Работа транзистора. Принцип работы биполярного транзистора для начинающего. Биполярные транзисторы. For dummies

Добавлено 21 октября 2016 в 17:45

Глава 2 - Теория твердотельных приборов

Биполярный транзистор был назван так, потому что его работа предполагает движение двух носителей заряда: электронов и дырок в одном и том же кристалле. Первый биполярный транзистор был изобретен в Bell Labs Уильямом Шокли, Уолтером Браттейном и Джоном Бардином в конце 1947 года, и поэтому публикации о нем не появлялись до 1948 года. Таким образом, многие тексты различаются по дате изобретения. Браттейн изготовил германиевый точечный транзистор, который имел некоторое сходство с точечным диодом. В течение месяца у Шокли появился более практичный плоскостной биполярный транзистор, который мы опишем ниже. В 1956 году за изобретение транзистора они были удостоены Нобелевской премии по физики.

Биполярный транзистор, показанный на рисунке ниже (a), - это NPN трехслойный полупроводниковый сэндвич с эмиттером и коллектором на концах и базой между ними. Это как если бы к двухслойному диоду был добавлен третий слой. Но если бы это было единственным требованием, было бы достаточно иметь пару расположенных «спина к спине» диодов. Да и изготовить пару диодов, расположенных «спина к спине», гораздо проще. Но основой изготовления биполярного транзистора является создание среднего слоя, базы, такого тонкого насколько это возможно без замыкания внешних слоев, эмиттера и базы. Невозможно переоценить важность тонкой области базы.

Полупроводниковый прибор на рисунке ниже (a) имеет два перехода, между эмиттером и базой и между базой и коллектором, и две обедненные области.

(a) Биполярный NPN транзистор.
(b) Применение обратного смещения к переходу база-коллектор.

На переход база-коллектор биполярного транзистора принято подавать обратное смещение, как показано на рисунке выше (b). Обратите внимание, что это увеличивает ширину обедненной области. Напряжение обратного смещения для большинства транзисторов может находиться в диапазоне от нескольких вольт до десятков вольт. В данный момент в коллекторной цепи нет тока, кроме тока утечки.

На рисунке ниже (a) добавлен еще один источник напряжения в цепь между эмиттером и базой. Обычно мы прикладываем к переходу эмиттер-база прямое смещение, преодолевающее потенциальный барьер 0,6В. Это похоже на прямое смещение полупроводникового диода. Источник напряжения должен превышать 0,6В, чтобы основные носители (электроны для NPN) начали протекать от эмиттера в базу, становясь неосновными носителями заряда в полупроводнике P-типа.

Если бы область базы была толстой, как в паре расположенный «спина к спине» диодов, весь ток, поступающий в базу, утекал бы через вывод базы. В нашем примере NPN транзистора электроны, выходящие из эмиттера в базу, будут объединяться с дырками в базе, освобождая место для большего числа дырок, которые будут созданы на (+) выводе батареи, подключенного к базе, как только электроны уйдут.

Однако база изготавливается тонкой. Несколько основных носителей в эмиттере, введенных как неосновные носители в базу, действительно рекомбинируют. Смотрите рисунок ниже (b). Несколько электронов, введенных эмиттером в базу NPN транзистора, попадают в дырки. Также несколько электронов, вошедших в базу, потекут напрямую через базу к положительной клемме батареи. Большая часть эмиттерного потока электронов диффундирует через тонкую базу в коллектор. Кроме того, изменение небольшого тока базы приводит к большим изменениям тока коллектора. Если напряжение на базе падает ниже примерно 0,6 вольт для кремниевого транзистора, то перестает течь большой ток эмиттер-коллектор.



Биполярный NPN транзистор с обратным смещением перехода коллектор-база: (a) добавление прямого смещения к переходу база-эмиттер дает в результате (b) маленький ток базы и большие токи эмиттера и коллектора.

На рисунке ниже мы более внимательно рассмотрим механизм усиления тока. У нас есть увеличенный вид переходов биполярного NPN транзистора с акцентом на тонкую область базы. Хотя это не показано, мы предполагаем, что подключены внешние источники напряжения: (1) прямое смещение перехода эмиттер-база, (2) обратное смещение перехода база-коллектор. Электроны, основные носители, входят в эмиттер от клеммы (-) батареи. Ток базы соответствует электронам, покидающим вывод базы к выводу (+) батареи. Впрочем, это небольшой ток по сравнению с током эмиттера.



Электроны, входящие в базу:
(a) Утерянные в результате рекомбинации с дырками базы.
(b) Выходящие из вывода базы.
(c) Большинство диффундирует из эмиттера через тонкую базу в обедненную область база-коллектор,
и (d) быстро захватываются сильным электрическим полем обедненной области в коллектор.

Основными носителям внутри эмиттера N-типа являются электроны, становящиеся неосновными носителями, когда входят в базу P-типа. У этих электронов, попадающих в тонкую базу P-типа, есть четыре возможных варианта. Несколько электронов (на рисунке (a) выше) попадают в дырки в базе, что способствует протеканию тока к выводу базы от клеммы (+) батареи. Это не показано, но дырки в базе могут диффундировать в эмиттер и объединяться с электронами, способствуя протеканию тока через вывод базы. Несколько (b) протекают через базу к выводу (+) батареи, как если бы база была просто резистором. Обе группы электронов, и (a) и (b), вносят очень маленький вклад в ток базы. Для маломощных транзисторов ток базы обычно составляет 1% от тока эмиттера или коллектора. Большая часть электронов эмиттера диффундирует сквозь тонкую базу (c) в обедненную область база-коллектор. Обратите внимание на полярность обедненной области, окружающей электрон на рисунке (d). Сильное электрическое поле быстро сметает электрон в коллектор. Сила поля пропорциональна напряжению батареи коллектора. Таким образом, 99% эмиттерного тока поступает в коллектор. Он управляется током базы, который составляет 1% от тока эмиттера. Это потенциальное усиление тока в 99 раз, отношение I К /I Б, также известное как бета β.

Это потрясающе, распространение 99% носителей эмиттера через базу возможно, только если база очень тонкая. Что было бы с основными носителями эмиттера, если бы база была в 100 раз толще? Можно было бы ожидать увеличения рекомбинации, число электронов, попадающих в дырки, было бы намного больше. Может быть 99%, а не 1%, попало бы в дырки, никогда не достигнув коллектора. Второй момент состоит в том, что ток базы может управлять 99% тока эмиттера, только если 99% тока эмиттера диффундирует в коллектор. Если бы весь ток вытекал из базы, никакое управление не было бы возможно.

Еще одна особенность, необходимая для передачи 99% электронов из эмиттера в коллектор, заключается в том, что реальные биполярные транзисторы используют небольшой сильно легированный эмиттер. Высокая концентрация электронов эмиттера заставляет больше электронов диффундировать в базу. Более низкая концентрация легирующей примеси в базе означает, что меньшее количество дырок диффундирует в эмиттер, которые могли бы увеличить ток базы. Распространение носителей заряда от эмиттера к базе пользуется большим преимуществом.

Тонкая база и сильно легированный эмиттер помогают сохранить высокую эффективность эмиттера, например, 99%. Это соответствует тому, что 100% тока эмиттера разделяется между базой (1%) и коллектором (99%). Эффективность эмиттера известна, как α = I К /I Э.

Биполярные транзисторы могут иметь структуру как NPN, так и PNP. Мы приведем сравнение этих двух структур на рисунке ниже. Разница заключается в полярности PN-переходов база-эмиттер, что и обозначено направлением стрелки эмиттера на условном графическом обозначении. Она указывает в том же направлении, как и стрелка анода диода, противоположно направлению движения электронов.

Смотрите условное обозначение на изображении в P-N переход . Начало стрелки и ее конец соответствуют полупроводникам P-типа и N-типа, соответственно. Для эмиттеров NPN и PNP транзисторов стрелка указывает по направлениям от базы и к базе, соответственно. На условном обозначении нет стрелки на коллекторе. Тем не менее, переход база-коллектор имеет ту же полярность, как диод, что и переход база-эмиттер. Обратите внимание, что мы говорим о полярности диода, а не источника питания.



Сравните NPN транзистор (a) с PNP транзистором (b). Обратите внимание на стрелку эмиттера и полярности источника питания.

Источники напряжения для PNP транзисторов перевернуты по сравнению с NPN транзисторами, как показано на рисунке выше. Переход база-эмиттер должен быть смещен в прямом направлении в обоих случаях. На базу PNP транзистора подается отрицательное смещение (b), по сравнению с положительным (a) для NPN транзистора. В обоих случаях переход база-коллектор смещен в обратном направлении. Источник питания коллектора PNP транзистора имеет отрицательную полярность, по сравнению с положительной для NPN транзистора.



Биполярный плоскостной транзистор (BJT): (a) поперечное сечение отдельного прибора, (b) условное графическое обозначение, (c) поперечное сечение интегральной микросхемы.

Обратите внимание, что биполярный транзистор (BJT) на рисунке (a) выше имеет сильное легирование в эмиттере, обозначенное N + . База обладает нормальным уровнем P-легирования. База намного тоньше, чем показано на рисунке поперечного сечения не в масштабе. Коллектор легирован слабо, что обозначено с помощью N - . Коллектор должен быть легирован так слабо, чтобы переход коллектор-база обладал высоким напряжением пробоя. Это приводит к высокому допустимому напряжению источника питания коллектора. Напряжение пробоя у маломощных кремниевых транзисторов составляет 60-80 вольт. Для высоковольтных транзисторов оно может достигать сотен вольт. Коллектор также должен быть сильно легирован для уменьшения резистивных потерь, если транзистор должен работать с большими токами. Эти противоречивые требования удовлетворяются за счет более сильного легирования коллектора в области металлического контакта. Коллектор около базы легирован слабо по сравнению с эмиттером. Сильное легирование в эмиттере дает низкое напряжение пробоя перехода эмиттер-база, которое составляет примерно 7 вольт для маломощных транзисторов. Сильнолегированный эмиттер делает переход эмиттер-база при обратном смещении, похожим по характеристикам на стабилитрон.

Основание биполярного плоскостного транзистора, пластина из полупроводника, - это коллектор, установленный (в случае мощных транзисторов) на металлическом корпусе. То есть, металлический корпус электрически соединен с коллектором. Основание маломощных транзисторов может быть заключено в эпоксидную смолу. В мощных транзисторах алюминиевые соединительные провода подключаются к базе и эмиттеру и соединяются с выводами корпуса. Основания маломощных транзисторов могут устанавливаться непосредственно на выводящих проводниках. На одном кристалле может быть изготовлено несколько транзисторов, что будет называться интегральной схемой. Коллектор даже может быть установлен не на корпусе, а на выводе. Интегральная схема может содержать внутренние проводники, соединяющие транзисторы и другие интегрированные компоненты. Встроенный биполярный транзистор, показанный на рисунке (c) выше, намного тоньше, чем показано на рисунке «не в масштабе». Область P + изолирует несколько транзисторов в одном кристалле. Алюминиевый слой металлизации (не показан) соединяет между собой несколько транзисторов и другие компоненты. Область эмиттера сильно легирована N + по сравнению с базой и коллектором для того, чтобы повысить эффективность эмиттера.

Дискретные PNP транзисторы почти столь же высокого качества, как и NPN транзисторы. Тем не менее, интегрированные PNP транзисторы не так хороши, как NPN в аналогичном кристалле интегральной схемы. Таким образом, интегральные схемы по максимуму используют NPN транзисторы.

Подведем итоги

  • Биполярные транзисторы проводят ток, используя и электроны, и дырки в одном приборе.
  • Функционирование биполярного транзистора, как усилителя тока, требует, чтобы на переход коллектор-база было подано обратное смещение, а на переход эмиттер-база - прямое.
  • Транзистор отличается от пары соединенных «спина к спине» диодов тем, что база (центральный слой) очень тонкая. Это позволяет основным носителям заряд из эмиттера диффундировать, как неосновные носители, через базу в обедненную область перехода база-коллектор, где их подбирает сильное электрическое поле.
  • Эффективность эмиттера улучшается более сильным легированием по сравнению с коллектором. Эффективность эмиттера: α = I C /I E , составляет 0,99 для маломощных транзисторов.
  • Усиление по току: β=I C /I B , для маломощных транзисторов лежит в диапазоне от 100 до 300.

Транзисторы являются активными компонентами и используются повсеместно в электронных цепях в качестве усилителей и коммутационных устройств (транзисторных ключей). Как усилительные приборы они применяются в приборах высокой и низкой частоты, генераторах сигналов, модуляторах, детекторах и многих других цепях. В цифровых схемах, в импульсных блоках питания и управляемых электроприводах они служат в качестве ключей.

Биполярные транзисторы

Так называется наиболее распространенный тип транзистора. Они делятся на npn и pnp типы. Материалом для них наиболее часто является кремний или германий. Поначалу транзисторы делались из германия, но они были очень чувствительны к температуре. Кремниевые приборы гораздо более стойки к ее колебаниям и дешевле в производстве.

Различные биполярные транзисторы показаны на фото ниже. Маломощные приборы расположены в небольших пластиковых прямоугольных или металлический цилиндрических корпусах. Они имеют три вывода: для базы (Б), эмиттер (Э) и коллектор (К). Каждый из них подключен к одному из трех слоев кремния с проводимостью либо n- (ток образуют свободные электроны), либо p-типа (ток образуют так называемые положительно заряженные «дырки»), из которых и состоит структура транзистора.

Как устроен биполярный транзистор?

Принципы работы транзистора нужно изучать, начиная с его устройства. Рассмотрим структуру npn-транзистора, которая изображена на рис.ниже.

Как видим, он содержит три слоя: два с проводимостью n-типа и один - p-типа. Тип проводимости слоев определяется степенью легирования специальными примесями различных частей кремниевого кристалла. Эмиттер n-типа очень сильно легирован, чтобы получить множество свободных электронов как основных носителей тока. Очень тонкая база p-типа слегка легирована примесями и имеет высокое сопротивление, а коллектор n- типа очень сильно легирован, чтобы придать ему низкое сопротивление.

Принципы работы транзистора

Лучшим способом познакомиться с ними является экспериментальный путь. Ниже приведена схема простой цепи.

Она использует силовой транзистор для управления свечением лампочки. Вам также понадобится батарейка, небольшаю лампочка от фонарика примерно 4,5 В/0,3 А, потенциометр в виде переменного резистора (5К) и резистор 470 Ом. Эти компоненты должны быть соединены, как показано на рисунке справа от схемы.

Поверните движок потенциометра в крайнее нижнее положение. Это понизит напряжение на базе (между базой и землёй) до нуля вольт (U BE = 0). Лампа не светится, что означает отсутствие тока через транзистор.

Если теперь поворачивать рукоятку от ее нижней позиции, то U BE постепенно увеличивается. Когда оно достигает 0,6 В, ток начинает втекать в базу транзистора, и лампа начинает светиться. Когда рукоятка сдвигается дальше, напряжение U BE остается на уровне 0,6 В, но ток базы увеличивается и это увеличивает ток через цепь коллектор-эмиттер. Если рукоятка сдвинута в верхнее положение, напряжение на базе будет немного увеличено до 0,75 В, но ток значительно возрастет и лампа будет светиться ярко.

А если измерить токи транзистора?

Если мы включим амперметр между коллектором (C) и лампой (для измерения I C), другой амперметр между базой (B) и потенциометром (для измерения I B), а также вольтметр между общим проводом и базой и повторим весь эксперимент, мы сможем получить некоторые интересные данные. Когда рукоятка потенциометра находится в его низшей позиции, U BE равно 0 В, также как и токи I C и I B . Когда рукоятку сдвигают, эти значения растут до тех пор, пока лампочка не начинает светиться, когда они равны: U BE = 0.6 В, I B = 0,8 мА и I C = 36 мА.

В итоге мы получаем от этого эксперимента следующие принципы работы транзистора: при отсутствии положительного (для npn-типа) напряжения смещения на базе токи через его выводы равны нулю, а при наличии напряжения и тока базы их изменения влияют на ток в цепи коллектор - эмиттер.

Что происходит при включении питания транзистора

Во время нормальной работы, напряжение, приложенное к переходу база-эмиттер, распределяется так, что потенциал базы (p-типа) приблизительно на 0,6 В выше, чем у эмиттера (n-типа). При этом к данному переходу приложено прямое напряжение, он смещен в прямом направлении и открыт для протекания тока из базы в эмиттер.

Гораздо более высокое напряжение приложено к переходу база-коллектор, причем потенциал коллектора (n-типа) оказывается более высоким, чем у базы (p-типа). Так что к переходу приложено обратное напряжение и он смещен в обратном направлении. Это приводит к образованию довольно толстого обедненного электронами слоя в коллекторе вблизи базы, когда к транзистору прикладывается напряжение питания. В результате ток через цепь коллектор-эмиттер не проходит. Распределение зарядов в зонах переходов npn-транзистора показан на рисунке ниже.

Какова роль тока базы?

Как же заставить работать наш электронный прибор? Принцип действия транзистора заключается во влиянии тока базы на состояние закрытого перехода база-коллектор. Когда переход база-эмиттер смещен в прямом направлении, небольшой ток будет поступать в базу. Здесь его носителями являются положительно заряженные дырки. Они комбинируются с электронами, поступающими из эмиттера, обеспечивая ток I BE . Однако вследствие того, что эмиттер очень сильно легирован, гораздо больше электронов поступает из него в базу, чем способно соединиться с дырками. Это означает, что возникает большая концентрация электронов в базе, и большинство из них пересекает ее и попадает в обедненный электронами слой коллектора. Здесь они попадают под влияние сильного электрического поля, приложенного к переходу база-коллектор, проходят через обедненный электронами слой и основной объем коллектора к его выводу.

Изменения тока, втекающего в базу, влияют на количество привлеченных от эмиттера электронов. Таким образом, принципы работы транзистора могут быть дополнены следующим утверждением: очень небольшие изменения в базовом токе вызывают очень большие изменения в токе, протекающем от эмиттера к коллектору, т.е. происходит усиление тока.

Типы полевых транзисторов

По английски они обозначаются FETs - Field Effect Transistors, что можно перевести как «транзисторы с полевым эффектом». Хотя есть много путаницы в названиях для них, но встречаются в основном два основных их типа:

1. С управляющим pn-переходом. В англоязычной литературе они обозначаются JFET или Junction FET, что можно перевести как «переходный полевой транзистор». Иначе они именуются JUGFET или Junction Unipolar Gate FET.

2. С изолированным затвором (иначе МОП- или МДП-транзисторы). По английски они обозначаются IGFET или Insulated Gate FET.

Внешне они очень похожи на биполярные, что подтверждает фото ниже.

Устройство полевого транзистора

Все полевые транзисторы могут быть названы УНИПОЛЯРНЫМИ приборами, потому что носители заряда, которые образуют ток через них, относятся к единственному для данного транзистора типу - либо электроны, либо «дырки», но не оба одновременно. Это отличает принцип работы транзистора полевого от биполярного, в котором ток образуется одновременно обоими этими типами носителей.

Носители тока протекают в полевых транзисторах с управляющим pn-переходом по слою кремния без pn-переходов, называемому каналом, с проводимостью либо n-, либо p-типа между двумя выводами, именуемыми «истоком» и «стоком» - аналогами эмиттера и коллектора или, точнее,катода и анода вакуумного триода. Третий вывод - затвор (аналог сетки триода) - присоединен к слою кремния с другим типом проводимости, чем у канала исток-сток. Структура такого прибора показана на рисунке ниже.

Как же работает полевой транзистор? Принцип работы его заключается в управлении поперечным сечением канала путем приложения напряжения к переходу затвор-канал. Его всегда смещают в обратном направлении, поэтому транзистор практически не потребляет тока по цепи затвора, тогда как биполярному прибору для работы нужен определенный ток базы. При изменении входного напряжения область затвора может расширяться, перекрывая канал исток-сток вплоть до полного его закрытия, управляя таким образом током стока.

Представляет собой полупроводниковое устройство с тремя электродами, состоит он из двух p-n переходов, перенос электрических зарядов в них осуществляется двумя видами носителя - это электроны и дырки. Так как устройство имеет 2 p-n перехода то оно получило название "биполярный".

Он нашел широкое применение в различных радиоэлектронных устройствах предназначенных для генерации, усиления или переключения (к примеру в логических схемах).

Транзистор имеет 3 вывода которые называются следующим образом:

  • база;
  • коллектор;
  • эмитер.

Эти три электрода подключаются к последовательным слоям полупроводника с разным типом примесной проводимостью. В зависимости от того как происходит это чередование различают транзисторы npn и pnp типа. Сокращение n - означает negative электронный тип проводимости, а p означает positive дырочный.

По принципу действия биполярный транзистор отличается от полевого тем что перенос заряда осуществляется носителями сразу двух типов, а именно электронами и дырками. Отсюда и произодит название "биполярный" от слова "би" - "два".

;

Электрод,который подключается к слою, расположеного в центре называется "базой", а электроды которые подключаются к внешним слоям называеют "эмиттером" и "коллектором". По типу проводимости эти эмиттерный и коллекторный слои ни чем не отличаются. Но в процессе производства транзисторов с целью улучшения электрических параметров они различимы по степени легирования примесями.

Эммитер легируется сильно, а коллекторный слабо что способствует росту допустимого напряжения коллектора. Значение пробойного обратного напряжения эмиттерного перехода нектретично, так как в схемах обычно транзисторы включают с прямосмещенным эмиттерным p-n переходом.

Так как эмитер легируется сильнее то происхолит более сильную инжекцию неосновных носителей в слой базы. Что способствует в росту коэффициента передачи тока при включении транзистора в схеме с общей базой.

Площадь коллекорного перехода делается значительно больше эммитерного, в следствии чего достигается лучший приток неосновных носителей из слоя базы и улучшается коэффициенты передачи.

Толщину базового слоя стараются делать как можно меньше с целью повышения частотных параметров своего рода быстродейтсвия биполярного транзистора. Но есть другая сторона мелали - при снижении толщины слоя базы уменьшается максимальное (предельное) значение напряжения коллекторного перехода. Поэтому значение толщины базы выбирается наиболее оптимальным.

Принцип действия и устройство биполярного транзистора

Изначально в транзисторах в основном использовался металлический германий, а сейчас их изготавливают из монокристалического кремния и арсенида галлия, приборы сделаные на основе арсенида галия обладают высоким быстродействием и применяются в схемах СВЧ-усилителей, в быстродействующих логических схемах. Их быстродействие объясняется высокой подвижностью носителей в арсениде галлия.

Биполярный транзистор имеет 3 полупроводниковых слоя, которые легируются различным образом: базы (Б), эмиттера (Э), коллектора (К). В зависимости от последовательности слоев проводимости транзисторы бывают с проводимостью pnp и с npn.

Базовый слой расположен между двумя другими слоями и слабо легирован в результате чего имеет большое сопротивление. Площадь контакта база-эмиттер меньше чем площадь коллектор-база. Это делается по следующим причинам:

  • увеличение площади перехода коллектор-база способствует тому что неосновные носители из базы с большей вероятность захватываются коллектором, в рабочем состоянии коллекторный переход включается с обратным смещением;
  • также большая площадь способствует большему отводу тепла в процессе работы;

Эммитерный переход обычно включается в прямом направлении (открыт) а коллекторный в обратном (закрыт).

Давайте расмотрим работу транзистора типа n-p-n, транзистор типа p-n-p работает точно также только в нем основные носител изаряда не электроны а дырки. В транзисторе npn типа электроны проходят через переход эмитер-база или други словами инжектируются. Доля этих "вновь прибывших" электронов рекомбинирует с дырками - основными носителями заряда базы. Но в следствии того что база у нас тонкая и слаболегированая т.е. мало дырок то основнная масса электроннов переходит (диффундирует) в облать коллектора этот переход обусловлен тем что электроны долго рекомбинируют с дырками в базе, также электрическое поле коллектора велико, поэтому происходит захват электронов в коллектор. Получается что ток коллектора практически равен току эмитера минус небольшие потери на рекомбинацию в базе. Iк=Iб-Iэ.

База как раз и выполняет роль вентиля, который перекрывает поток электронов через транзистор. Для того чтобы начать управление нужно на вывод базы транзистора подать ток. Его называют тока базы. А напряжение, приложенное к выводам эмиттера и базы, называют «напряжением смещения». Изменяя этот ток (базы) мы тем самым изменяем основной ток (коллекторный) через транзистор.

Нагрев транзисторов

Протека через транзистор электронам оказывают большое сопротивление узлы кристаллической решетки полупроводников. Что приводит к его нагреву. В маломощных биполярных транзисторах этот нагрев не значителен, и ни как не сказывается на его работе. А вот в мощных транзисторах, через которые протекают большие токи, этот нагрев может привести к его поломке. Для того чтобы это предотвратить применяют радиаторы.

Радиаторы необходимы для отвода тепла от транзистора. Иногда с целью улучшения теплоотдачи применяют термопасту. Некоторые радиаторы имеют на поверхности ребра. Эти ребра увеличивают общую поверхность. На некоторых радиаторах установлены вентиляторы, который обеспечивает непрерывный поток воздуха, и как следствие отвод теплоты увеличивается.

Схемы подключения транзисторов

Транзистор можно подключить 3-мя различными схемами:

  • эмиттерная схема;
  • базовая схема;
  • коллекторная схема.

Работа транзистора в этих схемах различна.

Эмиттерная схема включения

Наиболее часто используемая схема включения это эмиттерная схема. Включение транзистора по данной схеме обеспечивает усиление по напряжению и по току. Входное сопротивление данной схемы невелико (порядка сотен Ом) и высокое выходное сопротивление (десятки кОм).

Коллекторная схема включения

Данный схема имеет приличное сопротивление на входе и небольшое сопротивление на выходе. Входное сопротивление данной схемы зависит от нагрузки, которая у нас включена на выходе и больше данного сопротивления на усилительный коэффициент. Ее целесообразно применить источником входного сигнала с высоким выходное сопротивление, к примеру, конденсаторный микрофон или пьезоэлектрический звукосниматель.

Базовая схема включения

Данная схема используется для усиления только напряжения. Усилительный коэффициент по току, а точнее отношение выходного тока к входному всегда меньше единицы. Применяется для усиления высоких частот и имеет минимальные уровни шумов выходных сигналов, к примеру, в усилителях антенн, где сопротивление составляет порядка сотен Ом.

Работа биполярного транзистора в различных режимах

Транзистор в электрических схемах подключаеться по разному и имеет 4 основные режима работы. Их основное отличие в направлении протекающего тока через переход или вовсе отсутствии электрического тока. Под переходом здесь понимаеться область между двумя p и n полупроводниками.

Активный режим

На перехож Б - Э; (база-эмиттер); подключено прямое напряжение, а на переход Э-К (эмиттер-коллектор) подключено обратное напряжение.Усиление сигнала в этом режиме максимальное. Этот режим является наиболее часто используемым.

Насыщенный режим

На переход Б - Э и переход Б-К поданы прямые напряжения, переходы полностью открыты.

Отсечное режим

Режим работы закрытого транзистора, когда к переходы подано обратное напряжение.; Применяется в схемах где нужно два состояния транзистора: "открыт" или "закрыт". Такие схемы называют ключевыми.

Режим инверсии

На переход Э-К (коллекторный переход) подяно прямое напрядение, а на Б - Э обратное. Довольно редкий режим работы биполярного транзистора.

Видео по работе биполярного транзистора

Страница 1 из 2

Устройство и принцип действия биполярного транзистора

Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два электронно-дырочных перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая — коллектором (К), средняя — базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.
Электропроводность эмиттера и коллектора противоположна электропроводности базы. В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р и n-р-n. Условные графические обозначения транзисторов р-n-р и n-р-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер.

Принцип работы транзисторов р-n-р и n-р-n одинаков, поэтому в дальнейшем будем рассматривать лишь работу транзистора со структурой р-n-р.
Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой — коллекторным. Расстояние между переходами очень мало: у высокочастотных транзисторов оно менее 10 микрометров (1 мкм = 0,001 мм), а у низкочастотных не превышает 50 мкм.
При работе транзистора на его переходы поступают внешние напряжения от источника питания. В зависимости от полярности этих напряжений каждый переход может быть включен как в прямом, так и в обратном направлении. Различают три режима работы транзистора: 1) режим отсечки — оба перехода и, соответственно, транзистор полностью закрыты; 2) режим насыщения — транзистор полностью открыт;3) активный режим — это режим, промежуточный между двумя первыми. Режимы отсечки и насыщения совместно применяются в ключевых каскадах, когда транзистор попеременно то полностью открыт, то полностью заперт с частотой импульсов, поступающих на его базу. Каскады, работающие в ключевом режиме, применяются в импульсных схемах (импульсные блоки питания, выходные каскады строчной развертки телевизоров и др.). Частично в режиме отсечки могут работать выходные каскады усилителей мощности.
Наиболее часто транзисторы применяются в активном режиме. Такой режим определяется подачей на базу транзистора напряжения небольшой величины, которое называется напряжением смещения (U см.) Транзистор приоткрывается и через его переходы начинает течь ток. Принцип работы транзистора основан на том, что относительно небольшой ток, текущий через эмиттерный переход (ток базы), управляет током большей величины в цепи коллектора. Ток эмиттера представляет собой сумму токов базы и коллектора.

Режимы работы биполярного транзистора

Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (I ЭБО ) И коллектора (I КБО ). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).

Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения . Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками U ЭБ и U КБ . В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (I Э.нас ) и коллектора (I К.нас ).


Для усиления сигналов применяется активный режим работы транзистора .
При работе транзистора в активном режиме его эмиттерный переход включается в прямом, а коллекторный — в обратном направлениях.


Под действием прямого напряжения U ЭБ происходит инжекция дырок из эмиттера в базу. Попав в базу n-типа, дырки становятся в ней неосновными носителями заряда и под действием сил диффузии движутся (диффундируют) к коллекторному р-n-переходу. Часть дырок в базе заполняется (рекомбинирует) имеющимися в ней свободными электронами. Однако ширина базы небольшая — от нескольких единиц до 10 мкм. Поэтому основная часть дырок достигает коллекторного р-n-перехода и его электрическим полем перебрасывается в коллектор. Очевидно, что ток коллектора I К p не может быть больше тока эмиттера, так как часть дырок рекомбинирует в базе. Поэтому I K p = h 21Б I э
Величина h 21Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h 21Б = 0,90...0,998. Так как коллекторный переход включен в обратном направлении (часто говорят — смещен в обратном направлении), через него протекает также обратный ток I КБО , образованный неосновными носителями базы (дырками) и коллектора (электронами). Поэтому полный ток коллектора транзистора, включенного по схеме с общей базой

I к = h 21Б I э + I КБО
Дырки, не дошедшие до коллекторного перехода и прорекомбинировавшие (заполнившиеся) в базе, сообщают ей положительный заряд. Для восстановления электрической нейтральности базы в нее из внешней цепи поступает такое же количество электронов. Движение электронов из внешней цепи в базу создает в ней рекомбинационный ток I Б.рек. Помимо рекомбинационного через базу протекает обратный ток коллектора в противоположном направлении и полный ток базы
I Б = I Б.рек — I КБО
В активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.

Схемы включения биполярного транзистора

В предыдущей схеме электрическая цепь, образованная источником U ЭБ , эмиттером и базой транзистора, называется входной, а цепь, образованная источником U КБ , коллектором и базой этого же транзистора,— выходной. База является общим электродом транзистора для входной и выходной цепей, поэтому такое его включение называют схемой с общей базой, или сокращенно «схемой ОБ».

На следующем рисунке изображена схема, в которой общим электродом для входной и выходной цепей является эмиттер. Это схема включения с общим эмиттером, или сокращенно «схема ОЭ» .

В ней выходным током, как и в схеме ОБ, является ток коллектора I К , незначительно отличающийся от тока эмиттера I э , а входным — ток базы I Б , значительно меньший, чем коллекторный ток. Связь между токами I Б и I К в схеме ОЭ определяется уравнением: I К = h 21 Е I Б + I КЭО
Коэффициент пропорциональности h 21 Е называют статическим коэффициентом передачи тока базы. Его можно выразить через статический коэффициент передачи тока эмиттера h 21Б
h 21 Е = h 21Б / (1 —h 21Б )
Если h 21Б находится в пределах 0,9...0,998, соответствующие значения h 21 Е будут в пределах 9...499.
Составляющая I кэо называется обратным током коллектора в схеме ОЭ. Ее значение в 1+h 21 Е раз больше, чем I КБО , т. е.I КЭО =(1+ h 21 Е) I КБО. Обратные токи I КБО и I КЭО не зависят от входных напряжений U ЭБ и U БЭ и вследствие этого называются неуправляемыми составляющими коллекторного тока. Эти токи сильно зависят от температуры окружающей среды и определяют температурные свойства транзистора. Установлено, что значение обратного тока I КБО удваивается при повышении температуры на 10 °С для германиевых и на 8 °С для кремниевых транзисторов. В схеме ОЭ температурные изменения неуправляемого обратного тока I КЭО могут в десятки и сотни раз превысить температурные изменения неуправляемого обратного тока I КБО и полностью нарушить работу транзистора. Поэтому в транзисторных схемах применяются специальные меры термостабилизации транзисторных каскадов, способствующие уменьшению влияния температурных изменений токов на работу транзистора.
На практике часто встречаются схемы, в которых общим электродом для входной и выходной цепей транзистора является коллектор. Это схема включения с общим коллектором, или «схема ОК» (эмиттерный повторитель) .

Независимо от схемы включения транзистора для него всегда справедливо уравнение, связывающее токи его электродов:
I э = I к + I Б .

Сравнительная оценка схем включения биполярных транзисторов


K I - коэффициент усиления по току

K U - коэффициент усиления по напряжению

K P - коэффициент усиления по мощности

ТЕМА 4. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

4.1 Устройство и принцип действия

Биполярный транзистор – это полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и пригодный для усиления мощности.

Выпускаемые в настоящее время биполярные транзисторы можно классифицировать по следующим признакам:

По материалу: германиевые и кремниевые;

По виду проводимости областей: типа р-n-р и n-p-n;

По мощности: малой (Рмах £ 0,3Вт), средней (Рмах £ 1,5Вт) и большой мощности (Рмах > 1,5Вт);

По частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В биполярных транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок (или основными и неосновными). Отсюда их название – биполярные.

В настоящее время изготавливаются и применяются исключительно транзисторы с плоскостными р-n- переходами.

Устройство плоскостного биполярного транзистора показано схематично на рис. 4.1.

Он представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n-р-n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р-n-р имеют среднюю область с электронной, а крайние области с дырочной электропроводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, другая – коллектором. Таким образом в транзисторе имеются два р-n- перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором. Площадь эмиттерного перехода меньше площади коллекторного перехода.

Эмиттером называется область транзистора назначением которой является инжекция носителей заряда в базу. Коллектором называют область, назначением которой является экстракция носителей заряда из базы. Базой является область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а их концентрация в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера на несколько порядков выше проводимости базы, а проводимость коллектора несколько меньше проводимости эмиттера.

От базы, эмиттера и коллектора сделаны выводы. В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Рассмотрим принцип действия транзистора на примере транзистора р-n-р –типа, включенного по схеме с общей базой (рис. 4.2).



Рисунок 4.2 – Принцип действия биполярного транзистора (р-n-р- типа)

Внешние напряжения двух источников питания ЕЭ и Ек подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении (прямое напряжение), а коллекторного перехода П2 – в обратном направлении (обратное напряжение).

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток Iко (единицы микроампер). Этот ток возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Ек, база-коллектор, −Ек. Величина обратного тока коллектора не зависит от напряжения на коллекторе, но зависит от температуры полупроводника.

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование (впрыскивание) дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Ек. Дырки, рекомбинировавшие с электронами в базе, создают ток базы IБ.

Под действием обратного напряжения Ек потенциальный барьер коллекторного перехода повышается, толщина перехода П2 увеличивается. Но потенциальный барьер коллекторного перехода не создает препятствия для прохождения через него дырок. Вошедшие в область коллекторного перехода дырки попадают в сильное ускоряющее поле, созданное на переходе коллекторным напряжением, и экстрагируются (втягиваются) коллектором, создавая коллекторный ток Iк. Коллекторный ток протекает по цепи: +Ек, база-коллектор, -Ек.

Таким образом, в транзисторе протекает три тока: ток эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Следовательно, ток базы равен разности токов эмиттера и коллектора: IБ = IЭ − IК.

Физические процессы в транзисторе типа n-р-n протекают аналогично процессам в транзисторе типа р-n-р.

Полный ток эмиттера IЭ определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток Iк. Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы IБ. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. IЭ = IБ + Iк.

Ток эмиттера является входным током, ток коллектора – выходным. Выходной ток составляет часть входного, т.е.

(4.1)

где a- коэффициент передачи тока для схемы ОБ;

Поскольку выходной ток меньше входного, то коэффициент a<1. Он показывает, какая часть инжектированных в базу носителей заряда достигает коллектора. Обычно величина a составляет 0,95¸0,995.

В схеме с общим эмиттером выходным током является ток коллектора, а входным – ток базы. Коэффициент усиления по току для схемы ОЭ:

(4.2) (4.3)

Следовательно, коэффициент усиления по току для схемы ОЭ составляет десятки единиц.

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Ек значительно больше, чем эмиттерного Еэ, то и мощность, потребляемая в цепи коллектора Рк, будет значительно больше мощности в цепи эмиттера Рэ. Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

4.2 Схемы включения биполярных транзисторов

В электрическую цепь транзистор включают таким образом, что один из его выводов (электрод) является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК. Эти схемы для транзистора типа р-n-р приведены на рис. 4.3. Для транзистора n-р-n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора (в активном режиме) полярность включения источников питания должна быть выбрана так, чтобы эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.



Рисунок 4.3 – Схемы включения биполярных транзисторов: а) ОБ; б) ОЭ; в) ОК

4.3 Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

4.3.1 Характеристики транзистора, включенного по схеме ОБ

IЭ = f(UЭБ) при UКБ = const (рис. 4.4, а).

IК = f(UКБ) при IЭ = const (рис. 4.4, б).



Рисунок 4.4 – Статические характеристики биполярного транзистора, включенного по схеме ОБ

Выходные ВАХ имеют три характерные области: 1 – сильная зависимость Iк от UКБ (нелинейная начальная область); 2 – слабая зависимость Iк от UКБ (линейная область); 3 – пробой коллекторного перехода.

Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения UКБ.

4.3.2 Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

IБ = f(UБЭ) при UКЭ = const (рис. 4.5, б).

Выходной характеристикой является зависимость:

IК = f(UКЭ) при IБ = const (рис. 4.5, а).



Рисунок 4.5 – Статические характеристики биполярного транзистора, включенного по схеме ОЭ

Транзистор в схеме ОЭ дает усиление по току. Коэффициент усиления по току в схеме ОЭ:

Если коэффициент a для транзисторов a = 0,9¸0,99, то коэффициент b = 9¸99. Это является важнейшим преимуществом включения транзистора по схеме ОЭ, чем, в частности, определяется более широкое практическое применение этой схемы включения по сравнению со схемой ОБ.

Из принципа действия транзистора известно, что через вывод базы протекают во встречном направлении две составляющие тока (рис. 4.6): обратный ток коллекторного перехода IКО и часть тока эмиттера (1 − a)IЭ. В связи с этим нулевое значение тока базы (IБ = 0) определяется равенством указанных составляющих токов, т.е. (1 − a)IЭ = IКО. Нулевому входному току соответствуют ток эмиттера IЭ=IКО/(1−a)=(1+b)IКО и ток коллектора

. Иными словами, при нулевом токе базы (IБ = 0) через транзистор в схеме ОЭ протекает ток, называемый начальным или сквозным током IКО(Э) и равным (1+ b) IКО.

Рисунок 4.6 – Схема включения транзистора с общим эмиттером (схема ОЭ)

4.4 Основные параметры

Для анализа и расчета цепей с биполярными транзисторами используют так называемые h – параметры транзистора, включенного по схеме ОЭ.

Электрическое состояние транзистора, включенного по схеме ОЭ, характеризуется величинами IБ, IБЭ, IК, UКЭ.

В систему h − параметров входят следующие величины:

1. Входное сопротивление

h11 = DU1/DI1 при U2 = const. (4.4)

представляет собой сопротивление транзистора переменному входному току при котором замыкание на выходе, т.е. при отсутствии выходного переменного напряжения.

2. Коэффициент обратной связи по напряжению:

h12 = DU1/DU2при I1= const. (4.5)

показывает, какая доля входного переменного напряжения передается на вход транзистора вследствие обратной связи в нем.

3. Коэффициент усилия по току (коэффициент передачи тока):

h21 = DI2/DI1при U2= const. (4.6)

показывает усиление переменного тока транзистором в режиме работы без нагрузки.

4. Выходная проводимость:

h22 = DI2/DU2 при I1 = const. (4.7)

представляет собой проводимость для переменного тока между выходными зажимами транзистора.

Выходное сопротивление Rвых = 1/h22.

Для схемы с общим эмиттером справедливы следующие уравнения:

(4.8)

Для предотвращения перегрева коллекторного перехода необходимо, чтобы мощность, выделяемая в нем при прохождении коллекторного тока, не превышала некоторой максимальной величины:

(4.9)

Кроме того, существуют ограничения по коллекторному напряжению:

и коллекторному току:

4.5 Режимы работы биполярных транзисторов

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р-n- перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р-n- перехода открыты), то транзистор работает в режиме насыщения.

В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы (усиление, генерирование и т.п.).

4.6 Область применения

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

4.7 Простейший усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером (рис. 4.7)

Основными элементами схемы являются источник питания Ек, управляемый элемент – транзисторVT и резистор Rк. Эти элементы образуют главную (выходную) цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы.

Остальные элементы выполняют вспомогательную роль. Конденсатор Ср является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Ек.



Рисунок 4.7 – Схема простейшего усилительного каскада на биполярном транзисторе по схеме с общим эмиттером

Резистор RБ, включенный в цепь базы, обеспечивает работу транзистора в режиме покоя, т.е. в отсутствие входного сигнала. Режим покоя обеспечивается током базы покоя IБ » Ек/RБ.

С помощью резистора Rк создается выходное напряжение, т.е. Rк выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Ек = Uкэ + IкRк, (4.10)

т.е сумма падения напряжения на резисторе Rк и напряжения коллектор-эмиттер Uкэ транзистора всегда равна постоянной величине – ЭДС источника питания Ек.

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Ек в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

При подаче на вход усилительного каскада переменного напряжения uвх в базовой цепи транзистора создается переменная составляющая тока IБ~, а значит ток базы будет изменяться. Изменение тока базы приводит к изменению значения тока коллектора (IК = bIБ), а значит, к изменению значений напряжений на сопротивлении Rк и Uкэ. Усилительные способности обусловлены тем, что изменение значений тока коллектора в b раз больше, чем тока базы.

4.8 Расчет электрических цепей с биполярными транзисторами

Для коллекторной цепи усилительного каскада (рис. 4.7) в соответствии со вторым законом Кирхгофа справедливо уравнение (4.10).

Вольт – амперная характеристика коллекторного резистора RК является линейной, а вольт – амперные характеристики транзистора представляют собой нелинейные коллекторные характеристики транзистора (рис. 4.5, а), включенного по схеме ОЭ.

Расчет такой нелинейной цепи, т.е определение IK, URK и UКЭ для различных значений токов базы IБ и сопротивлений резистора RК можно провести графически. Для этого на семействе коллекторных характеристик (рис. 4.5, а) необходимо провести из точки ЕК на оси абсцисс вольт – амперную характеристику резистора RК, удовлетворяющую уравнению:

Uкэ = Ек − RкIк. (4.11)

Эту характеристику строят по двум точкам:

Uкэ =Ек при Iк = 0 на оси абсцисс и Iк = Ек/Rк при Uкэ = 0 на оси ординат. Построенную таким образом ВАХ коллекторного резистора Rк называют линией нагрузки. Точки пересечения ее с коллекторными характеристиками дают графическое решение уравнения (4.11) для данного сопротивления Rк и различных значений тока базы IБ. По этим точкам можно определить коллекторный ток Iк, одинаковый для транзистора и резистора Rк, а также напряжение UКЭ и URK.

Точка пересечения линии нагрузки с одной из статических ВАХ называется рабочей точкой транзистора. Изменяя IБ, можно перемещать ее по нагрузочной прямой. Начальное положение этой точки при отсутствии входного переменного сигнала называют точкой покоя − Т0.



а) б)

Рисунок 4.8 – Графоаналитический расчет рабочего режима транзистора при помощи выходных и входной характеристики.

Точка покоя (рабочая точка) Т0 определяет ток IКП и напряжение UКЭП в режиме покоя. По этим значениям можно найти мощность РКП, выделяющуюся в транзисторе в режиме покоя, которая не должна превышать предельной мощности РК мах, являющейся одним из параметров транзистора:

РКП = IКП ×UКЭП £ РК мах. (4.12)

В справочниках обычно не приводится семейство входных характеристик, а даются лишь характеристики для UКЭ = 0 и для некоторого UКЭ > 0.

Входные характеристики для различных UКЭ, превышающих 1В, располагаются очень близко друг к другу. Поэтому расчет входных токов и напряжений можно приближенно делать по входной характеристике при UКЭ > 0, взятой из справочника.

На эту кривую переносятся точки А, То и Б выходной рабочей характеристики, и получаются точки А1, Т1 и Б1 (рис. 4.8, б). Рабочая точка Т1 определяет постоянное напряжение базы UБЭП и постоянной ток базы IБП.

Сопротивление резистора RБ (обеспечивает работу транзистора в режиме покоя), через который от источника ЕК будет подаваться постоянное напряжение на базу:

(4.13)

В активном (усилительном) режиме точка покоя транзистора То находится примерно посередине участка линии нагрузки АБ, а рабочая точка не выходит за пределы участка АБ.