Детонационный жидкостный ракетный двигатель жрд нового поколения. Детонационный двигатель — будущее российского двигателестроения

Испытания детонационного двигателя

Фонд перспективных исследований

Научно-производственное объединение «Энергомаш» провело испытания модельной камеры жидкостного детонационного ракетного двигателя, тяга которого составила две тонны. Об этом в интервью «Российской газете» заявил главный конструктор «Энергомаша» Петр Левочкин. По его словам, эта модель работала на керосине и газообразном кислороде.

Детонацией называется такое горение какого-либо вещества, в котором фронт горения распространяется быстрее скорости звука. При этом по веществу распространяется ударная волна, за которой следует химическая реакция с выделением большого количества тепла. В современных ракетных двигателях сгорание топлива происходит с дозвуковой скоростью; такой процесс называется дефлаграцией.

Детонационные двигатели сегодня делятся на два основных типа: импульсные и ротационные. Последние еще называют спиновыми. В импульсных двигателях происходят короткие взрывы по мере сгорания небольших порций топливо-воздушной смеси. В ротационных же горение смеси происходит постоянно без остановки.

В таких силовых установках используется кольцевая камера сгорания, в которой топливная смесь подается последовательно через радиально расположенные клапаны. В таких силовых установках детонация не затухает - детонационная волна «обегает» кольцевую камеру сгорания, топливная смесь за ней успевает обновиться. Ротационный двигатель впервые начали изучать в СССР в 1950-х годах.

Детонационные двигатели способны работать в широком пределе скоростей полета - от нуля до пяти чисел Маха (0-6,2 тысячи километров в час). Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в них отсутствует компрессор и многие движущиеся части.

Новый российский жидкостный детонационный двигатель разрабатывается совместно несколькими институтами, включая МАИ, Институт гидродинамики имени Лаврентьева, «Центр Келдыша», Центральный институт авиационного моторостроения имени Баранова и Механико-математический факультет МГУ. Разработку курирует Фонд перспективных исследований.

По словам Левочкина, во время испытаний давление в камере сгорания детонационного двигателя составило 40 атмосфер. При этом установка надежно работала без сложных систем охлаждения. Одной из задач испытаний было подтверждение возможности детонационного горения кислородно-керосиновой топливной смеси. Ранее сообщалось, что частота детонации в новом российском двигателе составляет 20 килогерц.

Первые испытания жидкостного детонационного ракетного двигателя летом 2016 года. Испытывался ли с тех пор двигатель еще раз, неизвестно.

В конце декабря 2016 года американская компания Aerojet Rocketdyne контракт Национальной лаборатории энергетических технологий США на разработку новой газотурбинной энергетической установки на базе ротационного детонационного двигателя. Работы, по итогам которых будет создан прототип новой установки, планируется завершить к середине 2019 года.

По предварительной оценке, газотурбинный двигатель нового типа будет иметь по меньшей мере на пять процентов лучшие характеристики, чем обычные такие установки. При этом сами установки можно будет сделать компактнее.

Василий Сычёв

1

Рассмотрена проблема разработки импульсных детонационных двигателей. Перечислены основные научные центры, ведущие исследования по двигателям нового поколения. Рассмотрены основные направления и тенденции развития конструкции детонационных двигателей. Представлены основные типы таких двигателей: импульсный, импульсный многотрубный, импульсный с высокочастотным резонатором. Показано отличие в способе создания тяги по сравнению с классическим реактивным двигателем, оснащенным соплом Лаваля. Описано понятие тяговой стенки и тягового модуля. Показано, что импульсные детонационные двигатели совершенствуются в направлении повышения частоты следования импульсов, и это направление имеет свое право на жизнь в области легких и дешевых беспилотных летательных аппаратов, а также при разработке различных эжекторных усилителей тяги. Показаны основные сложности принципиального характера в моделировании детонационного турбулентного течения с использованием вычислительных пакетов, основанных на применении дифференциальных моделей турбулентности и осреднения уравнений Навье–Стокса по времени.

детонационный двигатель

импульсный детонационный двигатель

1. Булат П.В., Засухин О.Н., Продан Н.В. История экспериментальных исследований донного давления // Фундаментальные исследования. – 2011. – № 12 (3). – С. 670–674.

2. Булат П.В., Засухин О.Н., Продан Н.В. Колебания донного давления // Фундаментальные исследования. – 2012. – № 3. – С. 204–207.

3. Булат П.В., Засухин О.Н., Продан Н.В.. Особенности применения моделей турбулентности при расчете течений в сверхзвуковых трактах перспективных воздушно-реактивных двигателей // Двигатель. – 2012. – № 1. – С. 20–23.

4. Булат П.В., Засухин О.Н., Усков В.Н. О классификации режимов течения в канале с внезапным расширением // Теплофизика и Аэромеханика. – 2012. – № 2. – С. 209–222.

5. Булат П.В., Продан Н.В. О низкочастотных расходных колебаниях донного давления // Фундаментальные исследования. – 2013. – № 4 (3). – С. 545–549.

6. Ларионов С.Ю., Нечаев Ю.Н., Мохов А.А. Исследование и анализ «холодных» продувок тягового модуля высокочастотного пульсирующего детонационного двигателя // Вестник МАИ. – Т.14. – № 4 – М.: Изд-во МАИ-Принт, 2007. – С. 36–42.

7. Тарасов А.И., Щипаков В.А. Перспективы использования пульсирующих детонационных технологий в турбореактивных двигателя. ОАО «НПО «Сатурн» НТЦ им. А. Люльки, Москва, Россия. Московский авиационный институт (ГТУ). – Москва, Россия. ISSN 1727-7337. Авиационно-космическая техника и технология, 2011. – № 9 (86).

Проекты по детонационному горению в США включены в программу разработок перспективных двигателей IHPTET. В кооперацию входят практически все исследовательские центры, работающие в области двигателестроения. Только в NASA на эти цели выделяется до 130 млн $ в год. Это доказывает актуальность исследований в данном направлении.

Обзор работ в области детонационных двигателей

Рыночная стратегия ведущих мировых производителей направлена не только на разработку новых реактивных детонационных двигателей, но и на модернизацию существующих путем замены в них традиционной камеры сгорания на детонационную. Кроме того, детонационные двигатели могут стать составным элементом комбинированных установок различных типов, например, использоваться в качестве форсажной камеры ТРДД, в качестве подъемных эжекторных двигателей в СВВП (пример на рис. 1 - проект транспортного СВВП фирмы «Боинг»).

В США разработки детонационных двигателей ведут многие научные центры и университеты: ASI, NPS, NRL, APRI, MURI, Stanford, USAF RL, NASA Glenn, DARPA-GE C&RD, Combustion Dynamics Ltd, Defense Research Establishments, Suffield and Valcartier, Uniyersite de Poitiers, University of Texas at Arlington, Uniyersite de Poitiers, McGill University, Pennsylvania State University, Princeton University.

Ведущие позиции по разработке детонационных двигателей занимает специализированный центр Seattle Aerosciences Center (SAC), выкупленный в 2001 г. компанией Pratt and Whitney у фирмы Adroit Systems. Большая часть работ центра финансируется ВВС и NASA из бюджета межведомственной программы Integrated High Payoff Rocket Propulsion Technology Program (IHPRPTP), направленной на создание новых технологий для реактивных двигателей различных типов.

Рис. 1. Патент US 6,793,174 В2 фирмы «Боинг», 2004 г.

В общей сложности, начиная с 1992 г., специалистами центра SAC осуществлено свыше 500 стендовых испытаний экспериментальных образцов. Работы по пульсирующим детонационным двигателям (PDE) с потреблением атмосферного кислорода Центр SAC ведет по заказу ВМС США. Учитывая сложность программы, специалисты ВМС привлекли к ее реализации практически все организации, занимающиеся детонационными двигателями. Кроме компании Pratt and Whitney, в работах принимают участие Исследовательский центр United Technologies Research Center (UTRC) и фирма Boeing Phantom Works.

В настоящее время в нашей стране над этой актуальной проблемой в теоретическом плане работают следующие университеты и институты Российской академии наук (РАН): Институт химической физики РАН (ИХФ), Институт машиноведения РАН, Институт высоких температур РАН (ИВТАН), Новосибирский институт гидродинамики им. Лаврентьева (ИГиЛ), Институт теоретической и прикладной механики им. Христиановича (ИТМП), Физико-технический институт им. Иоффе, Московский государственный университет (МГУ), Московский государственный авиационный институт (МАИ), Новосибирский государственный университет, Чебоксарский государственный университет, Саратовский государственный университет и др.

Направления работ по импульсным детонационным двигателям

Направление № 1 - Классический импульсный детонационный двигатель (ИДД). Камера сгорания типичного реактивного двигателя состоит из форсунок для смешения топлива с окислителем, устройства поджигания топливной смеси и собственно жаровой трубы, в которой идут окислительно-восстановительные реакции (горение). Жаровая труба заканчивается соплом. Как правило, это сопло Лаваля, имеющее сужающуюся часть, минимальное критическое сечение, в котором скорость продуктов сгорания равна местной скорости звука, расширяющуюся часть, в которой статическое давление продуктов сгорания снижается до давления в окружающей среде, насколько это возможно. Очень грубо можно оценить тягу двигателя как площадь критического сечения сопла, умноженную на разность давления в камере сгорания и окружающей среде. Поэтому тяга тем выше, чем выше давление в камере сгорания.

Тяга импульсного детонационного двигателя определяется другими факторами - передачей импульса детонационной волной тяговой стенке. Сопло в этом случае вообще не нужно. Импульсные детонационные двигатели имеют свою нишу - дешевые и одноразовые летательные аппараты. В этой нише они успешно развиваются в направлении повышения частоты следования импульсов.

Классический облик ИДД - цилиндрическая камера сгорания, которая имеет плоскую или специально спрофилированную стенку, именуемую «тяговой стенкой» (рис. 2). Простота устройства ИДД - неоспоримое его достоинство. Как показывает анализ имеющихся публикаций , несмотря на многообразие предлагаемых схем ИДД, всем им свойственно использование в качестве резонансных устройств детонационных труб значительной длины и применение клапанов, обеспечивающих периодическую подачу рабочего тела.

Следует отметить, что ИДД, созданным на базе традиционных детонационных труб, несмотря на высокую термодинамическую эффективность в единичной пульсации, присущи недостатки, характерные для классических пульсирующих воздушно-реактивных двигателей, а именно:

Низкая частота (до 10 Гц) пульсаций, что и определяет относительно невысокий уровень средней тяговой эффективности;

Высокие тепловые и вибрационные нагрузки.

Рис. 2. Принципиальная схема импульсно-детонационного двигателя (ИДД)

Направление № 2 - Многотрубный ИДД. Основной тенденцией при разработках ИДД является переход к многотрубной схеме (рис. 3). В таких двигателях частота работы отдельной трубы остается низкой, но за счет чередования импульсов в разных трубах разработчики надеются получить приемлемые удельные характеристики. Такая схема представляется вполне работоспособной, если решить проблему вибраций и асимметрии тяги, а также проблему донного давления , в частности, возможных низкочастотных колебаний в донной области между трубами.

Рис. 3. Импульсно-детонационный двигатель (ИДД) традиционной схемы с пакетом детонационных труб в качестве резонаторов

Направление № 3 - ИДД с высокочастотным резонатором. Существует и альтернативное направление - широко разрекламированная в последнее время схема с тяговыми модулями (рис. 4), имеющими специально спрофилированный высокочастотный резонатор. Работы в данном направлении ведутся в НТЦ им. А. Люльки и в МАИ . Схема отличается отсутствием каких-либо механических клапанов и запальных устройств прерывистого действия.

Тяговый модуль ИДД предлагаемой схемы состоит из реактора и резонатора. Реактор служит для подготовки топливно-воздушной смеси к детонационному сгоранию, разлагая молекулы горючей смеси на химически активные составляющие. Принципиальная схема одного цикла работы такого двигателя наглядно представлена на рис. 5.

Взаимодействуя с донной поверхностью резонатора как с препятствием, детонационная волна в процессе соударения передает ей импульс от сил избыточного давления.

ИДД с высокочастотными резонаторами имеют право на успех. В частности, они могут претендовать на модернизацию форсажных камер и доработку простых ТРД, предназначенных опять же для дешевых БПЛА. В качестве примера можно привести попытки МАИ и ЦИАМ модернизировать таким образом ТРД МД-120 за счет замены камеры сгорания реактором активации топливной смеси и установкой за турбиной тяговых модулей с высокочастотными резонаторами. Пока работоспособную конструкцию создать не удалось, т.к. при профилировании резонаторов авторами используется линейная теория волн сжатия, т.е. расчеты ведутся в акустическом приближении. Динамика же детонационных волн и волн сжатия описывается совсем другим математическим аппаратом. Использование стандартных численных пакетов для расчета высокочастотных резонаторов имеет ограничение принципиального характера . Все современные модели турбулентности основаны на осреднении уравнений Навье-Стокса (базовые уравнения газовой динамики) по времени. Кроме того, вводится предположение Буссинеска, что тензор напряжения турбулентного трения пропорционален градиенту скорости. Оба предположения не выполняются в турбулентных потоках с ударными волнами, если характерные частоты сопоставимы с частотой турбулентной пульсации. К сожалению, мы имеем дело именно с таким случаем, поэтому тут необходимо либо построение модели более высокого уровня, либо прямое численное моделирование на основе полных уравнений Навье-Стокса без использования моделей турбулентности (задача, неподъемная на современном этапе).

Рис. 4. Схема ИДД с высокочастотным резонатором

Рис. 5. Схема ИДД с высокочастотным резонатором: СЗС - сверхзвуковая струя; УВ - ударная волна; Ф - фокус резонатора; ДВ - детонационная волна; ВР - волна разрежения; ОУВ - отраженная ударная волна

ИДД совершенствуются в направлении повышения частоты следования импульсов. Это направление имеет свое право на жизнь в области легких и дешевых беспилотных летательных аппаратов, а также при разработке различных эжекторных усилителей тяги.

Рецензенты:

Усков В.Н., д.т.н., профессор кафедры гидроаэромеханики Санкт-Петербургского государственного университета, математико-механический факультет, г. Санкт-Петербург;

Емельянов В.Н., д.т.н., профессор, заведующий кафедрой плазмогазодинамики и теплотехники, БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова, г. Санкт-Петербург.

Работа поступила в редакцию 14.10.2013.

Библиографическая ссылка

Булат П.В., Продан Н.В. ОБЗОР ПРОЕКТОВ ДЕТОНАЦИОННЫХ ДВИГАТЕЛЕЙ. ИМПУЛЬСНЫЕ ДВИГАТЕЛИ // Фундаментальные исследования. – 2013. – № 10-8. – С. 1667-1671;
URL: http://fundamental-research.ru/ru/article/view?id=32641 (дата обращения: 29.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Издание "Военно-промышленный Курьер" сообщает великолепную новость из области прорывных ракетных технологий. Детонационный ракетный двигатель испытан в России, сообщил в пятницу вице-премьер Дмитрий Рогозин на своей странице в Facebook.

«Прошли успешные испытания так называемых детонационных ракетных двигателей, разработанных в рамках программы Фонда перспективных исследований», - цитирует вице-премьера Интерфакс-АВН.

Считается, что детонационный ракетный двигатель - один из путей реализации концепции так называемого моторного гиперзвука, то есть создания гиперзвуковых летательных аппаратов, способных за счет собственного двигателя достигать скорости в 4 - 6 Махов (Мах - скорость звука).

Портал russia-reborn.ru приводит интервью одного из ведущих профильных двигателистов России по поводу детонационных ракетных двигателей.

Интервью с Петром Левочкиным, главным конструктором "НПО Энергомаш им. академика В.П. Глушко".

Создаются двигатели для гиперзвуковых ракет будущего
Прошли успешные испытания так называемых детонационных ракетных двигателей, давшие очень интересные результаты. Опытно-конструкторские работы в этом направлении будут продолжены.

Детонация - это взрыв. Можно ли ее сделать управляемой? Можно ли на базе таких двигателей создать гиперзвуковое оружие? Какие ракетные двигатели будут выводить необитаемые и пилотируемые аппараты в ближний космос? Об этом наш разговор с заместителем гендиректора - главным конструктором "НПО Энергомаш им. академика В.П. Глушко" Петром Левочкиным.

Петр Сергеевич, какие возможности открывают новые двигатели?

Петр Левочкин: Если говорить о ближайшей перспективе, то сегодня мы работаем над двигателями для таких ракет, как "Ангара А5В" и "Союз-5", а также другими, которые находятся на предпроектной стадии и неизвестны широкой публике. Вообще наши двигатели предназначены для отрыва ракеты от поверхности небесного тела. И она может быть любой - земной, лунной, марсианской. Так что, если будут реализовываться лунная или марсианская программы, мы обязательно примем в них участие.

Какова эффективность современных ракетных двигателей и есть ли пути их совершенствования?

Петр Левочкин: Если говорить об энергетических и термодинамических параметрах двигателей, то можно сказать, что наши, как, впрочем, и лучшие зарубежные химические ракетные двигатели на сегодняшний день достигли определенного совершенства. Например, полнота сгорания топлива достигает 98,5 процента. То есть практически вся химическая энергия топлива в двигателе преобразуется в тепловую энергию истекающей струи газа из сопла.

Совершенствовать двигатели можно по разным направлениям. Это и применение более энергоемких компонентов топлива, введение новых схемных решений, увеличение давления в камере сгорания. Другим направлением является применение новых, в том числе аддитивных, технологий с целью снижения трудоемкости и, как следствие, снижение стоимости ракетного двигателя. Все это ведет к снижению стоимости выводимой полезной нагрузки.

Однако при более детальном рассмотрении становится ясно, что повышение энергетических характеристик двигателей традиционным способом малоэффективно.

Использование управляемого взрыва топлива может дать ракете скорость в восемь раз выше скорости звука
Почему?

Петр Левочкин: Увеличение давления и расхода топлива в камере сгорания, естественно, увеличит тягу двигателя. Но это потребует увеличение толщины стенок камеры и насосов. В результате сложность конструкции и ее масса возрастают, энергетический выигрыш оказывается не таким уж и большим. Овчинка выделки стоить не будет.

То есть ракетные двигатели исчерпали ресурс своего развития?

Петр Левочкин: Не совсем так. Выражаясь техническим языком, их можно совершенствовать через повышение эффективности внутридвигательных процессов. Существуют циклы термодинамического преобразования химической энергии в энергию истекающей струи, которые гораздо эффективнее классического горения ракетного топлива. Это цикл детонационного горения и близкий к нему цикл Хамфри.

Сам эффект топливной детонации открыл наш соотечественник - впоследствии академик Яков Борисович Зельдович еще в 1940 году. Реализация этого эффекта на практике сулила очень большие перспективы в ракетостроении. Неудивительно, что немцы в те же годы активно исследовали детонационный процесс горения. Но дальше не совсем удачных экспериментов дело у них не продвинулось.

Теоретические расчеты показали, что детонационное горение на 25 процентов эффективней, чем изобарический цикл, соответстветствующий сгоранию топлива при постоянном давлении, который реализован в камерах современных жидкостно-рактивных двигателей.

А чем обеспечиваются преимущества детонационного горения по сравнению с классическим?

Петр Левочкин: Классический процесс горения - дозвуковой. Детонационный - сверхзвуковой. Быстрота протекания реакции в малом объеме приводит к огромному тепловыделению - оно в несколько тысяч раз выше, чем при дозвуковом горении, реализованному в классических ракетных двигателях при одной и той же массе горящего топлива. А для нас, двигателистов, это означает, что при значительно меньших габаритах детонационного двигателя и при малой массе топлива можно получить ту же тягу, что и в огромных современных жидкостных ракетных двигателях.

Не секрет, что двигатели с детонационным горением топлива разрабатывают и за рубежом. Каковы наши позиции? Уступаем, идем на их уровне или лидируем?

Петр Левочкин: Не уступаем - это точно. Но и сказать, что лидируем, не могу. Тема достаточно закрыта. Один из главных технологических секретов состоит в том, как добиться того, чтобы горючее и окислитель ракетного двигателя не горели, а взрывались, при этом не разрушая камеру сгорания. То есть фактически сделать настоящий взрыв контролируемым и управляемым. Для справки: детонационным называют горение топлива во фронте сверхзвуковой ударной волны. Различают импульсную детонацию, когда ударная волна движется вдоль оси камеры и одна сменяет другую, а также непрерывную (спиновую) детонацию, когда ударные волны в камере движутся по кругу.

Насколько известно, с участием ваших специалистов проведены экспериментальные исследования детонационного горения. Какие результаты были получены?

Петр Левочкин: Были выполнены работы по созданию модельной камеры жидкостного детонационного ракетного двигателя. Над проектом под патронажем Фонда перспективных исследований работала большая кооперация ведущих научных центров России. В их числе Институт гидродинамики им. М.А. Лаврентьева, МАИ, "Центр Келдыша", Центральный институт авиационного моторостроения им. П.И. Баранова, Механико-математический факультет МГУ. В качестве горючего мы предложили использовать керосин, а окислителя - газообразный кислород. В процессе теоретических и экспериментальных исследований была подтверждена возможность создания детонационного ракетного двигателя на таких компонентах. На основе полученных данных мы разработали, изготовили и успешно испытали детонационную модельную камеру с тягой в 2 тонны и давлением в камере сгорания около 40 атм.

Данная задача решалась впервые не только в России, но и мире. Поэтому, конечно, проблемы были. Во-первых, связанные с обеспечением устойчивой детонации кислорода с керосином, во-вторых, с обеспечением надежного охлаждения огневой стенки камеры без завесного охлаждения и массой других проблем, суть которых понятна лишь специалистам.

Можно ли использовать детонационный двигатель в гиперзвуковых ракетах?

Петр Левочкин: И можно, и нужно. Хотя бы потому, что горение топлива в нем сверхзвуковое. А в тех двигателях, на которых сейчас пытаются создать управляемые гиперзвуковые летательные аппараты, горение дозвуковое. И это создает массу проблем. Ведь если горение в двигателе дозвуковое, а двигатель летит, допустим, со скоростью пять махов (один мах равен скорости звука), надо встречный поток воздуха затормозить до звукового режима. Соответственно, вся энергия этого торможения переходит в тепло, которое ведет к дополнительному перегреву конструкции.

А в детонационном двигателе процесс горения идет при скорости как минимум в два с половиной раза выше звуковой. И, соответственно, на эту величину мы можем увеличить скорость летательного аппарата. То есть уже речь идет не о пяти, а о восьми махах. Это реально достижимая на сегодняшний день скорость летательных аппаратов с гиперзвуковыми двигателями, в которых будет использоваться принцип детонационного горения.

Петр Левочкин: Это сложный вопрос. Мы только приоткрыли дверь в область детонационного горения. Еще очень много неизученного осталось за скобками нашего исследования. Сегодня совместно с РКК "Энергия" мы пытаемся определить, как может в перспективе выглядеть двигатель в целом с детонационной камерой применительно к разгонным блокам.

На каких двигателях человек полетит к дальним планетам?

Петр Левочкин: По-моему мнению, еще долго мы будем летать на традиционных ЖРД занимаясь их совершенствованием. Хотя безусловно развиваются и другие типы ракетных двигателей, например, электроракетные (они значительно эффективнее ЖРД - удельный импульс у них в 10 раз выше). Увы, сегодняшние двигатели и средства выведения не позволяют говорить о реальности массовых межпланетных, а уж тем более межгалактических перелетов. Здесь пока все на уровне фантастики: фотонные двигатели, телепортация, левитация, гравитационные волны. Хотя, с другой стороны, всего сто с небольшим лет назад сочинения Жюля Верна воспринимались как чистая фантастика. Возможно, революционного прорыва в той сфере, где мы работаем, ждать осталось совсем недолго. В том числе и в области практического создания ракет, использующих энергию взрыва.

Досье "RG":
"Научно-производственное объединение Энергомаш" основано Валентином Петровичем Глушко в 1929 году. Сейчас носит его имя. Здесь разрабатывают и выпускают жидкостные ракетные двигатели для I, в отдельных случаях II ступеней ракет-носителей. В НПО разработано более 60 различных жидкостных реактивных двигателей. На двигателях "Энергомаша" был запущен первый спутник, состоялся полет первого человека в космос, запущен первый самоходный аппарат "Луноход-1". Сегодня на двигателях, разработанных и произведенных в НПО "Энергомаш", взлетает более девяноста процентов ракет-носителей в России.

Камеры сгорания с
непрерывной детонацией

Идея камеры сгорания с непрерывной детонацией предложена в 1959 г. академиком АН СССР Б.В. Войцеховским . Непрерывно-детонационная камера сгорания (НДКС) представляет собой кольцевой канал, образованный стенками двух коаксиальных цилиндров. Если на днище кольцевого канала поместить смесительную головку, а другой конец канала оборудовать реактивным соплом, то получится проточный кольцевой реактивный двигатель. Детонационное горение в такой камере можно организовать, сжигая топливную смесь, подаваемую через смесительную головку, в детонационной волне, непрерывно циркулирующей над днищем. При этом в детонационной волне будет сгорать топливная смесь, вновь поступившая в камеру сгорания за время одного оборота волны по окружности кольцевого канала. Частота вращения волны в камере сгорания диаметром около 300 мм будет иметь величину порядка 105 об/мин и выше. К достоинствам таких камер сгорания относят: (1) простоту конструкции; (2) однократное зажигание; (3) квазистационарное истечение продуктов детонации; (4) высокую частоту циклов (килогерцы); (5) короткую камеру сгорания; (6) низкий уровень эмиссии вредных веществ (NO, CO и др.); (7) низкий уровень шума и вибраций. К недостаткам таких камер относят: (1) необходимость компрессора или турбонасосного агрегата; (2) ограниченность управления; (3) сложность масштабирования; (4) сложность охлаждения.

Крупные инвестиции в НИОКР и ОКР по этой тематике в США начались сравнительно недавно: 3-5 лет назад (ВВС, ВМФ, НАСА, корпорации аэрокосмической отрасли). Судя по открытым публикациям, в Японии, Китае, Франции, Польше и Корее в настоящее время очень широко развернуты работы по проектированию таких камер сгорания с помощью методов вычислительной газовой динамики. В Российской Федерации исследования в этом направлении наиболее активно проводятся в НП «Центр ИДГ» и в ИГиЛ СО РАН.

Важнейшие достижения в этой области науки и техники перечислены ниже. В 2012 г. специалисты фирм Pratt & Whitney и Rocketdyne (США) опубликовали результаты испытаний экспериментального ракетного двигателя модульной конструкции с заменяемыми форсунками для подачи топливных компонентов и с заменяемыми соплами. Проведены сотни огневых испытаний с использованием разных топливных пар: водород - кислород, метан - кислород, этан - кислород и др. На основе испытаний построены карты устойчивых рабочих режимов двигателя с одной, двумя и более детонационными волнами, циркулирующими над днищем камеры. Исследованы различные способы зажигания и поддержания детонации. Максимальное время работы двигателя, достигнутое в опытах с водяным охлаждением стенок камеры, составило 20 с. Сообщается, что это время ограничивалось только запасом топливных компонентов, но не тепловым состоянием стенок. Польские специалисты совместно с европейскими партнерами работают над созданием непрерывно-детонационной камеры сгорания для вертолетного двигателя. Им удалось создать камеру сгорания, устойчиво работающую в режиме непрерывной детонации в течение 2 с на смеси водорода с воздухом и керосина с воздухом в компоновке с компрессором двигателя ГТД350 советского производства. В 2011-2012 г.г. в Институте гидродинамики СО РАН экспериментально зарегистрирован процесс непрерывно-детонационного горения гетерогенной смеси микронных частиц древесного угля с воздухом в дисковой камере сгорания диаметром 500 мм. До этого в ИГиЛ СО РАН были успешно проведены эксперименты с кратковременной (до 1-2 с) регистрацией непрерывной детонации воздушных смесей водорода и ацетилена, а также кислородных смесей ряда индивидуальных углеводородов. В 2010-2012 г.г. в Центре ИДГ с использованием уникальных вычислительных технологий созданы основы проектирования непрерывно-детонационных камер сгорания как для ракетных, так и для воздушно-реактивных двигателей и впервые расчетным способом воспроизведены результаты экспериментов при работе камеры с раздельной подачей топливных компонентов (водорода и воздуха). Кроме того, в 2013 г. в НП «Центр ИДГ» спроектирована, изготовлена и испытана непрерывно-детонационная кольцевая камера сгорания диаметром 400 мм, шириной зазора 30 мм и высотой 300 мм, предназначенная для выполнения программы исследований, направленных на экспериментальное доказательство энергоэффективности непрерывно-детонационного горения топливно-воздушных смесей.

Важнейшая проблема, с которой сталкиваются разработчики при создании непрерывно-детонационных камер сгорания, работающих на штатном топливе - та же, что и для импульсно-детонационных камер сгорания, т.е. низкая детонационная способность таких топлив в воздухе. Другая важная проблема - снижение потерь давления при подаче топливных компонентов в камеру сгорания, чтобы обеспечить повышение полного давления в камере. Еще одна проблема - охлаждение камеры. В настоящее время способы преодоления этих проблем изучаются.

Большинство отечественных и зарубежных экспертов считают, что обе обсуждаемые схемы организации детонационного цикла являются перспективными как для ракетных, так и для воздушно-реактивных двигателей. Никаких фундаментальных ограничений для практической реализации этих схем не существует. Основные риски на пути создания камер сгорания нового типа связаны с решением инженерных проблем.
Варианты конструкций и способы организации рабочего процесса в импульсно-детонационных и непрерывно-детонационных камерах сгорания защищены многочисленными отечественными и зарубежными патентами (сотни патентов). Главный недостаток патентов - замалчивание или практически неприемлемое (по разным причинам) решение основной проблемы реализации детонационного цикла - проблемы низкой детонационной способности штатных топлив (керосин, бензин, дизтопливо, природный газ) в воздухе. Предлагаемые практически неприемлемые решения этой проблемы заключаются в использовании предварительной тепловой или химической подготовки топлива перед подачей в камеру сгорания, использование активных добавок, включая кислород, или использование специальных топлив с высокой детонационной способностью. Применительно к двигателям, использующим активные (самовоспламеняющиеся) топливные компоненты, эта проблема не стоит, однако остаются актуальными проблемы их безопасной эксплуатации.

Рис. 1: Сравнение удельных импульсов воздушно-реактивных двигателей: ТРД , ПВРД , ПуВРД и ИДД

Применение импульсно-детонационных камер сгорания, в основном, ориентировано на замену существующих камер сгорания в таких воздушно-реактивных силовых установках как ПВРД и ПуВРД. Дело в том, что по такой важной характеристике двигателя, как удельный импульс, ИДД, перекрывая весь диапазон скоростей полета от 0 до числа Маха М = 5, теоретически обладает удельным импульсом, сравнимым (при числе Маха полета М от 2.0 до 3.5) с ПВРД и существенно превышающим удельный импульс ПВРД при числе Маха полета М от 0 до 2 и от 3.5 до 5 (рис. 1). Что касается ПуВРД, то его удельный импульс при дозвуковых скоростях полета почти в 2 раза меньше, чем у ИДД. Данные по удельному импульсу для ПВРД заимствованы из , где проведены одномерные расчеты характеристик идеальных ПВРД, работающих на керосино-воздушной смеси с коэффициентом избытка горючего 0.7. Данные по удельному импульсу воздушно-реактивных ИДД заимствованы из статей , где проведены многомерные расчеты тяговых характеристик ИДД в условиях полета с дозвуковыми и сверхзвуковыми скоростями на разных высотах. Отметим, что в отличие от расчетов расчеты в проведены с учетом потерь, вызванных диссипативными процессами (турбулентность, вязкость, ударные волны и др.).

Для сравнения на рис. 1 представлены результаты расчетов для идеального турбореактивного двигателя (ТРД). Видно, что ИДД уступает идеальному ТРД по удельному импульсу при числах Маха полета до 3.5, однако превосходит ТРД по этому показателю при М > 3.5. Таким образом, при М > 3.5 и ПВРД, и ТРД уступают воздушно-реактивным ИДД по удельному импульсу, и это делает ИДД весьма перспективным. Что касается низких сверхзвуковых и дозвуковых скоростей полета, то ИДД, уступая ТРД по удельному импульсу, все же может считаться перспективным ввиду необычайной простоты конструкции и дешевизны, что крайне важно для одноразовых приложений (средства доставки, мишени и др.).

Наличие «скважности» в тяге, создаваемой такими камерами, делает их малопригодными для маршевых жидкостных ракетных двигателей (ЖРД). Тем не менее, запатентованы схемы импульсно-детонационных ЖРД многотрубной конструкции с низкой скважностью тяги. Кроме того, такие силовые установки могут применяться в качестве двигателей для коррекции орбиты и орбитальных перемещений искусственных спутников Земли и иметь множество других приложений.

Применение непрерывно-детонационных камер сгорания, в основном, ориентировано на замену существующих камер сгорания в ЖРД и ГТД.

Что на самом деле стоит за сообщениями о первом в мире детонационном ракетном двигателе, испытанном в России?

В конце августа 2016 года мировые информационные агентства облетела новость: на одном из стендов НПО «Энергомаш» в подмосковных Химках заработал первый в мире полноразмерный жидкостный ракетный двигатель (ЖРД) с использованием детонационного горения топлива - . К этому событию отечественная наука и техника шла 70 лет. Идея детонационного двигателя была предложена советским физиком Я. Б. Зельдовичем в статье «Об энергетическом использовании детонационного сгорания», опубликованной в «Журнале технической физики» еще в 1940 году. С тех пор во всем мире шли исследования и эксперименты по практической реализации перспективной технологии. В этой гонке умов вперед вырывались то Германия, то США, то СССР. И вот важный приоритет в мировой истории техники закрепила за собой Россия. В последние годы чем-то подобным нашей стране удается похвастать не часто.

На гребне волны

Испытание детонационного жидкостного ракетного двигателя


В чем же состоят преимущества детонационного двигателя? В традиционных ЖРД, как, впрочем, и в обычных поршневых или турбореактивных авиадвигателях, используется энергия, которая выделяется при сжигании топлива. В камере сгорания ЖРД при этом образуется стационарный фронт пламени, горение в котором происходит при неизменном давлении. Этот процесс обычного горения называется дефлаграцией. В результате взаимодействия горючего и окислителя температура газовой смеси резко возрастает и из сопла вырывается огненный столб продуктов сгорания, которые и образуют реактивную тягу.

Детонация - это тоже горение, но происходит оно в 100 раз быстрее, чем при обычном сжигании топлива. Этот процесс идет так быстро, что детонацию часто путают со взрывом, тем более что при этом выделяется столько энергии, что, к примеру, автомобильный мотор при возникновении этого явления в его цилиндрах и в самом деле может разрушиться. Однако детонация - это не взрыв, а вид горения столь стремительного, что продукты реакции даже не успевают расшириться, поэтому этот процесс, в отличие от дефлаграции, идет при постоянном объеме и резко возрастающем давлении.

На практике это выглядит следующим образом: вместо стационарного фронта пламени в топливной смеси внутри камеры сгорания формируется детонационная волна, которая движется со сверхзвуковой скоростью. В этой волне сжатия и происходит детонация смеси горючего и окислителя, а это процесс с термодинамической точки зрения куда более эффективный, чем обычное сжигание топлива. КПД детонационного сгорания на 25–30% больше, то есть при сжигании одинакового количества топлива получается больше тяги, а благодаря компактности зоны горения детонационный двигатель по мощности, снимаемой с единицы объема, теоретически на порядок превосходит обычные ЖРД.

Уже одного этого оказалось достаточно, чтобы привлечь самое пристальное внимание специалистов к этой идее. Ведь тот застой, который сейчас возник в развитии мировой космонавтики, на полвека застрявшей на околоземной орбите, в первую очередь связан с кризисом ракетного двигателестроения. В кризисе, кстати, находится и авиация, не способная перешагнуть порог трех скоростей звука. Этот кризис можно сравнить с ситуацией в поршневой авиации в конце 1930-х годов. Винт и двигатель внутреннего сгорания исчерпали свой потенциал, и только появление реактивных двигателей позволило выйти на качественно новый уровень высот, скоростей и дальности полетов.

Детонационный ракетный двигатель

Конструкции классических ЖРД за последние десятилетия были вылизаны до совершенства и практически подошли к пределу своих возможностей. Увеличить их удельные характеристики в будущем возможно лишь в очень незначительных пределах - на считаные проценты. Поэтому мировая космонавтика вынуждена идти по экстенсивному пути развития: для пилотируемых полетов на Луну приходится строить гигантские ракеты-носители, а это очень сложно и безумно дорого, во всяком случае для России. Попытка преодолеть кризис с помощью ядерных двигателей наткнулась на экологические проблемы. Появление детонационных ЖРД, быть может, и рано сравнивать с переходом авиации на реактивную тягу, но ускорить процесс освоения космоса они вполне способны. Тем более что у этого типа реактивных двигателей есть еще одно очень важное преимущество.

ГРЭС в миниатюре

Обычный ЖРД - это, в принципе, большая горелка. Для увеличения его тяги и удельных характеристик нужно поднимать давление в камере сгорания. При этом топливо, которое впрыскивается в камеру через форсунки, должно подаваться при большем давлении, чем реализуется в процессе сгорания, иначе струя топлива просто не сможет проникнуть в камеру. Поэтому самым сложным и дорогим агрегатом в ЖРД является вовсе не камера с соплом, которое у всех на виду, а топливный турбонасосный агрегат (ТНА), спрятанный в недрах ракеты среди хитросплетения трубопроводов.

К примеру, у самого мощного в мире ЖРД РД-170, созданного для первой ступени советской сверхтяжелой ракеты-носителя «Энергия» тем же НПО «Энергия», давление в камере сгорания составляет 250 атмосфер. Это очень много. Но давление на выходе из кислородного насоса, качающего окислитель в камеру сгорания, достигает величины 600 атм. Для привода этого насоса используется турбина мощностью 189 МВт! Только представьте себе это: колесо турбины диаметром 0,4 м развивает мощность, в четыре раза большую, чем атомный ледокол «Арктика» с двумя ядерными реакторами! При этом ТНА - это сложное механическое устройство, вал которого совершает 230 оборотов в секунду, а работать ему приходится в среде жидкого кислорода, где малейшая не искра даже, а песчинка в трубопроводе приводит к взрыву. Технологии создания такого ТНА и есть главное ноу-хау «Энергомаша», обладание которым позволяет российской компании и сегодня продавать свои двигатели для установки на американских ракетах-носителях Atlas V и Antares. Альтернативы российским двигателям в США пока нет.

Для детонационного двигателя такие сложности не нужны, поскольку давление для более эффективного сгорания обеспечивает сама детонация, которая и представляет собой бегущую в топливной смеси волну сжатия. При детонации давление увеличивается в 18–20 раз без всякого ТНА.

Чтобы получить в камере сгорания детонационного двигателя условия, эквивалентные, к примеру, условиям в камере сгорания ЖРД американского «Шаттла» (200 атм), достаточно подавать топливо под давлением… 10 атм. Агрегат, необходимый для этого, по сравнению с ТНА классического ЖРД - все равно что велосипедный насос рядом Саяно-Шушенской ГРЭС.

То есть детонационный двигатель будет не только мощнее и экономичнее обычного ЖРД, но и на порядок проще и дешевле. Так почему же эта простота в течение 70 лет не давалась в руки конструкторам?

Пульс прогресса

Главная проблема, которая встала перед инженерами, - как совладать с детонационной волной. Дело ведь не только в том, чтобы сделать двигатель прочнее, чтобы он выдержал повышенные нагрузки. Детонация - это не просто взрывная волна, а кое-что похитрее. Взрывная волна распространяется со скоростью звука, а детонационная со сверхзвуковой скоростью - до 2500 м/с. Она не образует стабильного фронта пламени, поэтому работа такого двигателя носит пульсирующий характер: после каждой детонации необходимо обновить топливную смесь, после чего запустить в ней новую волну.

Попытки создать пульсирующий реактивный двигатель предпринимались задолго до идеи с детонацией. Именно в применении пульсирующих реактивных двигателей пытались найти альтернативу поршневым моторам в 1930-е годы. Привлекала опять же простота: в отличие от авиационной турбины для пульсирующего воздушно-реактивного двигателя (ПуВРД) не нужны были ни вращающийся со скоростью 40 000 оборотов в минуту компрессор для нагнетания воздуха в ненасытное чрево камеры сгорания, ни работающая при температуре газа свыше 1000˚С турбина. В ПуВРД давление в камере сгорания создавали пульсации в горении топлива.

Первые патенты на пульсирующий воздушно-реактивный двигатель были получены независимо друг от друга в 1865 году Шарлем де Луврье (Франция) и в 1867 году Николаем Афанасьевичем Телешовым (Россия). Первую работоспособную конструкцию ПуВРД запатентовал в 1906 году русский инженер В.В. Караводин, годом позже построивший модельную установку. Установка Караводина вследствие ряда недостатков не нашла применения на практике. Первым ПуВРД, работавшим на реальном летательном аппарате, стал немецкий Argus As 014, основанный на патенте 1931 года мюнхенского изобретателя Пауля Шмидта. Argus создавался для «оружия возмездия» - крылатой бомбы «Фау-1». Аналогичную разработку создал в 1942 году советский конструктор Владимир Челомей для первой советской крылатой ракеты 10Х.

Конечно, эти двигатели еще не были детонационными, поскольку в них использовались пульсации обычного горения. Частота этих пульсаций была невелика, что порождало характерный пулеметный звук при работе. Удельные характеристики ПуВРД из-за прерывистого режима работы в среднем были невысоки и после того, как конструкторы к концу 1940-х годов справились со сложностями создания компрессоров, насосов и турбин, турбореактивные двигатели и ЖРД стали королями неба, а ПуВРД остались на периферии технического прогресса.

Любопытно, что первые ПуВРД немецкие и советские конструкторы создали независимо друг от друга. Кстати, и идея детонационного двигателя в 1940 году пришла в голову не одному только Зельдовичу. Одновременно с ним те же мысли высказали Фон Нейман (США) и Вернер Деринг (Германия), так что в международной науке модель использования детонационного горения назвали ZND.

Идея объединить ПуВРД с детонационным горением была очень заманчивой. Но фронт обычного пламени распространяется со скоростью 60–100 м/с и частота его пульсаций в ПуВРД не превышает 250 в секунду. А детонационный фронт движется со скоростью 1500‒2500 м/с, таким образом частота пульсаций должна составлять тысячи в секунду. Реализовать такую скорость обновления смеси и инициации детонации на практике было затруднительно.

Тем не менее попытки создания работоспособных пульсирующих детонационных двигателей продолжались. Работа специалистов ВВС США в этом направлении увенчалась созданием двигателя-демонстратора, который 31 января 2008 года впервые поднялся в небо на экспериментальном самолете Long-EZ. В историческом полете двигатель проработал… 10 секунд на высоте 30 метров. Тем не менее приоритет в данном случае остался за Соединенными Штатами, а самолет по праву занял место в Национальном музее ВВС США.

Между тем уже давно была придумана другая, гораздо более перспективная схема детонационного двигателя.

Как белка в колесе

Мысль закольцевать детонационную волну и заставить ее бегать в камере сгорания как белка в колесе родилась у ученых в начале 1960-х годов. Явление спиновой (вращающейся) детонации теоретически предсказал советский физик из Новосибирска Б. В. Войцеховский в 1960 году. Почти одновременно с ним, в 1961 году, ту же идею высказал американец Дж. Николлс из Мичиганского университета.

Ротационный, или спиновый, детонационный двигатель конструктивно представляет собой кольцевую камеру сгорания, топливо в которую подается с помощью радиально расположенных форсунок. Детонационная волна внутри камеры движется не в осевом направлении, как в ПуВРД, а по кругу, сжимая и выжигая топливную смесь перед собой и в конце концов выталкивая продукты сгорания из сопла точно так же, как винт мясорубки выталкивает наружу фарш. Вместо частоты пульсаций мы получаем частоту вращения детонационной волны, которая может достигать нескольких тысяч в секунду, то есть практически двигатель работает не как пульсирующий, а как обычный ЖРД со стационарным горением, но куда более эффективно, поскольку на самом деле в нем происходит детонация топливной смеси.

В СССР, как и в США, работы над ротационным детонационным двигателем шли с начала 1960-х годов, но опять же при кажущейся простоте идеи ее реализация потребовала решения головоломных теоретических вопросов. Как организовать процесс так, чтобы волна не затухала? Необходимо было понимание сложнейших физико-химических процессов, происходящих в газовой среде. Тут расчет велся уже не на молекулярном, а на атомарном уровне, на стыке химии и квантовой физики. Процессы эти более сложны, чем те, что происходят при генерации луча лазера. Именно поэтому лазер уже давно работает, а детонационный двигатель - нет. Для понимания этих процессов потребовалось создать новую фундаментальную науку - физико-химическую кинетику, которой 50 лет назад еще не существовало. А для практического расчета условий, при которых детонационная волна не будет затухать, а станет самоподдерживающейся, потребовались мощные ЭВМ, появившиеся лишь в последние годы. Вот какой фундамент необходимо было положить в основание практических успехов по укрощению детонации.

Активные работы в этом направлении ведутся в Соединенных Штатах. Этими исследованиями занимаются Pratt & Whitney, General Electric, NASA. К примеру, в научно-исследовательской лаборатории ВМФ США разрабатываются спиновые детонационные газотурбинные установки для флота. В ВМФ США используется 430 газотурбинных установок на 129 кораблях, в год они потребляют топлива на три миллиарда долларов. Внедрение более экономных детонационных газотурбинных двигателей (ГТД) позволит сберечь гигантские средства.

В России над детонационными двигателями работали и продолжают работать десятки НИИ и КБ. В их числе и НПО «Энергомаш» - ведущая двигателестроительная компания российской космической промышленности, со многим предприятиями которой сотрудничает банк ВТБ. Разработка детонационного ЖРД велась не один год, но для того чтобы вершина айсберга этой работы засверкала под солнцем в виде успешного испытания, потребовалось организационное и финансовое участие небезызвестного Фонда перспективных исследований (ФПИ). Именно ФПИ выделил необходимые средства для создания в 2014 году специализированной лаборатории «Детонационные ЖРД». Ведь несмотря на 70 лет исследований, эта технология до сих пор остается в России «слишком перспективной», чтобы ее финансировали заказчики вроде Министерства обороны, которым нужен, как правило, гарантированный практический результат. А до него еще очень далеко.

Укрощение строптивой

Хочется верить, что после всего сказанного выше становится понятна та титаническая работа, которая проглядывает между строк краткого сообщения об испытаниях, прошедших на «Энергомаше» в Химках в июле - августе 2016 года: «Впервые в мире был зарегистрирован установившийся режим непрерывной спиновой детонации поперечных детонационных волн частотой около 20 кГц (частота вращения волны - 8 тысяч оборотов в секунду) на топливной паре „кислород - керосин“. Удалось добиться получения нескольких детонационных волн, уравновешивавших вибрационные и ударные нагрузки друг друга. Специально разработанные в центре имени М. В. Келдыша теплозащитные покрытия помогли справиться с высокими температурными нагрузками. Двигатель выдержал несколько пусков в условиях экстремальных вибронагрузок и сверхвысоких температур при отсутствии охлаждения пристеночного слоя. Особую роль в этом успехе сыграло создание математических моделей и топливных форсунок, позволявших получать смесь необходимой для возникновения детонации консистенции».

Разумеется, не стоит преувеличивать значение достигнутого успеха. Создан лишь двигатель-демонстратор, который проработал относительно недолго, и о его реальных характеристиках ничего не сообщается. По информации НПО «Энергомаш», детонационный ЖРД позволит поднять тягу на 10% при сжигании того же количества топлива, что и в обычном двигателе, а удельный импульс тяги должен увеличиться на 10–15%.

Создание первого в мире полноразмерного детонационного ЖРД закрепило за Россией важный приоритет в мировой истории науки и техники.

Но главный результат состоит в том, что практически подтверждена возможность организации детонационного горения в ЖРД. Однако путь до использования этой технологии в составе реальных летательных аппаратов предстоит еще долгий. Другой важный аспект заключается в том, что еще один мировой приоритет в области высоких технологий отныне закреплен за нашей страной: впервые в мире полноразмерный детонационный ЖРД заработал именно в России, и этот факт останется в истории науки и техники.

Для практической реализации идеи детонационного ЖРД потребовалось 70 лет напряженного труда ученых и конструкторов.

Фото: Фонд перспективных исследований

Общая оценка материала: 5

АНАЛОГИЧНЫЕ МАТЕРИАЛЫ (ПО МЕТКАМ):

Графен прозрачный, магнитный и фильтрующий воду Отец видеозаписи Александр Понятов и AMPEX