Устройство системы охлаждения двигателя. Основные части

(ДВС) и их составные части подвергаются сильному нагреву во время эксплуатации различных транспортных средств. При этом, как перегрев, так и переохлаждение мотора способны спровоцировать выход его из строя. В связи с этим одной из важнейших задач разработчиков силовых агрегатов является обеспечение оптимального теплового режима их работы. Грамотно организованная система охлаждения двигателя способствует получению наилучших эксплуатационных параметров ДВС, к которым относятся:

  1. Максимальная мощность.
  2. Минимальный расход горючего.
  3. Увеличенный срок эксплуатации.

Влияние температурных параметров на работу мотора

За один рабочий цикл температура в цилиндрах ДВС изменяется от 80…120 градусов Цельсия во время впуска горючей смеси до 2000…2200 градусов Цельсия в процессе ее сгорания. При этом силовой агрегат достаточно сильно нагревается.

Если мотор во время работы охлаждается недостаточно интенсивно, то его детали сильно нагреваются и изменяются в размерах. Значительно уменьшается (из-за выгорания) и объем моторного масла, залитого в картер. В итоге увеличивается трение между взаимодействующими деталями, что приводит к их быстрому износу или даже заклиниванию.

Однако и переохлаждение ДВС отрицательно сказывается на его работе. На стенках цилиндров холодного двигателя происходит конденсация паров топлива, которые, смывая слой смазки, разжижают моторное масло, находящееся в картере.

Для исключения негативных последствий, связанных с нарушением теплового режима, системы охлаждения проектируются так, чтобы исключить перегрев и переохлаждение мотора в процессе эксплуатации.

В результате химические свойства последнего ухудшаются, что способствует:

  • увеличенному расходу моторного масла;
  • интенсивному износу трущихся поверхностей;
  • падению мощности силового агрегата;
  • увеличению расхода горючего.

Классификация

При работе мотора необходимо обеспечить отвод от 25 до 35% выделяемого тепла. Для его эффективного поглощения (отвода) чаще всего используют воду, воздух или специальную жидкость (тосол, антифриз). Материал теплоносителя определяет способ охлаждения силового агрегата.

Различают системы:

  1. Принудительного воздушного охлаждения.
  2. Жидкостного охлаждения с замкнутым циклом.

Жидкостная система охлаждения

В настоящее время для эффективного охлаждения автомобильных двигателей используют закрытую систему жидкостного охлаждения с замкнутым циклом.

Конструкция

В обязательном порядке система содержит расширительный бачок, который служит для компенсации изменения объема жидкости при изменении ее температуры. Кроме того, через него заливают теплоноситель.

Также в состав системы входят:

  • водяная рубашка силового агрегата (пространство между двойными стенками блока цилиндров и его головки в местах отвода чрезмерного количества тепла);
  • датчик температуры;
  • биметаллический или электронный термостат, обеспечивающий оптимальную температуру в системе;
  • помпа-насос центробежного типа, обеспечивающий принудительную циркуляцию охлаждающей жидкости в системе;
  • вентилятор, с помощью которого усиливается поток встречного воздуха на основной радиатор системы;
  • радиатор, осуществляющий передачу тепла окружающей среде;
  • радиатор отопителя, предназначенный для передачи тепла непосредственно в салон автомобиля;
  • контрольный прибор, встроенный в панель приборов автомобиля.

Принцип действия

Охлаждающая жидкость заливается в систему через расширительный бачок. Постоянно циркулируя внутри системы, она отводит тепло от составных частей мотора, нагревающихся в процессе работы, нагревается, попадает в радиатор, охлаждается в радиаторе встречным потоком воздуха и возвращается обратно.

При необходимости включается вентилятор, усиливая эффективность охлаждения. Для замкнутых систем охлаждения температура теплоносителя не должна превышать 126 градусов Цельсия. Таким образом, обеспечивается оптимальный тепловой режим работы силового агрегата.

Дополнительные функции

Кроме своей главной задачи – отвода тепла от нагревающихся элементов, жидкостная система охлаждения двигателя обеспечивает также:

  • Прогрев силового агрегата в холодное время года

В современных системах жидкостного охлаждения предусмотрено два контура, по которым может циркулировать охлаждающая жидкость. Это сделано для того, чтобы в момент пуска холодного двигателя, когда его детали и сама жидкость имеют низкую температуру, циркуляция теплоносителя осуществлялась по малому кругу (мимо радиатора).

Обеспечивается это термостатом, который в момент, когда температура поднимется до определенного уровня (70-80 градусов Цельсия), открывается, давая возможность теплоносителю циркулировать по большому кругу (через радиатор). Таким образом, осуществляется ускоренный процесс прогрева двигателя.

  • Нагревание воздуха в салоне автомобиля

В холодное время года с помощью горячего теплоносителя происходит нагревание воздуха в салоне автомобиля. Для этого служит дополнительный радиатор, установленный в салоне и оснащенный собственным вентилятором. С их помощью тепло, отобранное от горячей жидкости, распространяется по всему объему салона.

  • Снижение температуры нагнетаемого в цилиндры воздуха

Специально для двигателей, оснащенных турбонагнетателями, предусмотрены двухконтурные системы, в которых один контур обеспечивает охлаждение жидкости, а второй – охлаждение воздуха.

Кроме того, контур охлаждения теплоносителя также представляет собой двухконтурную систему, один контур которой охлаждает головку блока цилиндров, а другой – сам блок.

Это вызвано тем, что в турбированном моторе температура головки блока цилиндров должна быть ниже температуры самого блока на 15…20 градусов Цельсия. Особенностью такой системы охлаждения является то, что каждый контур контролируется собственным термостатом.

Достоинства и недостатки

Жидкостная система охлаждения двигателя присутствует практически у всех современных автомобилей. Принципиально отличаясь от систем воздушного охлаждения, она гарантирует:

  • равномерное и быстрое прогревание силового агрегата;
  • эффективный отвод тепла в любых условиях эксплуатации двигателя;
  • снижение затрат мощности;
  • стабильный тепловой режим работы мотора;
  • возможность использования выделяемого тепла для нагревания воздуха в салоне и пр.

Среди немногочисленных недостатков жидкостной системы охлаждения можно отметить:

  • необходимость регулярного обслуживания и сложность ремонта;
  • повышенную чувствительность к изменениям температуры.

Неисправности и способы их устранения

Всем системам жидкостного охлаждения свойственны характерные неисправности. Чаще всего встречаются:

  1. заклинивание термостата в закрытом положении (циркуляция жидкости осуществляется по малому кругу);
  2. поломка помпы;
  3. повреждение выпускного клапана, встроенного в пробку расширительного бачка;
  4. утечка теплоносителя вследствие разгерметизации системы (повреждение уплотнителей, коррозия и пр.).
  5. Кроме того, достаточно часто термостат заклинивает в положении «Открыто» (теплоноситель циркулирует по большому кругу), что увеличивает время прогрева холодного мотора и способствует нестабильности теплового режима при его дальнейшей работе.

Все эти неисправности характеризуются значительным повышением рабочей температуры силового агрегата, что может привести к закипанию теплоносителя и перегреву мотора.

Устраняются все дефекты путем замены неисправных и/или поврежденных деталей или комплектующих.

Воздушная система охлаждения

Моторами воздушного охлаждения оснащались транспортные средства в 50-70 годах прошлого века. Типичными представителями таких автомобилей являются «Запорожец» или FIAT 500. Сейчас моторы с воздушным охлаждением в автомобилестроении практически не встречаются.

Конструкция и принцип действия

Конструктивно система принудительного воздушного охлаждения монтируется в подкапотном пространстве транспортного средства и состоит из:

  • отсасывающего или нагнетающего вентилятора;
  • направляющих ребер рубашки охлаждения двигателя;
  • органов управления (дроссельные заслонки, управляющие подачей воздуха или муфта, регулирующая частоту вращения вентилятора в автоматическом режиме);
  • температурного датчика, установленного в силовом агрегате;
  • контрольного прибора, выведенного на приборную панель в салоне автомобиля.

Охлаждение мотора осуществляется встречным холодным воздухом. Для усиления его потока чаще всего используют вентилятор нагнетающего типа. Он усиливает поток холодного плотного воздуха и обеспечивает его подачу в больших количествах при малых энергетических затратах.

Отсасывающий вентилятор требует больших затрат мощности, однако обеспечивает более равномерный отвод тепла от деталей силового агрегата.

Достоинства и недостатки

Моторы с принудительным воздушным охлаждением отличаются:

  • простотой конструкции;
  • низкими требованиями к изменению температуры окружающей среды;
  • небольшим весом;
  • несложным техническим обслуживанием.

К недостаткам системы воздушного охлаждения относят:

  • большую потерю мощности мотора, которая расходуется на обеспечение работы вентилятора;
  • высокий уровень шума во время работы вентилятора;
  • недостаточное охлаждение отдельных элементов двигателя из-за неравномерного обдува;
  • невозможность использования излишков тепла для обогрева салона.

Нормальное функционирование силовой установки автомобиля возможно только при определенном температурном режиме. Для большинства авто оптимальный диапазон температуры составляет 80-90 град. С. При более низком показателе ухудшается смесеобразование в цилиндрах, а высокая температура приводит к расширению металла, что может стать причиной заклинивания узлов.

Общее устройство системы охлаждения

Чтобы температура силовой установки была в оптимальном диапазоне, в конструкцию мотора включена система охлаждения. Именно благодаря ей обеспечивается отвод тепла от самых разогреваемых элементов — цилиндров.

Виды систем охлаждения

Всего на двигателях внутреннего сгорания используется два типа охлаждения – воздушное и жидкостное.

Воздушная система охлаждения, ее конструкция, недостатки

Устройство воздушной системы охлаждения двигателя

В силу ряда недостатков на автомобильном транспорте воздушная система широкого распространения не получила, хотя конструктивно она значительно проще, чем жидкостная. Основным ее элементом являются ребра охлаждения на цилиндрах.

Тепло, выделяемое от цилиндров, распространялось на эти ребра, а проходящий через них поток воздуха осуществлял его отвод. Для создания потока дополнительно конструкция системы могла включать турбину – специальную крыльчатку, с приводом от коленчатого вала и рукав, которым создаваемый поток воздуха направлялся на цилиндры. Это вся конструкция воздушной системы.

На автотранспорте воздушная система практически не используется потому, что:

  • невозможна регулировка температурного режима (зимой мотор не выходил на необходимую температуру, а летом – очень быстро перегревался);
  • чтобы обеспечить равномерное распределение потока воздуха, каждый цилиндр стоял отдельно;
  • во время стоянки с заведенным мотором даже при наличии турбины поток воздуха очень слабый, что приводит к быстрому перегреву;
  • невозможно организовать обогрев салона.

Из-за этих недостатков воздушная система на автомобилях не применяется, хотя единичные случаи все же были – ЗАЗ-968 «Запорожец» как раз и имел такую систему охлаждения. Зато она широко используется на мототранспорте и технике, оснащенной 2-тактными моторами (бензопилы, мотокосы, мотоблоки и т. д.).

Видео: Система охлаждения двигателя. Устройство и принцип работы

Устройство, конструкция, принцип работы

Жидкостная система охлаждения

Достоинством жидкостной системы охлаждения как раз и является возможность поддержания температуры в заданном диапазоне, поэтому она лучше воздушной. Но конструкция этой системы значительно сложнее.

В ее состав входит:

  1. Рубашка охлаждения
  2. Водяной насос
  3. Термостат
  4. Радиаторы
  5. Соединяющие патрубки
  6. Вентилятор

При этом основным рабочим элементом такой системы является специальная жидкость – , при помощи которой и осуществляется отвод тепла. Раньше вместо него использовалась обычная вода, но из-за низкого температурного порога замерзания и образования накипи от воды постепенно отказались.

1. Рубашка охлаждения

Рубашка охлаждения – специальная система каналов в блоке цилиндров и головке блока, по которой движется жидкость. Если рассматривать все по-простому, то выглядит это так: имеется блок, в который устанавливаются цилиндры, а также основные узлы и механизмы. Поверх этого блока сделана оболочка, а пространство между ними и используется как каналы для движения жидкости. Такая конструкция позволяет жидкости омывать цилиндры, проходить рядом с узлами, установленными в блоке и головке, что обеспечивает отвод тепла от них.

2. Помпа

Так выглядит водяная помпа

В рубашку охлаждения установлена водяная помпа. Она состоит из приводного зубчатого колеса (шкива) и крыльчатки, которая помещается внутрь рубашки, посаженных на одну ось. Привод ее осуществляется от коленчатого вала при помощи ремня.

Именно водяной насос и обеспечивает циркуляцию жидкости по системе. Получая вращение от коленчатого вала, крыльчатка заставляет двигаться жидкость по каналам рубашки.

3. Радиатор

При этом антифриз циркулирует не только по рубашке. Если бы так и было, то жидкости некуда было бы отдавать тепло, то есть . Чтобы этого не происходило, в конструкцию включен .

Представляет он собой конструкцию из двух бачков – в один подается жидкость из рубашки, а из второго она возвращается обратно. Эти бачки между собой соединены большим количеством трубок, по которым жидкость перемещается между ними. Чтобы , радиатор изготавливают из металлов, обладающих высокой теплопроводностью (медь, алюминий, латунь). Также чтобы повысить теплообмен между трубками располагаются специальные ленты, уложенные определенным образом и имеющие большое количество мест контакта с трубками.

Жидкость, проходя через трубки, часть тепла отдает лентам. Проходящий сквозь радиатор воздух отбирает тепло и отводит его в окружающую среду. Для обеспечения хорошего потока воздуха радиатор устанавливают в передней части авто. Радиатор с рубашкой охлаждения соединяется при помощи резиновых патрубков.

Отдельно отметим, что благодаря жидкостной системе удалось обеспечить и . Для этого в систему охлаждения включили еще один радиатор, который поместили в салоне. Конструктивно он такой же, как и основной радиатор, но по габаритам меньше. Поток воздуха же для него создается при помощи электромотора с вентилятором.

Видео: Перегрев двигателя. Последствия перегрева.

4. Термостат

Система охлаждения должна обеспечивать максимально быстрый выход силовой установки на оптимальный температурный режим. И чтобы это обеспечить, в конструкцию включен термостат. Чтобы понять, для чего он нужен – немного теории.

Если бы конструкция системы состояла только из рубашки и насоса, то двигатель очень быстро бы перегревался, поскольку жидкость двигалась только по каналам в блоке и отвести тепло ей было бы некуда.

Устройство и принцип работы термостата

Чтобы избежать этого в конструкцию включили радиатор. Но из-за его наличия объем увеличивался, к тому же назначение радиатора – отвод тепла, поэтому двигатель очень долго будет выходить на нужную температуру, особенно в зимний период.

Для обеспечения быстрого выхода на необходимую температуру, систему охлаждения разделили на два кольца – малое (задействованы только рубашка охлаждения и насос) и большое (рубашка + насос + радиатор).

Разделением на кольца и занимается термостат. Представляет он собой клапан, который срабатывает от повышения температуры. На разных авто температура его срабатывания отличается, но в целом он работает в диапазоне – 85-95 град. С.

Корпус термостата располагается обычно на блоке цилиндров возле канала, ведущего на радиатор. Пока температура мотора низкая, термостат перекрывает этот канал и жидкость перемещается только по рубашке. По мере повышения температуры этот клапан начинает постепенно открываться, пуская жидкость уже по большому кольцу, с задействованием радиатора. При достижении определенного температурного значения он открывается полностью, и жидкость уже движется только по большому кольцу.

5. Вентилятор, датчики

Принцип работы вентилятора системы охлаждения

Бывает так, что потока воздуха недостаточно, чтобы обеспечить нормальный отвод тепла от радиатора. К примеру, такое случается в пробке, когда двигатель постоянно работает, а вот встречного потока воздуха нет, поскольку авто обездвижено.

Чтобы не дать жидкости перегреться, используется вентилятор, создающий принудительно поток воздуха. Размещается он за основным радиатором и приводится в движение электромотором. Включение же его в работу осуществляется за счет установленного в радиаторе температурного датчика.

Дополнительно в конструкцию входит также температурный , который передает данные о температуре на приборную панель в салоне, поэтому водитель может постоянно контролировать температурный режим мотора и своевременно заметить появление неисправности, из-за чего температура мотора «пошла вверх».

Основные неисправности системы охлаждения

Неисправностей у системы охлаждения двигателя не так уж и много, но последствия от них могут быть очень серьезными. Основными из них являются:

  • Утечка охлаждающей жидкости;
  • Неисправность насоса, термостата;
  • Повреждение проводки датчиков.

Видео: Все причины перегрева и кипения двигателя. Устранение причин перегрева двигателя ВАЗ НИВА

Утечка жидкости может произойти из-за пробоя рубашки охлаждения, прокладки ГБЦ, резиновых патрубков, радиатора или же из-за ненадежного крепления мест соединения.

Выявить эту неисправность несложно, поскольку в результате утечки под авто будет образовываться лужа из охлаждающей жидкости. Если своевременно не устранить течь, то большая часть охлаждающей жидкости может вытечь, и система уже не сможет поддерживать температурный режим.

Поломка насоса зачастую связана . Сопровождается это следами подтеков со стороны привода, повышенным шумом при работе мотора, неравномерным износом приводного ремня.

Если своевременно не заменить насос, то существует вероятность, что он заклинит и порвет приводной ремень, а это уже чревато достаточно серьезными проблемами, поскольку зачастую этим ремнем приводится в работу и ГРМ.

Проблема с термостатом обычно связана с тем, что он заклинивает в каком-то одном положении. Из-за этого перевод жидкости между кольцами не осуществляется, она движется либо только по малому, либо по большому кругу.

Повреждение же проводки или датчиков приводит к тому, что показания на приборную панель не передаются или не соответствуют действительности, а вентилятор не включается в требуемый момент или же работает постоянно, из-за чего нарушается температурный режим.

Строго говоря, термин «жидкостное охлаждение» не вполне корректен, так как жидкость в системе охлаждения - всего лишь промежуточный теплоноситель, проникающий в толщу стенок блока цилиндров. Роль отводящего агента в системе играет воздух, обдувающий радиатор, поэтому охлаждение современного автомобиля правильней назвать гибридным.

Устройство жидкостной системы охлаждения

Жидкостная система охлаждения двигателя состоит из нескольких элементов. Самый сложный называется «рубашкой охлаждения». Это разветвленная сеть каналов в толще блока цилиндров и . Кроме рубашки в систему входит радиатор системы охлаждения, расширительный бачок, водяной насос, термостат, металлические и резиновые соединительные патрубки, датчики и контрольные приборы.

Пропилен гликоль - основа охлаждающей жидкости (антифриза) и одобренная ветеринарными врачами пищевая добавка для рациона собак

Система построена на принципе принудительной циркуляции, которую обеспечивает водяной насос. Благодаря постоянному оттоку разогретой жидкости двигатель охлаждается равномерно. Этим и объясняется применение системы в подавляющем большинстве современных автомобилей.

Пройдя по каналам в стенках блока, жидкость нагревается и попадает в радиатор, где охлаждается потоком воздуха. Когда автомобиль движется, для охлаждения достаточно естественного обдува, а когда автомобиль стоит – обдув происходит за счет электрического вентилятора, включающегося по сигналу от датчика температуры.

Подробно о ключевых элементах водяного охлаждения

Радиатор охлаждения

Радиатор - панель из металлических трубок небольшого диаметра, покрытых для увеличения площади теплоотдачи алюминиевым или медным "оперением". В сущности, оперение, это многократно сложенная лента из металла. Общая суммарная площадь ленты достаточно велика, а значит, может отдать в атмосферу в единицу времени достаточно много тепла.

Самый уязвимый элемент конструкции двигателя - турбокомпрессор (турбина), работающая на крайне высоких оборотах. При перегреве разрушение крыльчатки и подшипников вала практически неизбежно

Таким образом, разогретая жидкость внутри радиатора циркулирует сразу по всем многочисленным тонким трубкам и охлаждается достаточно интенсивно. В крышке заливной горловины радиатора предусмотрен предохранительный клапан, отводящий пары и избыток жидкости, расширяющейся при нагреве.

В зависимости от режима работы ДВС цикл движения охлаждающей жидкости в системе может меняться. Объем жидкости, циркулирующей в каждом круге напрямую зависит от того, в какой степени открыты основной и дополнительный клапаны термостата. Эта схема обеспечивает автоматическую поддержку оптимального температурного режима работы двигателя.

Преимущества и недостатки жидкостной системы охлаждения

Главное достоинство жидкостного охлаждения заключается в том, что охлаждение двигателя происходит равномернее, чем в случае обдува блока потоком воздуха. Это объясняется большей теплоемкостью охлаждающей жидкости по сравнению с воздухом.

Жидкостная система охлаждения позволяет значительно снизить шум от работающего двигателя за счет большей толщины стенок блока.

Инерционность системы не дает быстро остывать двигателю после выключения. Разогретая жидкость автомобиля и для предварительного подогрева горючей смеси.

Наряду с этим, жидкостная система охлаждения имеет ряд недостатков.

Основной недостаток заключается в сложности системы и в том, что она работает под давлением после прогрева жидкости. Жидкость, находящаяся под давлением, предъявляет повышенные требования к герметичности всех соединений. Ситуация осложняется тем, что работа системы подразумевает постоянное повторение цикла "нагрев - остывание". Это вредно для соединений и резиновых патрубков. При нагреве резина расширяется, а затем сжимается при остывании, что становится причиной течей.

Кроме того, сложность и большое количество элементов сама по себе служит потенциальной причиной "техногенных катастроф", сопровождаемых "закипанием" двигателя в случае выхода из строя одной из ключевых деталей, например, термостата.

Надежная и безаварийная работа ДВС (двигателя внутреннего сгорания) не может быть осуществлена без системы охлаждения. Ее основные принципы функционирования удобно представить в виде схемы системы охлаждения двигателя. Основное предназначение системы – отвод избыточного тепла от двигателя и . Дополнительная функция – обогрев автомобиля печкой отопителя салона. Устройство и принцип работы, отображенный на схеме, у разных типов автомобилей примерно одинаковы.

Схема, элементы системы охлаждения и их работа

Основные элементы, из которых состоит схема системы охлаждения двигателя, встречаются и схожи у разных типов моторов: инжекторных, дизельных и карбюраторных.

Общая схема жидкостной системы охлаждения двигателя

Жидкостное охлаждение мотора дает возможность в равной мере забирать тепло со всех узлов и деталей двигателя не зависимо от степени тепловой нагрузки. Двигатель с использованием водяного охлаждения создает меньше шума, чем двигатель с воздушным охлаждением, обладает большей скоростью прогрева при пуске.

Система охлаждения двигателя содержит следующие детали и элементы:

  • рубашка охлаждения (водяная рубашка);
  • радиатор;
  • вентилятор;
  • жидкостный насос (помпа);
  • расширительный бачок;
  • соединительные патрубки и сливные краны;
  • отопитель салона.
  • Рубашкой охлаждения («водяной рубашкой») принято считать сообщающиеся между двойными стенками полости в тех местах, где наиболее нужен вывод избыточного тепла.
  • Радиатор. Предназначен для рассеивания тепла в окружающую атмосферу. Он конструктивно состоит из множества изогнутых трубочек с дополнительными ребрами для увеличения теплоотдачи.
  • Вентилятор, включающийся электромагнитной, реже гидравлической муфтой, при срабатывании температурного датчика охлаждающей жидкости усиливает набегающий на авто воздушный поток. Вентиляторы с “классическим” (постоянно включенным) ременным приводом встречаются в наши дни редко, в основном, на старых автомобилях.
  • Центробежный жидкостный насос (помпа) в системе охлаждения обеспечивает постоянную циркуляцию охлаждающей жидкости. Привод помпы чаще всего реализован с помощью ремня или шестерней. Двигатели с турбонаддувом и с непосредственным впрыском топлива, как правило, снабжены дополнительной помпой.
  • Термостат – главный узел, регулирующий потоки охлаждающей жидкости, устанавливается обычно между входным патрубком радиатора и «водяной рубашкой» , конструктивно выполнен в виде биметаллического или электронного клапана. Назначение термостата – поддержание заданного рабочего температурного диапазона охлаждающей жидкости при всех режимах работы двигателя.
  • Радиатор отопителя очень похож на радиатор системы охлаждения меньших размеров и расположен в салоне авто. Принципиальное отличие состоит в том, что радиатор отопителя передает тепло в салон, а радиатор системы охлаждения – в окружающую среду.

Принцип работы

Принцип работы жидкостного охлаждения двигателя состоит в следующем: цилиндры окружены «водяной рубашкой» из охлаждающей жидкости, отбирающей лишнее тепло и переносящей его к радиатору, откуда оно передается в атмосферу. Жидкость, непрерывно циркулируя, обеспечивает оптимальную температуру двигателя.

Принцип работы системы охлаждения двигателя

Охлаждающие жидкости – антифризы, тосол и вода – в процессе эксплуатации образуют осадок и накипи, нарушающие нормальную работу всей системы.

Вода не бывает химически чистой в принципе (за исключением дистиллированной) – в ней содержатся примеси, соли и всевозможные агрессивные соединения. При повышенной температуре они выпадают в осадок и образуют накипь.

В отличие от воды антифризы не создают накипи, но в процессе эксплуатации разлагаются, а продукты распада отрицательным образом сказываются на работе механизмов: на внутренних поверхностях металлических элементов появляется коррозионный налет и наслоения органических веществ.

Кроме этого, в систему охлаждения могут попадать различные посторонние загрязняющие субстанции: масло, моющие средства или пыль. Также могут попасть и , используемые для аварийной заделки повреждений в радиаторах.

Все эти загрязнения оседают на внутренних поверхностях узлов и агрегатов. Они характеризуются плохой теплопроводностью и забивают тонкие трубки и соты радиатора, нарушая эффективную работу системы охлаждения, что приводит к перегреву двигателя.

Видео о том, как устроено охлаждение мотора, принцип работы и неисправности

Ещё кое-что полезное для Вас:

Промывка

Промывка системы охлаждения двигателя - процесс, которым очень многие водители нередко пренебрегают, что рано или поздно может вызвать фатальные последствия.

Признаки того, что пора промывать

  1. Если стрелка указателя температуры находится не в середине, а стремится к красной зоне во время движения;
  2. В салоне холодно, печка отопления не дает достаточную температуру;
  3. Вентилятор радиатора включается слишком часто

Промыть систему охлаждения простой водой невозможно, поскольку в системе концентрируются загрязнения, которые не удаляются даже водой, нагретой до высоких температур.

Накипь удаляется с помощью кислоты, а жиры и органические соединения – исключительно щелочью, заливать же в радиатор одновременно оба состава нельзя, так как они согласно законам химии взаимонейтрализуются. Производители средств для промывки, пытаясь решить эту проблему, создали целый ряд средств, которые условно можно разделить на:

  • щелочные;
  • кислотные;
  • нейтральные;
  • двухкомпонентные.

Первые два слишком агрессивны и в чистом виде почти не используются, так как опасны для системы охлаждения и требуют нейтрализации после использования. Реже встречаются двухкомпонентные виды очистителей, содержащие оба раствора - щелочной и кислотный, которые заливаются поочередно.

Наибольшую востребованность имеют нейтральные очистители, не содержащие в своем составе сильных щелочей и кислот. Эти средства обладают разной степенью эффективности и могут использоваться как для профилактики, так и для капитальной промывки охлаждающей системы мотора от сильных загрязнений.

Промывка системы охлаждения

Промывка системы охлаждения

  1. Сливается антифриз, тосол или вода. Перед этим необходимо на пару минут завести двигатель.
  2. Залить в систему воду и очиститель.
  3. Включить двигатель на 5-30 минут (зависит от марки очистителя) и включить обогрев салона.
  4. По истечении обозначенного в инструкции времени двигатель нужно заглушить.
  5. Слить отработанный очиститель.
  6. Произвести промывку водой либо специальным составом.
  7. Залить свежую охлаждающую жидкость.

Работы по промывке системы охлаждения просты и доступны: их могут выполнять даже неопытные автовладельцы. Эта операция существенно продлевает моторесурс двигателя и поддерживает его эксплуатационные характеристики на высоком уровне.

Неисправности

Существует ряд наиболее распространенных неисправностей в системе охлаждения двигателя:

  1. Завоздушивание системы охлаждения двигателя: устранить воздушную пробку.
  2. Недостаточная производительность помпы: заменить помпу. Выбрать помпу с максимальной высотой крыльчатки.
  3. Неисправен термостат: устраняется заменой на новое устройство.
  4. Низкая производительность радиатора охлаждающей жидкости: промывка старого или замена стандартного на модель с более высокими теплоотводящими качествами.
  5. Недостаточный уровень производительности основного вентилятора: установка нового вентилятора с более высокой производительностью.

Видео — определение неисправностей системы охлаждения в автосервисе

Регулярный уход, своевременная замена охлаждающей жидкости гарантирует длительную эксплуатацию автомобиля в целом.

На рисунке показана жидкостная система охлаждения карбюраторного V-образного двигателя. Каждый ряд блока имеет обособленную водяную рубашку. Нагнетаемая вода водяным насосом 5 разделяется на два потока - в распределительные каналы и далее в водяную рубашку своего ряда блока, а из них - в рубашки головок цилиндров.

Рис. Система охлаждения двигателя ЗМЗ-53: а - устройство; б - сердцевина; в - жалюзи; 1 - радиатор; 2 - датчик сигнализатора перегрева жидкости; 3 - пробка радиатора; 4 - кожух; 5 - водяной насос; 6 - перепускной шланг; 7 и 12 - соответственно отводящий и подводящий шланги; 8 - термостат; 9 - датчик температуры жидкости; 10 - штуцер сливного краника; 11 - рубашка охлаждения; 13 - ремень вентилятора; 14 - сливной краник; 15 - вентилятор; 16 - жалюзи; 17 - вентилятор отопителя; 18 - отопитель кабины; 19 - пластина жалюзи; 20 - тросик

При работе системы охлаждения значительное количество жидкости подается к наиболее нагретым местам - патрубкам выпускных клапанов и гнездам искровых свечей зажигания. У карбюраторных двигателей вода из рубашек головок цилиндров предварительно проходит через водяную рубашку впускной трубы, омывает стенки и нагревает смесь, поступающую из карбюратора по внутренним каналам трубы. При этом улучшается испарение бензина.

Радиатор служит для охлаждения воды, поступающей из водяной рубашки двигателя. Радиатор состоит из верхнего и нижнего баков, сердцевины и деталей крепления. Баки и сердцевина для лучшей проводимости теплоты изготовлены из латуни.

В сердцевине размещен ряд тонких пластин, сквозь которые проходит множество вертикальных трубок, припаянных к ним. Вода, поступающая через сердцевину радиатора, разветвляется на большое число мелких струек. При таком строении сердцевины вода охлаждается интенсивнее благодаря увеличению площади соприкосновения воды со стенками трубок.

Верхний и нижний баки шлангами 7 и 12 соединены с рубашкой охлаждения двигателя. В нижем баке предусмотрен краник 14 для слива воды из радиатора. Для ее спуска из водяной рубашки в нижней части блока цилиндров также имеются краники (с обеих сторон).

В систему охлаждения воду заливают через горловину верхнего бака, закрываемую пробкой 3.

К отопителю кабины 18 горячая вода поступает от водяной рубашки головки блока и отводится трубой к водяному насосу. Количество воды, поступающей к отопителю (или температура в кабине водителя), регулируется краном.

В системе жидкостного охлаждения предусмотрено двойное регулирование теплового режима двигателя - с помощью жалюзи 16 и термостата 8. Жалюзи состоят из набора пластин 19, которые шарнирно закреплены в планке. В свою очередь, планка тягой и системой рычагов связана с рукояткой управления жалюзи. Рукоятка размещена в кабине. Створки могут располагаться вертикально или горизонтально.

Водяной насос и вентилятор объединены в одном корпусе, который через уплотнительную прокладку прикреплен к площадке на передней стенке блок-картера. В корпусе 7 насоса на шариковых подшипниках установлен валик 4. На его переднем конце с помощью ступицы закреплен шкив 2. К его торцу привернута крестовина, к которой приклепана крыльчатка 1 вентилятора. При работе двигателя шкив получает вращение от коленчатого вала через ремень. Лопасти крыльчатки 1, расположенные под углом к плоскости вращения, забирают воздух от радиатора, создавая разрежение внутри кожуха вентилятора. Благодаря этому холодный воздух проходит через сердцевину радиатора, отнимая у него теплоту.

На заднем конце валика 4 жестко посажена крыльчатка 5 центробежного водяного насоса, который представляет собой диск с равномерно расположенными на нем криволинейными лопатками. При вращении крыльчатки жидкость из подводящего патрубка 8 поступает к ее центру, захватывается лопастями и под действием центробежной силы отбрасывается к стенкам корпуса 7 и через прилив подается в водяную рубашку двигателя.

Рис. Водяной насос и вентилятор двигателя ЗИЛ-508: 1 - крыльчатка вентилятора; 2 - шкив; 3 - подшипник; 4 - валик; 5 - крыльчатка насоса; 6 - прокладка; 7 - корпус насоса; 8 - подводящий патрубок; 9 - корпус подшипников; 10 - манжета; 11 - уплотняющая шайба; 12 - обойма сальникового уплотнения

На заднем конце валика 4 также предусмотрено сальниковое уплотнение, которое не пропускает воду из водяной рубашки двигателя. Уплотнение смонтировано в цилиндрической ступице крыльчатки и застопорено в ней пружинным кольцом. Оно состоит из текстолитовой уплотняющей шайбы 11, резиновой манжеты 10 и пружины, которая прижимает шайбу к торцу корпуса подшипников. Своими выступами шайба входит в пазы крыльчатки 5 и закрепляется обоймой 12.

На двигателе автомобиля КамАЗ вентилятор расположен отдельно от водяного насоса и приводится в действие через гидравлическую муфту. Гидромуфта (рис. а) включает в себя герметический кожух В, заполненный жидкостью. В кожухе помещены два (с поперечными лопастями) сферических сосуда Д и Г, жестко соединенные с ведущим А и ведомым Б валами соответственно.

Принцип работы гидромуфты основан на действии центробежной силы жидкости. Если быстро вращать сферический сосуд Д (насосный), заполненный рабочей жидкостью, то под действием центробежной силы жидкость скользит по криволинейной поверхности этого сосуда и попадает во второй сосуд Г (турбинный), заставляя его вращаться. Потеряв энергию при ударе, жидкость снова попадает в первый сосуд, разгоняется в нем, и процесс повторяется. Таким образом, передается вращение с ведущего вала А, соединенного с одним сосудом Д, на ведомый вал Б, соединенный жестко с другим сосудом Г. Этот принцип гидродинамической передачи используется в технике при конструировании различных механизмов.

Рис. Гидромуфта: а - принцип действия; б - устройство; 1 — крышка блока цилиндров; 2 - корпус; 3 - кожух; 4 - валик привода: 5 - шкив; 6 - ступииа вентилятора; А - ведуши вал; Б — ведомый вал; В - кожух; Г, Д - сосуды; Т - турбинное колесо; Н - насосное колесо

Гидромуфта размещена в полости, образованной передней крышкой 1 блока цилиндров и корпусом 2, соединенных винтами. Гидромуфта состоит из кожуха 3, насосного Н и турбинного Г колес, ведущего А и ведомого Б валов. Кожух соединен через ведущий вал А с коленчатым валом с помощью валика привода 4. С другой стороны кожух 3 соединен с насосным колесом и шкивом 5 привода генератора и водяного насоса. Ведомый вал Б опирается на два шариковых подшипника и соединен одним концом с турбинным колесом, а другим - со ступицей 6 вентилятора.

Вентилятор двигателя расположен соосно с коленчатым валом, передний конец которого соединен шлицевым валом с ведущим валиком 4 привода гидромуфты. Поворотом рычага включателя гидромуфты можно задать один из требуемых режимов работы вентилятора: «П» - вентилятор включен постоянно, «А» - вентилятор включается автоматически, «О» - вентилятор отключен (рабочая жидкость выпущена из кожуха). На режиме «П» допустима только кратковременная работа.

Автоматическое включение вентилятора происходит при повышении температуры охлаждающей жидкости, омывающей термосиловой датчик. При температуре охлаждающей жидкости 85 °С клапан датчика открывает масляный канал в корпусе включателя и рабочая жидкость - моторное масло - поступает в рабочую полость гидромуфты из главной магистрали смазочной системы двигателя.

Термостат служит для ускорения прогрева холодного двигателя и автоматического регулирования его теплового режима в заданных пределах. Он представляет собой клапан, регулирующий количество циркулирующей жидкости через радиатор.

На изучаемых двигателях применяют одноклапанные термостаты с твердым наполнителем - церезином (нефтяным воском). Термостат состоит из корпуса 2, внутри которого помещен медный баллон 9, заполненный активной массой 8, состоящей из медного порошка, смешанного с церезином. Масса в баллоне плотно закрыта резиновой мембраной 7, на которой установлена направляющая втулка 6 с отверстием для резинового буфера 12. На последнем установлен шток 5, связанный рычагом 4 с клапаном. В исходном положении (на холодном двигателе) клапан плотно прижат к седлу (рис. б) корпуса 2 спиральной пружиной 1. Термостат установлен между патрубками 10 и 11, отводящими нагретую жидкость в верхний бак радиатора и водяной насос.

Рис. Термостат с поворотным (а-в) и простым (г) клапанами: а - устройство термостата с поворотным клапаном (карбюраторный двигатель ЗИЛ-508); б - клапан закрыт; в - клапан открыт; г - устройство термостата с простым клапаном (карбюраторный двигатель 3M3-53); 1 - спиральная пружина; 2 - корпус; 3 - клапан (заслонка); 4 - рычаг; 5 - шток; 6 - направляющая втулка; 7 - мембрана; 8 - активная масса; 9 - баллон; 10 и 11 - патрубки отвода жидкости в радиатор и водяной насос; 12 - резиновый буфер; 13 - клапан; 14 - пружина; 15 - седло корпуса; А - ход клапана

При температуре охлаждающей жидкости выше 75 °С активная масса Оплавится и расширяется, воздействуя через мембрану, буфер и шток 5 на рычаг 4, который, преодолевая силу пружины 1, начинает открывать клапан 3 (рис. в). Полностью клапан откроется при температуре охлаждающей жидкости 90 °С. В интервале температур 75…90 °С клапан термостата, изменяя свое положение, регулирует количество охлаждающей жидкости, проходящей через радиатор, и тем самым поддерживает нормальный температурный режим двигателя.

На рисунке г показан термостат с простым клапаном 13 в положении, когда он открыт полностью для прохода жидкости в радиатор, т.е. когда его ход равен расстоянию А. При температуре 90 °С, когда активная масса баллона расплавлена, клапан вместе с баллоном садится вниз, преодолевая сопротивление пружины 14. По мере остывания масса в баллоне сжимается и пружина поднимает клапан вверх. При температуре 75 °С клапан 13 прижимается к седлу 15 корпуса, закрывая выход жидкости в радиатор.

Рис. Паровоздушный клапан: а — открыт паровой клапан; б - открыт воздушный клапан; 1 и 6 - соответственно паровой и воздушный клапаны; 2 и 5 - пружины парового и воздушного клапанов; 3 - пароотводная трубка; 4 - пробка (крышка) наливной горловины радиатора

Паровоздушный клапан необходим для сообщения внутренней полости радиатора с атмосферой. Он смонтирован в пробке 4 наливной горловины радиатора. Клапан состоит из парового клапана 1 и размещенного внутри него воздушного клапана 6. Паровой клапан под действием пружины 2 плотно закрывает горловину радиатора. Если температура воды в радиаторе повышается до предельного значения (для данного двигателя), то под давлением пара паровой клапан открывается и его избыток выходит наружу.

Когда при охлаждении воды и конденсации пара в радиаторе создается разрежение, открывается воздушный клапан и в радиатор поступает атмосферный воздух. Воздушный клапан закрывается под действием пружины 5, когда давление воздуха внутри радиатора уравновешивается с атмосферным. Посредством воздушного клапана вода сливается из системы охлаждения при закрытой крышке горловины. При этом трубки радиатора предохраняются от разрушения под влиянием атмосферного давления в процессе остывания двигателя.

Для контроля за температурой охлаждающей жидкости служат сигнальная лампа и дистанционный термометр. Лампа и указатель термометра помещены на щитке приборов, а их датчики могут быть в головке цилиндров, в водоотводящей трубе, впускном трубопроводе или в верхнем баке радиатора.