометрических соотношений между отдельными звенья механизма передачи усилий, могут быть уменьшены нагрузки на них и повышена плавность работы ДВС. 12 з.п. ф-лы, 10 ил.

Рисунки к патенту РФ 2256085

Настоящее изобретение относится к машиностроению, прежде всего к тепловым машинам. Изобретение относится, в частности, к поршневому двигателю внутреннего сгорания (ДВС), имеющему поршень, который подвижно установлен в цилиндре и который шарнирно соединен с шатуном, движение которого передается на кривошип коленчатого вала, при этом между шатуном и кривошипом предусмотрено передаточное звено, которое выполнено с возможностью управления его движением с помощью управляющего рычага с целью обеспечить управляемое перемещение поршня, прежде всего обеспечить возможность изменения степени сжатия и хода поршня, и которое выполнено в виде поперечного рычага, который соединен с кривошипом шарниром, который расположен в промежуточном положении на участке между опорной точкой, в которой поперечный рычаг соединен с шатуном, и опорной точкой, в которой поперечный рычаг соединен с управляющим рычагом, и на некотором удалении от линии, соединяющей между собой обе эти опорные точки, в которых поперечный рычаг соединен с управляющим рычагом и шатуном соответственно.

Из работы Wirbeleit F.G., Binder К. и Gwinner D., "Development of Piston with Variable Compression Height for Incrising Efficiency and Specific Power Output of Combustion Engines", SAE Techn. Pap., 900229, известен ДВС подобного типа с автоматически регулируемой степенью сжатия (ПАРСС) за счет изменения высоты поршня, который состоит из двух частей, между которыми сформированы гидравлические камеры. Изменение степени сжатия осуществляется автоматически путем изменения положения одной части поршня относительно другой за счет перепуска масла из одной такой камеры в другую с помощью специальных перепускных клапанов.

К недостаткам этого технического решения относится то, что системы типа ПАРСС предполагают наличие механизма регулирования степени сжатия, расположенного в высокотемпературной и весьма нагруженной зоне (в цилиндре). Опыт работы с системами типа ПАРСС показал, что на переходных режимах, в частности при разгоне автомобиля, работа ДВС сопровождается детонацией, поскольку гидравлическая система управления не позволяет обеспечить быстрое и одновременное по всем цилиндрам изменение степени сжатия.

Стремление вынести механизм регулирования степени сжатия из высокотемпературной и механически нагруженной зоны привело к появлению иных технических решений, предполагающих изменение кинематической схемы ДВС и введение в нее дополнительных элементов (звеньев), управлением которых обеспечивается изменение степени сжатия.

Так, например, у Jante A., "Kraftstoffverbrauchssenkung von Verbrennungsmotoren durch kinematische Mittel", Automobil-Industrie, № 1 (1980), с.с.61-65, описан ДВС (кинематическая схема которого показана на фиг.1), у которого между кривошипом 15 и шатуном 12 установлены два промежуточных звена - дополнительный шатун 13 и коромысло 14. Коромысло 14 совершает качательное движение с центром качания в шарнирной точке Z. Регулирование степени сжатия осуществляется за счет изменения положения точки А путем поворота эксцентрика 16, закрепленного на корпусе. Эксцентрик 16 поворачивается в зависимости от нагрузки двигателя, при этом центр качания, расположенный в шарнирной точке Z, перемещается по дуге окружности, изменяя таким образом положение верхней мертвой точки поршня.

Из работы Christoph Bolling и др., "Kurbetrieb fur variable Verdichtung", MTZ 58 (11) (1997), Сс.706-711, известен также двигатель типа FEV (кинематическая схема которого показана на фиг.2), у которого между кривошипом 17 и шатуном 12 установлен дополнительный шатун 13. Шатун 12, кроме того, связан с коромыслом 14, которое совершает качательное движение с центром качания в шарнирной точке Z. Регулирование степени сжатия осуществляется за счет изменения положения шарнирной точки Z путем поворота эксцентрика 16, закрепленного на корпусе двигателя. Эксцентрик 16 поворачивается в зависимости от нагрузки двигателя, при этом центр качания, расположенный в шарнирной точке Z, перемещается по дуге окружности, изменяя таким образом положение верхней мертвой точки поршня.

Из заявки DE 4312954 А1 (21.04.1993) известен двигатель типа IFA (кинематическая схема которого показана на фиг.3), у которого между кривошипом 17 и шатуном 12 установлен дополнительный шатун 13. Шатун 12, кроме того, связан с одним из концов коромысла 14, второй конец которого совершает качательное движение с центром качания в шарнирной точке Z. Регулирование степени сжатия осуществляется за счет изменения положения шарнирной точки Z путем поворота эксцентрика 16, который закреплен на корпусе двигателя. Эксцентрик 16 поворачивается в зависимости от нагрузки двигателя, при этом центр качания, расположенный в шарнирной точке Z, перемещается по дуге окружности, изменяя таким образом положение верхней мертвой точки поршня.

К недостаткам, присущим двигателям вышеописанных конструкций (известным из работы Jante А., из работы Christoph Bolling и др. и из заявки DE 4312954 А1), следует отнести в первую очередь недостаточно высокую плавность их работы, обусловленную высокими силами инерции второго порядка при возвратно-поступательном движении масс, что связано с особенностями кинематики механизмов и приводит к чрезмерному увеличению общей ширины или общей высоты силового агрегата. По этой причине такие двигатели практически не пригодны для их использования в качестве двигателей для транспортных средств.

Регулирование степени сжатия в поршневом ДВС позволяет решить следующие задачи:

Повысить среднее давление Ре путем увеличения давления наддува без увеличения максимального давления сгорания сверх заданных пределов за счет уменьшения степени сжатия по мере увеличения нагрузки двигателя;

Снизить расход топлива в диапазоне малых и средних нагрузок за счет увеличения степени сжатия по мере уменьшения нагрузки двигателя;

Повысить плавность работы двигателя.

Регулирование степени сжатия позволяет в зависимости от типа ДВС достичь следующих преимуществ (для ДВС с принудительным (искровым) зажиганием):

При сохранении достигнутого уровня экономичности двигателя при малых и средних нагрузках обеспечивается дальнейшее повышение номинальной мощности двигателя за счет увеличения давления наддува при уменьшении степени сжатия (см. фиг.4а, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

При сохранении достигнутого уровня номинальной мощности двигателя обеспечивается снижение расхода топлива при малых и средних нагрузках за счет увеличения степени сжатия до допустимого по детонации предела (см. фиг.4б, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

При сохранении достигнутого уровня номинальной мощности двигателя повышается экономичность при малых и средних нагрузках, а также снижается уровень шума двигателя при одновременном снижении номинальной частоты вращения коленчатого вала (см. фиг.4в, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия).

Аналогично ДВС с искровым зажиганием регулирование степени сжатия в дизельном двигателе может вестись в трех следующих равноправных направлениях:

При неизменном рабочем объеме и номинальной частоте вращения мощность двигателя повышают за счет увеличения давления наддува. В этом случае повышается не экономичность, а мощность транспортного средства (см. фиг.5а, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

При неизменном рабочем объеме и номинальной мощности повышают среднее давление Ре при снижении номинальной частоты вращения. В этом случае при сохранении мощностных характеристик транспортного средства повышается экономичность двигателя за счет повышения механического КПД (см. фиг.5б, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

Существующий двигатель большого рабочего объема на заменяют на двигатель малого рабочего объема, но той же мощности (см. фиг.5в, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия). В этом случае повышается экономичность двигателя в диапазоне средних и полных нагрузок, а также уменьшается масса и габариты двигателя.

В основу настоящего изобретения была положена задача усовершенствовать кинематику поршневого ДВС таким образом, чтобы при малых конструктивных затратах обеспечивать возможность регулирования степени сжатия при одновременном снижении реакции в опорах и сил инерции второго порядка.

В отношении поршневого ДВС указанного в начале описания типа эта задача решается согласно изобретению благодаря тому, что длина стороны, расположенной между опорной точкой, в которой поперечный рычаг соединен с управляющим рычагом, и опорной точкой, в которой поперечный рычаг соединен с шатуном, длина стороны, расположенной между опорной точкой, в которой поперечный рычаг соединен с управляющим рычагом, и шарниром, которым поперечный рычаг соединен с кривошипом, и длина стороны, расположенной между опорной точкой, в которой поперечный рычаг соединен с шатуном, и шарниром, которым поперечный рычаг соединен с кривошипом, удовлетворяют в пересчете на радиус кривошипа следующим соотношениям:

Согласно одному из предпочтительных вариантов выполнения предлагаемого в изобретении поршневого ДВС поперечный рычаг выполнен в виде треугольного рычага, в вершинах которого расположены опорные точки, в которых поперечный рычаг соединен с управляющим рычагом и шатуном, и шарнир, которым поперечный рычаг соединен с кривошипом.

Предпочтительно, чтобы длина l шатуна и длина k управляющего рычага, а также расстояние е между осью вращения коленчатого вала и продольной осью цилиндра удовлетворяли в пересчете на радиус г кривошипа следующим соотношениям:

В том случае, когда управляющий рычаг и шатун расположены по одну сторону поперечного рычага, расстояние f между продольной осью цилиндра и точкой шарнирного соединения управляющего рычага с корпусом ДВС и расстояние р между осью коленчатого вала и указанной точкой шарнирного соединения предпочтительно должны удовлетворять в пересчете на радиус r кривошипа следующим соотношениям:

В том же случае, когда управляющий рычаг и шатун расположены по разные стороны поперечного рычага, расстояние f между продольной осью цилиндра и точкой шарнирного соединения управляющего рычага и расстояние р между осью коленчатого вала и указанной точкой шарнирного соединения предпочтительно должны удовлетворять в пересчете на радиус г кривошипа следующим соотношениям:

В соответствии со следующим предпочтительным вариантом выполнения предлагаемого в изобретении поршневого ДВС точка шарнирного соединения управляющего рычага имеет возможность перемещения по управляемой траектории.

Предпочтительно также предусмотреть возможность фиксации точки шарнирного соединения управляющего рычага в различных регулируемых угловых положениях.

В соответствии еще с одним предпочтительным вариантом выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность регулирования углового положения точки шарнирного соединения управляющего рычага в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

Согласно еще одному предпочтительному варианту выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки шарнирного соединения управляющего рычага по управляемой траектории.

В другом предпочтительном варианте выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки шарнирного соединения управляющего рычага по управляемой траектории и возможность регулирования фазового сдвига между движением этой точки и вращением коленчатого вала в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

В соответствии со следующим предпочтительным вариантом выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки шарнирного соединения управляющего рычага по управляемой траектории, при этом предусмотрена возможность изменения передаточного отношения между движением указанной точки и вращением коленчатого вала.

Предлагаемый в изобретении поршневой ДВС 1 показан на фиг.6а и 6б и имеет корпус 2 с цилиндром 3 и установленным в нем поршнем 4, шатун 6, который шарнирно соединен одним концом с поршнем 4, кривошип 8 коленчатого вала, установленного в корпусе 2, прицепной шатун 10, называемый также управляющим рычагом 10 и шарнирно соединенный одним его концом с корпусом 2, и треугольный поперечный рычаг 7, который одной его вершиной шарнирно соединен со вторым концом шатуна 6, второй его вершиной шарнирно соединен с кривошипом 8, а третьей его вершиной шарнирно соединен с прицепным шатуном 10. Для регулирования степени сжатия ось качания прицепного шатуна 10, т.е. точка Z его шарнирного соединения имеет возможность перемещения по управляемой траектории, определяемой, например, эксцентриком или дополнительным кривошипом 11.

В зависимости от положения оси качания прицепного шатуна предлагаемый в изобретении поршневой ДВС имеет два варианта конструктивного исполнения (см. фиг.6а и 6б):

В первом варианте (фиг.6а) горизонтальная плоскость, в которой лежит ось качания прицепного шатуна 10, т.е. точка Z его шарнирного соединения расположена выше точки соединения кривошипа 8 с поперечным рычагом 7 при нахождении кривошипа в его верхней мертвой точке или, иными словами, прицепной шатун 10 и шатун 6 расположены по одну сторону поперечного рычага 7;

Во втором варианте (фиг.6б) горизонтальная плоскость, в которой лежит ось качания прицепного шатуна 10, т.е. точка Z его шарнирного соединения расположена ниже точки соединения кривошипа 8 с поперечным рычагом 7 при нахождении кривошипа в его верхней мертвой точке или, иными словами, прицепной шатун 10 и шатун 6 расположены по разные стороны поперечного рычага 7.

Изменение положения точки Z шарнирного соединения прицепного рычага, т.е. его оси качания, позволяет за счет простого управляющего движения, осуществляемого дополнительным кривошипом, соответственно регулирующим эксцентриком, изменять степень сжатия. Помимо этого точка Z шарнирного соединения прицепного рычага, т.е. его ось качания может совершать непрерывное циклическое движение, синхронизированное с вращением коленчатого вала.

Как показано на фиг.7, предлагаемый в изобретении поршневой ДВС обладает значительными преимуществами перед известными системами (описанными у Jante А., у Christoph Bolling и др. и в DE 4312954 А1), а также перед обычным кривошипно-шатунным механизмом (СМ) касательно плавности его работы.

Однако указанные преимущества могут быть достигнуты только при соблюдении определенных геометрических соотношений, а именно, при правильном подборе длин отдельных элементов и их положений относительно оси коленчатого вала.

Согласно настоящему изобретению важное значение имеет определение размеров отдельных элементов (по отношению к радиусу кривошипа) и координат отдельных шарниров механизма передачи усилий, чего можно достичь за счет оптимизации такого механизма путем кинематического и динамического анализа. Цель оптимизации подобного, описываемого девятью параметрами механизма (фиг.8) состоит в уменьшении сил (нагрузки), действующих на его отдельные звенья, до минимально возможного уровня и в повышении плавности его работы.

Ниже со ссылкой на фиг.9 (9а и 9б), где изображена кинематическая схема ДВС, показанного на фиг.6 (6а и 6б соответственно), поясняется принцип работы регулируемого кривошипно-шатунного механизма. В процессе работы ДВС его поршень 4 совершает в цилиндре возвратно-поступательное движение, которое передается на шатун 6. Движение шатуна 6 передается через опорную (шарнирную) точку В на поперечный рычаг 7, свобода перемещения которого ограничена за счет его соединения с прицепным шатуном 10 в опорной (шарнирной) точке С. Если точка Z шарнирного соединения прицепного шатуна 10 неподвижна, то опорная точка С поперечного рычага 7 может совершать движение по дуге окружности, радиус которой равен длине прицепного шатуна 10. Положение такой круговой траектории движения опорной точки С относительно корпуса двигателя определяется положением точки Z. При изменении положения точки Z шарнирного соединения прицепного шатуна изменяется положение круговой траектории, по которой может перемещаться опорная точка С, что позволяет влиять на траектории движения других элементов кривошипно-шатунного механизма, прежде всего на положение в.м.т. поршня 4. Точка Z шарнирного соединения прицепного шатуна предпочтительно перемещается по круговой траектории. Однако точка Z шарнирного соединения прицепного шатуна может также перемещаться и по любой иной заданной управляемой траектории, при этом возможна также фиксация точки Z шарнирного соединения прицепного шатуна в любом положении траектории ее перемещения.

Поперечный рычаг 7 шарниром А соединен также с кривошипом 8 коленчатого вала 9. Этот шарнир А движется по круговой траектории, радиус которой определяется длиной кривошипа 8. Шарнир А занимает промежуточное положение, если смотреть вдоль линии, соединяющей между собой опорные точки В и С поперечного рычага 7. Наличие кинематической связи опорной точки С с прицепным шатуном 10 позволяет влиять на ее поступательное движение вдоль продольной оси 5 поршня 4. Перемещение опорной точки В вдоль продольной оси 5 поршня определяется траекторией движения опорной точки С поперечного рычага 7. Влияние на перемещение опорной точки В позволяет управлять возвратно-поступательным движением поршня 4 через шатун 6 и тем самым регулировать положение в.м.т. поршня 4.

В показанном на фиг.9а варианте прицепной шатун 10 и шатун 6 расположены по одну сторону поперечного рычага 7.

Поворотом выполненного в виде дополнительного кривошипа 11 регулирующего звена из показанного на фиг.9а примерно горизонтального положения, например, в обращенное вертикально вниз положение позволяет сместить положение в.м.т. поршня 4 вверх и тем самым увеличить степень сжатия.

На фиг.9б показана кинематическая схема выполненного по другому варианту ДВС, отличающаяся от показанной на фиг.9а схемы лишь тем, что прицепной шатун 10 вместе с выполненным в виде дополнительного кривошипа 11, соответственно регулирующего эксцентрика регулирующим звеном и шатун 6 расположены по разные стороны поперечного рычага 7. Во всем остальном принцип действия показанного на фиг.9б кривошипно-шатунного механизма аналогичен принципу действия показанного на фиг.9а кривошипно-шатунного механизма, у которого прицепной шатун 10 и шатун 6 расположены по одну сторону поперечного рычага 7.

На фиг.10 показана еще одна кинематическая схема кривошипно-шатунного механизма поршневого ДВС, на которой представлены положения определенных точек этого кривошипно-шатунного механизма и на которой штриховкой обозначены оптимальные области, в пределах которых с учетом упомянутых выше оптимальных областей значений для длин и положений элементов кривошипно-шатунного механизма могут перемещаться опорная точка В шарнирного соединения поперечного рычага 7 с шатуном 6, опорная точка С шарнирного соединения поперечного рычага 7 с прицепным шатуном 10 и точка Z шарнирного соединения прицепного шатуна 10. Для обеспечения особо плавной работы ДВС с исключительно малой нагрузкой на отдельные элементы и звенья его кривошипно-шатунного механизма геометрические параметры (длина и положение) элементов и звеньев этого кривошипно-шатунного механизма должны удовлетворять определенным, предпочтительным соотношениям. Длины сторон a, b и с треугольного поперечного рычага 7, где а обозначает длину стороны, расположенной между опорной точкой В шатуна и опорной точкой С прицепного шатуна, b обозначает длину стороны, расположенной между шарниром А кривошипа и опорной точкой С прицепного шатуна, а с обозначает расстояние между шарниром А кривошипа и опорной точкой В шатуна, можно описать следующими неравенствами в зависимости от радиуса г, который равен длине кривошипа 8:

Длина l шатуна 6, длина k прицепного шатуна 10 и расстояние е между осью вращения коленчатого вала 9 и продольной осью 5 цилиндра 3, которая одновременно является и продольной осью поршня, перемещающегося в этом цилиндре, согласно предпочтительному варианту удовлетворяют следующим соотношениям:

Для показанного на фиг.9а варианта, в котором шатун 6 и прицепной шатун 10 располагаются по одну сторону поперечного рычага 7, также можно задать оптимальное соотношение размеров. При этом расстояние f между продольной осью 5 цилиндра и точкой Z шарнирного соединения прицепного рычага 10 к его регулирующему звену, а также расстояние р между осью коленчатого вала и указанной точкой Z шарнирного соединения согласно предпочтительному варианту удовлетворяют следующим соотношениям:

При расположении прицепного шатуна и шатуна по разные стороны поперечного рычага оптимальное расстояние f между продольной осью поршня и точкой Z шарнирного соединения прицепного рычага к его регулирующему звену, а также оптимальное расстояние р между осью коленчатого вала и указанной точкой Z шарнирного соединения можно выбирать исходя из следующих соотношений:

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Поршневой двигатель внутреннего сгорания (ДВС), имеющий поршень (4), который подвижно установлен в цилиндре и который шарнирно соединен с шатуном (6), движение которого передается на кривошип (8) коленчатого вала (9), при этом между шатуном (6) и кривошипом (8) предусмотрено передаточное звено, которое выполнено с возможностью управления его движением с помощью управляющего рычага (10) с целью обеспечить управляемое перемещение поршня, прежде всего обеспечить возможность изменения степени сжатия и хода поршня, и которое выполнено в виде поперечного рычага (7), который соединен с кривошипом (8) шарниром (А), который расположен в промежуточном положении на участке между опорной точкой (В), в которой поперечный рычаг (7) соединен с шатуном (6), и опорной точкой (С), в которой поперечный рычаг (7) соединен с управляющим рычагом (10), и на некотором удалении от линии, соединяющей между собой обе эти опорные точки (В, С), в которых поперечный рычаг (7) соединен с управляющим рычагом (10) и шатуном (6) соответственно, отличающийся тем, что длина стороны (а), расположенной между опорной точкой (С), в которой поперечный рычаг (7) соединен с управляющим рычагом (10), и опорной точкой (В), в которой поперечный рычаг (7) соединен с шатуном (6), длина стороны (b), расположенной между опорной точкой (С), в которой поперечный рычаг (7) соединен с управляющим рычагом (10), и шарниром (А), которым поперечный рычаг (7) соединен с кривошипом (8), и длина стороны (с), расположенной между опорной точкой (В), в которой поперечный рычаг (7) соединен с шатуном (6), и шарниром (А), которым поперечный рычаг (7) соединен с кривошипом (8), удовлетворяют в пересчете на радиус (r) кривошипа следующим соотношениям:

6. Поршневой ДВС по п.4 или 5, отличающийся тем, что точка (Z) шарнирного соединения управляющего рычага (10) имеет возможность перемещения по управляемой траектории.

7. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность регулирования положения точки (Z) шарнирного соединения управляющего рычага (10) с помощью опирающегося на шарнир дополнительного кривошипа.

8. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность регулирования положения точки (Z) шарнирного соединения управляющего рычага (10) с помощью эксцентрика.

9. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность фиксации точки (Z) шарнирного соединения управляющего рычага (10) в различных регулируемых угловых положениях.

10. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность регулирования углового положения точки (Z) шарнирного соединения управляющего рычага (10) в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

11. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки (Z) шарнирного соединения управляющего рычага (10) по управляемой траектории.

12. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность синхронизированного с вращением коленчатого вала (9) движения точки (Z) шарнирного соединения управляющего рычага (10) по управляемой траектории и возможность регулирования фазового сдвига между движением этой точки (Z) и вращением коленчатого вала (9) в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

13. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность синхронизированного с вращением коленчатого вала (9) движения точки (Z) шарнирного соединения управляющего рычага (10) по управляемой траектории, при этом предусмотрена возможность изменения передаточного отношения между движением указанной точки (Z) и вращением коленчатого вала (9).

Все чаще звучат авторитетные мнения, что сейчас развитие двигателей внутреннего сгорания достигло наивысшего уровня и больше невозможно заметно улучшить их характеристики. Конструкторам остается заниматься ползучей модернизацией, шлифуя системы наддува и впрыска, а также добавляя все больше электроники. С этим не соглашаются японские инженеры. Свое слово сказала компания Infiniti, которая построила двигатель с изменяемой степенью сжатия. Будем разбираться, в чем преимущества такого мотора, и какое у него будущее.

В качестве вступления напомним, что степенью сжатия называют отношение объема над поршнем, находящимся в нижней «мертвой» точке, к объему, когда поршень находится в верхней. Для бензиновых двигателей этот показатель составляет от 8 до 14, для дизелей — от 18 до 23. Степень сжатия задается конструкцией фиксировано. Рассчитывается она в зависимости от октанового числа применяемого бензина и наличия наддува.

Возможность динамически изменять степень сжатия в зависимости от нагрузки позволяет поднять КПД турбированного мотора, добившись того, чтобы каждая порция топливовоздушной смеси сгорала при оптимальном сжатии. Для малых нагрузок, когда смесь обедненная, используется максимальное сжатие, а в нагруженном режиме, когда бензина впрыскивается много и возможна детонация, мотор сжимает смесь минимально. Это позволяет не регулировать «назад» угол опережения зажигания, который остается в наиболее эффективной позиции для снятия мощности. Теоретически система изменения степени сжатия в ДВС позволяет до двух раз уменьшить рабочий объем мотора при сохранении тяговых и динамических характеристик.

Схема двигателя с изменяемым объемом камеры сгорания и шатуны с системой подъема поршней

Одной из первых появилась система с дополнительным поршнем в камере сгорания, который перемещаясь, изменял ее объем. Но сразу возник вопрос о размещении еще одной группы деталей в головке блока, где уже и так теснились распредвалы, клапаны, инжекторы и свечи зажигания. Притом нарушалась оптимальная конфигурация камеры сгорания, отчего топливо сжигалось неравномерно. Поэтому система так и осталась в стенах лабораторий. Не пошла дальше эксперимента и система с поршнями изменяемой высоты. Разрезные поршни были чрезмерно тяжелыми, притом сразу возникли конструктивные трудности с управлением высотой подъема крышки.

Система подъема коленвала на эксцентриковых муфтах FEV Motorentechnik (слева) и траверсный механизм для изменения высоты подъема поршня

Другие конструкторы пошли путем управления высотой подъема коленвала. В этой системе опорные шейки коленвала размещены в эксцентриковых муфтах, приводимых в действие через шестерни электромотором. Когда эксцентрики поворачиваются, коленвал поднимается или опускается, отчего, соответственно, меняется высота подъема поршней к головке блока, увеличивается или уменьшается объем камеры сгорания, и изменяется тем самым степень сжатия. Такой мотор показала в 2000 году немецкая компания FEV Motorentechnik. Система была интегрирована в турбированный четырехцилиндровый двигатель 1.8 л от концерна Volkswagen, где варьировала степень сжатия от 8 до 16. Мотор развивал мощность 218 л.с. и крутящий момент 300 Нм. До 2003 года двигатель испытывался на автомобиле Audi A6, но в серию не пошел.

Не слишком удачливой оказалась и обратная система, также изменяющая высоту подъема поршней, но не за счет управления коленвалом, а путем подъема блока цилиндров. Действующий мотор подобной конструкции продемонстрировал в 2000 году Saab, и также тестировал его на модели 9-5, планируя запустить в серийное производство. Получивший название Saab Variable Compression (SVC) пятицилиндровый турбированный двигатель объемом 1,6 л, развивал мощность 225 л. с. и крутящий момент 305 Нм, при этом расход топлива при средних нагрузках снизился на 30%, а за счет регулируемой степени сжатия мотор мог без проблем потреблять любой бензин — от А-80 до А-98.

Система двигателя Saab Variable Compression, в которой степень сжатия изменяется за счет отклонения верхней части блока цилиндров

Задачу подъема блока цилиндров в Saab решили так: блок был разделен на две части — верхнюю с головкой и гильзами цилиндров, и нижнюю, где остался коленвал. Одной стороной верхняя часть была связана с нижней через шарнир, а на другой был установлен механизм с электроприводом, который, как крышку у сундука, приподнимал верхнюю часть на угол до 4 градусов. Диапазон степени сжатия при поднимании - опускании мог гибко варьироваться от 8 до 14. Для герметизации подвижной и неподвижной частей служил эластичный резиновый кожух, который оказался одним из самых слабых мест конструкции, вместе с шарнирами и подъемным механизмом. После приобретения Saab корпорацией General Motors американцы закрыли проект.

Проект МСЕ-5 в котором применен механизм с рабочим и управляющим поршнями, связаными через зубчатое коромысло

На рубеже веков свою конструкцию мотора с изменяемой степенью сжатия предложили и французские инженеры компании MCE-5 Development S.A. Показанный ими турбированный 1.5-литровый мотор, в котором степень сжатия могла варьироваться от 7 до 18, развивал мощность 220 л. с. и крутящий момент 420 Нм. Конструкция тут довольно сложная. Шатун разделен и снабжен наверху (в части, устанавливаемой на коленвал) зубчатым коромыслом. К нему примыкает другая часть шатуна от поршня, оконечник которой имеет зубчатую рейку. С другой стороной коромысла связана рейка управляющего поршня, приводимого в действие через систему смазки двигателя посредством специальных клапанов, каналов и электропривода. Когда управляющий поршень перемещается, он воздействует на коромысло и высота поднятия рабочего поршня изменяется. Двигатель экспериментально обкатывался на Peugeot 407, но автопроизводитель не заинтересовался данной системой.

Теперь свое слово решили сказать конструкторы Infiniti, представив двигатель с технологией Variable Compression-Turbocharged (VC-T), позволяющей динамически изменять степень сжатия от 8 до 14. Японские инженеры применили траверсный механизм: сделали подвижное сочленение шатуна с его нижней шейкой, которую, в свою очередь, связали системой рычагов с приводом от электромотора. Получив команду от блока управления, электродвигатель перемещает тягу, система рычагов меняет положение, регулируя тем самым высоту подъема поршня и, соответственно, изменяя степень сжатия.

Конструкция системы Variable Compression у мотора Infiniti VC-T: а - поршень, b - шатун, с - траверса, d - коленвал, е - электродвигатель, f - промежуточный вал, g - тяга.

За счет данной технологии двухлитровый бензиновый турбомотор Infiniti VC-T развивает мощность 270 л.с., оказываясь на 27% экономичнее других двухлитровых двигателей компании, имеющих постоянную степень сжатия. Японцы планируют запустить моторы VC-T в серийное производство в 2018 году, оснастив ими кроссовер QX50, а затем и другие модели.

Заметим, что именно экономичность выступает сейчас основной целью разработки моторов с изменяемой степенью сжатия. При современном развитии технологий наддува и впрыска, нагнать мощности в моторе для конструкторов не составляет больших проблем. Другой вопрос: сколько бензина в супернадутом двигателе будет вылетать в трубу? Для обычных серийных моторов показатели расхода могут оказаться неприемлемы, что и выступает ограничителем для надувания мощности. Японские конструкторы решили этот барьер преодолеть. Как считают в компании Infiniti, их бензиновый двигатель VC-T, способен выступить как альтернатива современным турбированным дизелям, показывая тот же расход топлива при лучших характеристиках по мощности и более низкой токсичности выхлопа.

Каков итог?

Работы над двигателями с изменяемой степенью сжатия ведутся уже не один десяток лет — этим направлением занимались конструкторы Ford, Mercedes-Benz, Nissan, Peugeot и Volkswagen. Инженерами исследовательских институтов и компаний по обе стороны Атлантики получены тысячи патентов. Но пока ни один такой мотор не пошел в серийное производство.

Не все гладко и у Infiniti. Как признаются сами разработчики мотора VC-T, у их детища пока остаются общие проблемы: возросла сложность и стоимость конструкции, не решены вопросы с вибрацией. Но японцы надеются доработать конструкцию и запустить ее в серийное производство. Если это произойдет, то будущим покупателям осталось только понять: сколько придется переплатить за новую технологию, насколько такой мотор будет надежен и сколько позволит экономить на топливе.

Идея создания бензинового мотора, где степень сжатия в цилиндрах была бы величиной непостоянной, не нова. Так, при разгоне, когда требуется наибольшая отдача двигателя, можно на несколько секунд пожертвовать его экономичностью, уменьшив степень сжатия, - это позволит предотвратить детонацию, самопроизвольное возгорание топливной смеси, которое может возникнуть при высоких нагрузках. При равномерном движении степень сжатия, напротив, желательно повысить, чтобы добиться более эффективного сгорания топливной смеси и снижения расхода горючего - в этом случае нагрузка на мотор невелика и опасность возникновения детонации минимальна.

В общем, в теории все просто, однако реализовать эту идею на практике оказалось не так уж легко. И японские конструкторы стали первыми, кто сумел довести замысел до серийного образца.

Суть разработанной корпорацией Nissan технологии в том, чтобы, в зависимости от требуемой отдачи мотора, непрерывно изменять максимальную высоту подъема поршней (так называемую верхнюю мертвую точку - ВМТ), что в свою очередь приводит к уменьшению или росту степени сжатия в цилиндрах. Ключевой деталью этой системы является особое крепление шатунов, которые соединяются с коленчатым валом через подвижный блок коромысел. Блок в свою очередь связан с эксцентриковым управляющим валом и электромотором, который по команде электроники приводит этот хитрый механизм в движение, меняя наклон коромысел и положение ВМТ поршней во всех четырех цилиндрах одновременно.

Разница степени сжатия в зависимости от положения ВМТ поршня. На левой картинке мотор находится в экономичном режиме, на правой - в режиме максимальной отдачи. A: когда требуется изменение степени сжатия, электромотор поворачивает и перемещает рычаг привода. B: приводной рычаг поворачивает управляющий вал. C: когда вал вращается, он действует на рычаг, связанный с коромыслом, изменяя угол наклона последнего. D: в зависимости от положения коромысла, ВМТ поршня поднимается или опускается, таким образом изменяя степень сжатия.

В результате при разгоне степень сжатия уменьшается до 8:1, после чего мотор переходит в экономичный режим работы со степенью сжатия 14:1. Его рабочий объем при этом меняется от 1997 до 1970 см 3 . «Турбочетверка» нового Infiniti QX50 развивает мощность 268 л. с. и крутящий момент в 380 Нм - ощутимо больше, чем 2,5‑литровый V6 предшественника (его показатели - 222 л. с. и 252 Нм), расходуя при этом на треть меньше бензина. Кроме того, VC-Turbo на 18 кг легче атмосферной «шестерки», занимает меньше места под капотом и достигает максимума крутящего момента в зоне более низких оборотов.

Кстати, система регулировки степени сжатия не только повышает эффективность работы мотора, но и снижает уровень вибраций. Благодаря коромыслам шатуны при рабочем ходе поршней занимают почти вертикальное положение, в то время как у обычных двигателей они ходят из стороны в сторону (из-за чего шатуны и получили свое название). В результате даже без уравновешивающих валов этот 4‑цилиндровый агрегат работает так же тихо и плавно, как V6.

Но изменяемое положение ВМТ при помощи сложной системы рычагов - не единственная особенность нового мотора. Меняя степень сжатия, этот агрегат также способен переключаться между двумя рабочими циклам: классическим Отто, по которому функционирует основная масса бензиновых двигателей, и циклом Аткинсона, встречающимся в основном у гибридов. В последнем случае (при высокой степени сжатия) из-за большего хода поршней рабочая смесь сильнее расширяется, сгорая с большей эффективностью, в результате растет КПД и снижается расход бензина.

Помимо двух рабочих циклов, этот мотор также использует две системы впрыска: классический распределенный MPI и непосредственный GDI, который повышает эффективность сгорания топлива и позволяет избежать детонации при высоких степенях сжатия. Обе системы работают попеременно, а при высоких нагрузках - одновременно. Положительный вклад в повышение КПД двигателя вносит и особое покрытие стенок цилиндров, которое наносится методом плазменного напыления, а затем закаливается и хонингуется. В результате получается ультрагладкая «зеркальная» поверхность, на 44 % уменьшающая трение поршневых колец.

Еще одна уникальная особенность мотора VC-Turbo - это интегрированная в его верхнюю опору система активного подавления вибраций Active Torque Road, основой которой является возвратно-поступательный актуатор. Эта система управляется датчиком ускорений, фиксирующим колебания двигателя и в ответ генерирует гасящие вибрации в противофазе. Активные опоры в Infiniti впервые использовали в 1998 году на дизельном моторе, но та система оказалась слишком громоздкой, поэтому не получила распространения. Проект пролежал под сукном до 2009 года, пока японские инженеры не взялись за его усовершенствование. На то, чтобы решить проблему избыточного веса и размеров гасителя колебаний, ушло еще 8 лет. Но результат впечатляет: благодаря ATR 4‑цилиндровый агрегат нового Infiniti QX50 работает на 9 дБ тише, чем V6 его предшественника!

Степень сжатия – важная характеристика двигателя внутреннего сгорания, определяемая отношением объема цилиндра при нахождении поршня в нижней мертвой точке к объему в верхней мертвой точке (объему камеры сгорания). Повышение степени сжатия создает благоприятные условия для воспламенения и сгорания топливно-воздушной смеси и, соответственно, эффективного использования энергии. Вместе с тем, работа двигателя на разных режимах и разных топливах предполагает разную величину степени сжатия. Эти свойства в полной мере используются системой изменения степени сжатия.

Система обеспечивает повышение мощности и крутящего момента двигателя, снижение расхода топлива и вредных выбросов. Основная заслуга системы изменения степени сжатия в способности работы двигателя на разных марках бензина и даже разных топливах без ухудшения характеристик и детонации.

Создание двигателя с переменной степенью сжатия достаточно сложная техническая задача, в решении которой существует несколько подходов, заключающихся в изменении объема камеры сгорания. В настоящее время имеются опытные образцы таких силовых установок.

Пионером в создании двигателя с переменной степенью сжатия является фирма SAAB , представившая в 2000 году пятицилиндровый двигатель внутреннего сгорания, оборудованный системой Variable Compression . В двигателе использована объединенная головка блока цилиндров с гильзами цилиндров. Объединенный блок с одной стороны закреплен на валу, с другой взаимодействует с кривошипно-шатунным механизмом. КШМ обеспечивает смещение объединенной головки от вертикальной оси на 4°, чем достигается изменение степени сжатия в пределе от 8:1 до 14:1.

Необходимое значение степени сжатия поддерживается системой управления двигателем в зависимости от нагрузки (при максимальной нагрузке – минимальная степень сжатия, при минимальной – максимальная степень сжатия). Несмотря на впечатляющие результаты двигателя по мощности и крутящему моменту, силовая установка не пошла в серию, а работы по ней в настоящее время свернуты.

Более современной разработкой (2010 год) является 4-х цилиндровый двигатель от MCE-5 Development объемом 1,5 л. Помимо системы изменения степени сжатия двигатель оснащен другими прогрессивными системами – непосредственного впрыска и изменения фаз газораспределения .

Конструкция двигателя предусматривает независимое изменение величины хода поршня в каждом цилиндре. Зубчатый сектор, выполняющий роль коромысла, с одной стороны взаимодействует с рабочим поршнем, с другой – с поршнем управления. Коромысло рычагом соединено с коленчатым валом двигателя.

Зубчатый сектор перемещается под действием поршня управления, выполняющего роль гидроцилиндра. Объем над поршнем заполнен маслом, объем которого регулируется клапаном. Перемещение сектора обеспечивает изменение положения верхней мертвой точки поршня, чем достигается изменение объема камеры сгорания. Соответственно изменяется степень сжатия в пределе от 7:1 до 20:1.

Двигатель MCE-5 имеет все шансы попасть в серию в ближайшей перспективе.

Еще дальше в своих исследованиях пошел Lotus Cars , представив двухтактный двигатель Omnivore (дословно – всеядное животное). Как заявлено, двигатель способен работать на любом виде жидкого топлива – бензин, дизельное топливо, этанол, спирт и др.

В верхней части камеры сгорания двигателя выполнена шайба, которая перемещается эксцентриковым механизмом и изменяет объем камеры сгорания. С такой конструкцией достигается рекордная степень сжатия 40:1. Тарельчатые клапаны в газораспределительном механизме двигателя Omnivore не используются.

Дальнейшее развитие системы сдерживает низкая топливная экономичность и экологичность двухтактных двигателей, а также их ограниченное применение на автомобилях.