Правила эксплуатации никель-кадмиевых аккумуляторов. Никель-кадмиевые аккумуляторы

Кадмиевый аккумулятор – востребованный источник энергии, который используют для комплектации бытовой техники. Они причислены к щелочным типам. Ими оснащают те агрегаты и устройства, в состав которых нельзя ввести другие модели.

В состав никель кадмиевых аккумуляторов введены минусовые и плюсовые токопроводящие выводы, для разделения которых использован сепаратор. Внутренняя часть заполнена щелочным электролитическим составом. Корпус для никель кадмиевых батарей подготовлен из специального металла, герметично запаян.

Дабы обеспечить лучший контакт, для подготовки электродов используют фольгу, которая отличается небольшой толщиной. Для конструирования сепаратора, который сосредотачивают между выводами в батареях никель кадмиевых, применяют тканое сырье. Ведь он не взаимодействует со щелочным электролитом.

Для подсоединения аккумуляторной батареи к другим никелево кадмиевым источникам питания применяют борн. В состав устройства никель кадмиевых аккумуляторов входят сварные соединения, при помощи которых обеспечивается плотное соединение.

Преимущества никель-кадмиевых источник питания

  • Численность циклов разряда и заряда достигает 1 000 и более.
  • Период хранения таких устройств продолжителен. При этом степень заряженности агрегата не влияет на данный показатель.
  • Технология зарядки никель кадмиевых аккумуляторов относительно проста. Ее смогут реализовать и новички-автомобилисты.
  • Эксплуатировать такие источники питания можно и в зимний период, в жестких условиях.
  • Емкость не снижается даже при минусовой температуре.

Отрицательные стороны

  • Устройства обладают таким свойством, как «эффект памяти». Для его устранения возникает потребность в проведении определенных мероприятий.
  • Уровень саморазряда повышенный.
  • Если сравнить cd аккумуляторы с иными источниками питания, то можно выделить их невысокую энергетическую плотность.
  • Для подготовки применены токсичные компоненты. Поэтому некоторые государства не используют такие аккумуляторные батареи, не занимаются их изготовлением.
  • Для утилизации таких агрегатов применяют соответствующее оборудование. В нашей стране для никель кадмиевых агрегатов подготавливают установки для утилизации, переработки.

Заряд, разряд никель-кадмиевых аккумуляторных батарей

Процесс разряда

Разрядные параметры источника питания во многом зависят от конструктивных особенностей, характеристик электродов и токовыводов. Они же предопределяют величину напряжения и внутреннего сопротивления.

Разрядные параметры зависят от:

  • Особенности и структуры сепаратора.
  • Качества сборки.
  • Количества электролитического состава, которым заполнен корпус.
  • Прочее.

При продолжительном разряде nicd источника специалисты рекомендуют пользоваться дисковыми батарейками, который дополнены крупногабаритными прессованными выводами. Поэтому при небольшом увеличении тока емкость разрядная, а также напряжение снижается. Дабы оптимизировать этот показатель, толщину выводов уменьшают, численность увеличивают.

Максимальное значение емкости наблюдается при комнатной температуре. Дальнейшее повышение температуры не влияет на этот параметр. Отрицательная температура провоцирует снижение разрядного напряжения, повышение разрядного тока.

Использование шуруповертов, которые укомплектованы никель-кадмиевыми источниками питания, в зимний период требует осторожности.

Зарядный процесс

В процессе зарядки ni cd аккумуляторов необходимо вводить ограничения по заряду. Ведь в процесс подзарядки внутри корпуса повышается давления, вырабатывается кислород, а коэффициент применения тока понижается.

Как заряжать ni cd батарею? Дабы полностью восстановить заряд, должна быть сообщена емкость в 150–160 процентов. Температурный диапазон – 0-+35 градусов. Если не учитывать температурный диапазон, то давление повысится. Через аварийный клапан будет выделяться кислородная смесь. Поэтому важно заранее определить, как правильно заряжать аккумуляторную батарею.

Разряженный никель-кадмиевый аккумулятор заряжают в различных режимах. От того, какой режим выбран, зависит время зарядки.

  1. Током в 0,2 от общей емкости в течение 7 часов.
  2. Током в 0,3 от общей емкости не более 4 часов.

Заряжая агрегат в ускоренном режиме (током в 0,4 от имеющейся емкости), перезаряд запрещен, так как это повлечет уменьшение емкости. Устанавливать, до скольки заряжен источник питания, можно с помощью соответствующих устройств. При работе с токами применяется амперметр. Дабы определить количество вольт, используют вольтметр или мультиметр.

Зарядник для никель-кадмиевых аккумуляторных батарей

Для заряда ni cd батареи используют реверсивные и автоматические зарядники.

Автоматическое зарядное устройство для ni cd отличается простотой использования. С его помощью можно подзарядить 2–4 батарейки для шуруповерта или другой бытовой техники. После размещения батарейки в ЗУ устанавливается режим, число. После этого агрегат подключают к сети.

Автоматические модели оснащены индикаторами, с помощью которых определяется состояние заряжаемых источников питания при работе с током. Такие устройства подходят и для того, чтобы разряжать ni cd батареи.

Импульсные зарядники отличаются более сложной конструкцией. Их можно использовать при работе со значительным током. Поскольку их относят к профессиональным агрегатам, перед использованием изучается, как зарядить источник питания, как выставить требуемые параметры.

Реверсные (импульсные) модели подходят для циклической подачи ток заряда и разряда. При разряде и заряде заранее определяются параметры тока, напряжения.

Особенности использования

Продолжительная эксплуатация влияет на функционирование и работоспособность кадмий никелевых акб. К ухудшению работоспособности и выходу из строя приводят:

  • Рабочая поверхность токопроводящих выводов уменьшается.
  • Активная масса токопроводящих выводов существенно уменьшается.
  • Щелочной электролитический состав меняет состав, неправильно перераспределяется по источнику питания.
  • Образуется утечка по проводящим элементам. В итоге, разрядка заряженного источника питания наступает достаточно быстро.
  • Расход жидкости, кислорода возрастает. При чрезмерном выделении кислорода процесс становится необратимым.
  • Органические составы начинают распадаться.

Восстановление никель-кадмиевых аккумуляторов

Процедура восстановления никель кадмиевых аккумуляторов, которые используются для комплектации шуруповёрта, иного портативного агрегата, занимает определенное время. Поскольку стоимость таких акб высокая, перед реализацией следует изучить особенности.

По сути, восстанавливаем никель-кадмиевый аккумулятор шуруповерта импульсным током, который подается в течение 2–4 секунд. Величина тока превышает параметры емкости в 10 и более раз.

Перед тем как восстановить АКБ, подготавливаются определенные элементы и инструменты:

  1. Работоспособный источник питания с сильными показателями тока. В качестве АКБ используют автоаккумулятор.
  2. Зажимы.
  3. Провода.
  4. Мультиметр, с помощью которого контролируется напряжение.
  5. Защитные предметы.

Процедура восстановления включает определенные мероприятия:

  • У блока портативного инструмента или отдельной батареи определяется положительный и отрицательный контакт.
  • Пользуясь зажимами или крокодилами, а также отрезками проводов присоединяются минусы.
  • Другой конец провода прижимают к положительному контакту. Длительность контакта провода составляет 1–2 секунды (возможно увеличение до 3 секунд). Подобные действия занимают немного времени. При контакте следят за тем, чтобы провода не прикипели к блоку, батарее.

По истечении одного цикла при помощи мультиметра замеряется уровень напряжения. Как только напряжение восстановилось, переходят к набору емкости. Дабы восстановить и выполнить ремонт источника питания, выполняется 2–4 цикла.

Такая методика приносит ожидаемый эффект лишь на короткий срок. Все потому, что электролитический состав меняется, изменяется и его объем. В результате, аккумуляторы как источники долго использовать нельзя.

Модернизированная методика

Дабы своими руками восстановить никель кадмиевые аккумуляторы, а также обеспечить их продолжительную эксплуатацию, выполняются следующие действия:

  • Все батарейки тщательно проверяются, измеряется напряжение. Те элементы, на которых напряжение близко к нулю, изымаются.
  • В корпусе при помощи соответствующего инструмента подготавливаются отверстия, дабы залить 1 см3 дистиллированной воды.
  • Источники питания отстаиваются в течение короткого временного промежутка, после чего проводят повторную проверку напряжения.
  • Если работоспособность АКБ восстановлена, то сформированные отверстия обрабатывают герметиком, пайкой.
  • Блок комплектуется батарейками, повторно заряжается. Портативный инструмент готов к эксплуатации, как только на заряднике индикатор изменит оттенок. Для этих целей стоит пользоваться импульсными зарядными устройствами, которые отличаются обширным функционалом, качественной комплектацией.
  • При нулевом напряжении в АКБ вводят дистиллированную воду вновь.
  • Процедуру повторяют до тех пор, пока не достигнут положительного результата.

Особенности хранения

На кадмиевые аккумуляторы правила эксплуатации подготовлены специалистами. В инструкции прописано, как хранить источники питания. Выделено несколько основных правил.

Хранить ni cd источники можно только при полной разрядке. Для этих целей используют зарядные устройства, которые оснащены соответствующей функцией. Для опустошения применяют и лампы накаливания с соответствующим количеством ампер.

Хранить аккумуляторные батареи, которые правильно подготовлены, можно долго. Температурные изменения не влияют на состояние и работоспособность.

Для хранения никель кадмиевых аккумуляторов используют помещения. Ведь температурные колебания не провоцируют разрядку, запуск необратимых процессов.

Хотя хранятся никель-кадмиевые аккумуляторы долго, на определенном этапе возникает потребность в утилизации. Для этого следует обратиться в организацию, которая выполняет подобные процессы.

Эффективность никель кадмиевых аккумуляторов сложно переоценить. Ими комплектуют портативные инструменты, используемые в быту и в промышленности. При правильном обращении, соблюдении техники безопасности и условий эксплуатации период применения превышает пять лет.

Видео про Никель кадмиевые аккумуляторы



Никель-кадмиевые аккумуляторы (Ni-Cd) на данный момент все ещё достаточно широко используются в народном хозяйстве. По своей конструкции они относятся к группе щелочных аккумуляторов. Эти батареи востребованы, несмотря на то, что их производство и применение ограничивается из соображений охраны окружающей среды (кадмий является ядовитым веществом). Но полностью отказаться от них не получается, поскольку эти аккумуляторные батареи используют в устройствах, где другие батареи работать не могут. В частности это эксплуатация с разрядными и зарядными токами большой величины. Это достаточно простые в обслуживании устройства с длительным сроком эксплуатации. Поэтому они заслуживают рассмотрения в отдельной статье.

Первый никель-кадмиевый аккумулятор создал Вальдмар Юнгнер ещё в 1899 году. Но тогда производство этих щелочных аккумуляторов обходилось значительно дороже, чем других видов батарей. Так, что об этом изобретении на некоторое время забыли. В 1932 году был разработан метод осаждения активного материала на пористый никелевый электрод. Это приблизило выпуск промышленных аккумуляторов Ni-Cd.

В 1947 году был проведен ряд работ, в ходе которых осуществили рекомбинацию газов, выделяющихся при заряде, без их отведения. В результате на свет появились герметичные Ni-Cd аккумуляторы, которые применяются до сих пор. Среди производителей никель-кадмиевых аккумуляторов можно назвать такие крупные компании, как GP Batteries, Самсунг, Варта, GAZ, Konnoc, Advanced Battery Factory, Панасоник, Metabo, Ansmann и другие.

Несмотря на широкое распространение в народном хозяйстве за последние десятилетия, никель-кадмиевые аккумуляторы постепенно сужают область применения. Их постепенно теснят никель-металлогидридные, а также литиевые батареи.

В частности Ni-Cd батареи уступают им место портативной технике. Причиной тому является опасность кадмия для человека и окружающей среду. Для утилизации таких аккумуляторов требуется специальное оборудование для улавливания кадмия. для автомобиля проводится проще, быстрее и лучше отработана. Но до сих пор существует достаточно много направлений, где никель-кадмиевые батареи незаменимы.

Применение никель-кадмиевых аккумуляторов (Ni-Cd)

Никель-кадмиевые аккумуляторы с небольшими размерами применяются в технических устройствах, требующих для своей работы большой ток. В таких условиях Ni-Cd аккумуляторы выдают стабильную мощность и не перегреваются в отличие от других типов аккумуляторных батарей. Никель-кадмиевые аккумуляторы широко используются в троллейбусах, трамваях, в роли тяговых АКБ на электрических карах, встречаются промышленные аккумуляторы Ni-Cd. Кроме того, широкое применение они нашли на морском и речном транспорте.

Ni-Cd аккумуляторы можно встретить в вертолетах и самолетах в роли бортовых батарей, в портативных инструментах (шуруповёрт, перфоратор и т. п.). Однако в инструментах все чаще встречаются литиевыми батареями. Никель-кадмиевые аккумуляторные батареи пока не могут заменить в тех портативных устройствах, которые имеют потребление большой мощности. Хотя в некоторых устройствах их успешно заменяют , которые не имеют в своём составе вредного кадмия.

Широкое применение нашли Ni-Cd батареи в дисковом исполнении. Этот вариант широко использовался в качестве батареи для питания энергонезависимой памяти в первых персональных компьютерах. Они были распаяны на материнской плате. Впоследствии их заменили литиевыми аккумуляторами. Дисковые батарейки также широко применялись в фотоаппаратах, вспышках, калькуляторах, фонариках, радиоприёмниках, слуховых аппаратах и т. п.

Ni-Cd аккумуляторы могут долго храниться, просты в обслуживании, малочувствительны к низким температурам, имеют низкое внутреннее сопротивление и малый удельный вес. Все это пока перевешивает отрицательный момент, связанный с наличием в них ядовитого кадмия. Никель-кадмиевые аккумуляторы по-прежнему доминируют при использовании в авиации, военной технике, устройствах мобильной радиосвязи. Дополнительно можете прочитать материал о том, как восстанавливаются Ni-Cd .

Устройство никель-кадмиевых аккумуляторов (Ni-Cd)

Конструкция Ni-Cd аккумуляторов

Конструктивно никель-кадмиевый аккумулятор представляет собой положительный и отрицательный электрод, разделенные сепаратором. Они погружены в щелочной электролит и все это закрыто в герметичном металлическом корпусе. Положительный электрод имеет в своем составе NiOOH (оксид-гидроксид никеля). В составе отрицательного присутствует кадмий (Cd) в компаунде. В роли электролита выступает раствор KOH (гидроксид калия). Это сильная щелочь, не имеющая запаха. Преимущества KOH в том, что вещество не взрывоопасное и не пожароопасное. Массовая доля KOH в электролите по ГОСТ Р 50711-94 должна составлять не меньше 85 процентов в твердом и не меньше 45 процентов в жидком виде.

Чтобы увеличить площадь поверхности электродов, их выпускают из фольги малой толщины. Сепаратор между электродами делается из нетканого материала, который не взаимодействует со щелочью. Сам электролит в процессе реакции не расходуется.

Один никель-кадмиевый элемент выдает напряжение около 1 вольта. Поэтому они объединяются в батареи с плотностью энергии примерно 60 Вт-ч на один килограмм.

На изображении ниже можно посмотреть основные элементы щелочного никель кадмиевого аккумулятора серии KL.

Борн или токовывод предназначен для съем тока с аккумулятора и выступает в роли клеммы для соединения батарей. Через пробку обеспечивается заливка электролита, а также выход газа, образующегося в процессе зарядки. Соединение электродов вместе с контактными планками обеспечивает съём и подачу с электродов на борн. Контактные планки имеют сварное соединение с электродами.

Электрод представляет собой ламели, расположенные горизонтально. В них находится активное вещество в перфорированной ленте из стали. Ребро дает жесткость электрода и обеспечивает перетекание тока на контактную планку. Электроды разной полярности разделяются рамочным сепаратором, который не препятствует свободной циркуляции электролита.

Реакции, проходящие на электродах Ni-Cd аккумулятора

Процессы на положительном электроде

Основные электрохимические реакции, протекающие на положительном электроде никель-кадмиевой аккумуляторной батареи, можно описать следующими формулами:

В процессе заряда

Ni(OH) 2 + OH - ? NiOOH + H 2 O + e -

В процессе разряда

NiOOH + H 2 O + e - ? Ni(OH) 2 + OH -

Оксид-гидроксид никеля (NiOOH) на положительном электроде может быть в двух вариантах:

  • ?- Ni(OH) 2 ;
  • ?-Ni(OH) 2 .

Эти формы различаются по своей плотности и гидратации. Если батарея разряжена, то на положительном электроде есть обе эти формы гидроксида никеля. Когда Ni-Cd аккумулятор заряжается, то форма?-Ni(OH) 2 превращается в?-NiOOH. При этом кристаллическая решетка вещества несколько изменяется. На заключительной стадии зарядки происходит образование?-NiOOH. Количество фаз? и? гидроксида никеля будет зависеть от конкретных условий заряда.

Фаза? интенсивно образуется при большой скорости зарядки или при перезаряде. В результате образования?-NiOOH происходит коренная перестройка структуры оксидов. Для сравнения, плотность фазы? составляет 4,15, а фазы?-3,85 гр./см 3 . По этой причине при перезаряде Ni-Cd аккумулятора происходит изменение объем активной массы положительного электрода. Электрохимические свойства? и? также отличаются. Для формы?-NiOOH заряд проходит менее эффективно и коэффициент использования по току в этом случае меньше формы?. Форма? также имеет меньший разрядный потенциал и саморазряд в два раза меньший, чем для?.

Процессы на отрицательном электроде

На отрицательном электроде никель-кадмиевой батареи протекают следующие реакции:

При заряде

Cd(OH) 2 + 2e ? ? Cd + 2OH ?

При разряде

Cd + 2OH ? ? Cd(OH) 2 + 2e ?

Ёмкость кадмиевого электрода в никель-кадмиевых батареях превышает ёмкость положительного электрода примерно на 20-70 процентов. По этой причине считается, что потенциал отрицательного электрода при заряде-разряде, остается неизменным.

Общие процессы в Ni-Cd аккумуляторе

В никель-кадмиевой батарее протекают следующие реакции:

При заряде

2Ni(OH) 2 + Cd(OH) 2 ? 2NiOOH + Cd + 2H 2 O

При разряде

2NiOOH + Cd + 2H 2 O ? 2Ni(OH) 2 + Cd(OH) 2

В процессе перезаряда на положительном электроде протекает следующая реакция:

2OH ? ? 1/2O2 + H 2 O + 2e ?

То есть, выделяется кислород, который через сепаратор доходит до отрицательного электрода и там с его участием идет следующая реакция:

1/2O2 + Cd + H 2 O ? Cd(OH) 2

В результате происходит замкнутая реакция по кислороду. Это стабилизирует давление в никель-кадмиевом аккумуляторе при перезаряде. Величина давления в батарее в значительной степени зависит от скорости транспортировки кислорода между положительным и отрицательным электродами. В процессе перезаряда на отрицательном кадмиевом электроде может выделяться водород:

H 2 O + e ? ? OH ? + 1/2H 2

Затем он окисляется на положительном электроде. Реакция выглядит так:

NiOOH + 1/2H 2 ? Ni(OH) 2

Образование водорода в герметичном аккумуляторе – это опасный процесс. Если скорость его поглощения будет низкой, то это может привести к его накоплению. А это уже взрывоопасно. Поэтому в герметичных никель-кадмиевых аккумуляторах емкость кадмиевого электрода делают значительно больше, чем положительного.

Ёмкость такой герметичной батареи определяется именно значением ёмкости оксидно-никелевого электрода.

Характеристики никель-кадмиевых аккумуляторов (Ni-Cd)

Номинальное напряжение никель-кадмиевых герметичных аккумуляторов составляет 1,2 вольта. Заряд током 1/10 от ёмкости происходит за 16 часов. Замер ёмкости Ni-Cd аккумулятора производится при разряде током 2/10 от номинальной ёмкости до напряжения один вольт.

На изображении ниже можно видеть разрядные характеристики никель-кадмиевых аккумуляторов при различных режимах разряда.

На графиках ниже можно посмотреть зависимость разрядной ёмкости от нагрузочного тока и температуры.

Саморазряд никель-кадмиевых аккумуляторов зависит в основном от термодинамической неустойчивости электрода из оксида-гидроксида никеля. Влияние тока утечки между электродами на саморазряд небольшое. Но постепенно увеличивается со временем эксплуатации батареи. Тепловыделение в Ni-Cd аккумуляторах во многом зависит от степени заряженности. После того, как аккумулятор набрал 70 процентов емкости, активизируется процесс выделения кислорода. В результате из-за ионизации кислорода на отрицательных электродах происходит разогрев аккумулятора. По окончании зарядки температура в Ni-Cd аккумуляторе поднимается на 10-15 градусов Цельсия. Если заряд осуществляется в ускоренном режиме, то увеличение температуры может составлять 40-45 градусов Цельсия.

После отключения от заряда потенциал положительного (оксидно-никелевого) электрода уменьшается и происходит постепенное выравнивание заряда глубинного и поверхностного слоя. Через некоторое время интенсивность саморазряда снижается. У различных серий Ni-Cd аккумуляторов саморазряд и стабилизации остаточной емкости могут значительно различаться. Саморазряд, помимо снижения ёмкости, ещё приводит к понижению напряжения на 0,03-0,05 вольта. Это явление объясняется постепенным выравниванием заряда в глубине и на поверхности электрода. Кроме того, влияние оказывает частичная пассивация активной массы.

Хранение никель-кадмиевых аккумуляторов (равно, как и свинцово-кислотных) при низкой температуре снижает саморазряд. При 20 градусах Цельсия саморазряд в два раза больше, чем при 0.

На следующем изображении показан график изменения потери емкости для никель-кадмиевых аккумуляторов при различных температурах.

Чтобы компенсировать саморазряд при хранении аккумулятора, можно поставить его на подзарядку малым током. Обычно величина тока подзаряда составляет 0,03-0,05 от ёмкости. Но конкретное значение оговаривается производителем аккумулятора. Способность выдерживать длительный перезаряд у разная у никель-кадмиевых аккумуляторов различной конструкции. Дисковые щелочные никель-кадмиевые аккумуляторы, которые имеют ламельные электроды большой толщины, к перезаряду приспособлены меньше всего. Но есть и такие конструкции, которые способны без последствий выдержать перезаряд несколько месяцев.

Что касается энергетических характеристик Ni-Cd аккумуляторов, то они также различаются в зависимости от разновидностей батареи.

Дисковые никель-кадмиевые аккумуляторы с 2 электродами имеют удельные энергетические характеристики 15-18 Вт-ч на килограмм и 35-45 Вт-ч на литр. Та же разновидность, но с 4 электродами имеет удельные энергетические характеристики в два раза больше. Для цилиндрических Ni-Cd аккумуляторов эти величины составляют 45 Вт-ч на килограмм и 130 Вт-ч на литр.

Что влияет на разряд Ni-Cd аккумуляторов?

Разрядные характеристики конкретных моделей зависят от следующих характеристик:

  • толщина, структура, внутреннее сопротивление электродов;
  • плотность сборки групп электродов;
  • характеристики сепаратора (толщина и структура);
  • объем электролита;
  • специфические особенности конструкции батареи.

Дисковые Ni-Cd аккумуляторы с прессованными электродами большой толщины используются в условиях продолжительного разряда. В этом случае происходит постепенное снижение ёмкости и напряжения до 1,1 вольта. При разряде до 1 вольта ёмкости остаётся около 5-10 процентов от номинала. Такие аккумуляторные батареи демонстрируют значительное снижение разрядного напряжения и теряемой емкости Ni-Cd аккумуляторов при возрастании тока разряда до величины 0,2*C. Объясняется это тем, что активная масса не имеет возможности равномерно разряжаться на разной глубине электродов.

Для аккумуляторных батарей, работающих в режиме разряда средней интенсивности, делаются электроды меньшей толщины, и увеличивается их число до 4. В результате ток разряда возрастает до 0,6 от ёмкости.

Есть еще, так называемые, короткоразрядные аккумуляторы. В них установлены металлокерамические электроды с малым внутренним сопротивлением. Эти модели имеют самые высокие энергетические показатели среди других разновидностей никель-кадмиевых аккумуляторов. У них напряжение при разряде держится выше 1,2 вольта до того момента, пока они не исчерпают 90 процентов ёмкости батареи. Эти аккумуляторы могут использоваться при разрядке большими значениями тока (3-5С).

Стоит отметить ещё цилиндрические батареи с рулонными электродами. Эти современные аккумуляторы могут разряжаться длительное время током 7-10С. На графиках разряда, представленных выше можно видеть, что температура ОС оказывает существенное влияние на характеристики никель-кадмиевых аккумуляторов. Наибольшее значение ёмкости аккумулятор имеет при 20 градусах Цельсия. При повышении температуры она практически не меняется. Но при понижении до 0 градусов емкость падает тем быстрее, чем больше величина тока разряда. Это понижение ёмкости связано с уменьшением разрядного напряжения, которое вызвано ростом поляризационного и омического сопротивления. Сопротивление возрастает из-за малого объема электролита.

Так, что состав щелочи (электролита) и её концентрация существенно отражаются на характеристиках аккумулятора. От этого зависит температура образования солей, кристаллогидратов, льда и прочих элементов.

Если электролит замерз, то разряд вообще исключен. Нижнее значение рабочей температуры Ni-Cd аккумуляторов в большинстве случаев составляет минус 20 градусов Цельсия. Для некоторых видов батарей состав электролита корректируется, и нижняя граница температурного диапазона расширяется до минус 40 градусов Цельсия.

Что влияет на заряд Ni-Cd аккумуляторов?

При зарядке герметичного никель-кадмиевого аккумулятора важным является ограничение перезаряда. При перезарядке увеличивается давления внутри батареи из-за выделения кислорода. Так, что эффективность использования тока падает по мере приближения к 100-ной зарядке.

На изображении ниже можно посмотреть графики характеризующие зависимость ёмкости при разряде цилиндрического аккумулятора.

Зарядку Ni-Cd аккумуляторов допускается проводить в температурном диапазоне 0-40 градусов Цельсия. Рекомендуемый интервал 10-30 градусов. Поглощение кислорода на кадмиевом электроде замедляется при снижении температуры, что приводит к росту давления. Если температура выше рекомендуемой, то растёт потенциал и на положительном оксидно-никелевом электрода кислород начинает выделяться очень рано. При равной температуре кислород выделяется тем активнее, чем больше ток заряда. При это скорость поглощения кислорода почти не изменяется. У эта величина зависит от конструкции батареи, а точнее, от транспортировки кислорода от положительного к кадмиевому отрицательному электроду. На это влияет плотность компоновки, толщины, структура электродов, а также материала сепаратора и объема электролита.

Чем меньше толщина электродов и чем выше плотность их компоновки, тем эффективнее будет проходить процесс заряда. Цилиндрические аккумуляторы с рулонными электродами являются наиболее эффективными в этом плане. Для них эффективность заряда при изменении тока от 0,1 до 1С почти не меняется. Стандартным производители называют режим зарядки, в результате которого батарея с напряжением 1 вольт полностью заряжается за 16 часов током 0,1 от ёмкости. Некоторые модели при заряде в таком режиме требуют 14 часов. Конкретные показатели уже зависят от конструктивных особенностей и объема активной массы.

Все вышесказанное справедливо для гальваностатического заряда. Это заряд при постоянном значении силы тока. Но заряд может также вестись с плавным или ступенчатым снижением силы тока на заключительной стадии зарядки. Тогда на начальном этапе ток может устанавливаться гораздо выше стандартного значения 0,1 от ёмкости. Часто бывает реальная необходимость в увеличении скорости зарядки. Проблему решают с использованием аккумуляторов, характеристики которых позволяют эффективно принимать заряд током высокой плотности. Ток поддерживается постоянным на протяжении всего процесса зарядки. Также совершенствуются системы контроля, которые не допускают перезаряд батареи.

Цилиндрические никель-кадмиевые аккумуляторы обычно заряжаются в следующих режимах:

  • 6-7 часов током 0,2 от ёмкости;
  • 3-4 часа током 0,3 от ёмкости.

При ускорении не рекомендуется допускать перезаряд больше 120-140 процентов. Тогда будет обеспечена ёмкость не меньше номинала. Ni-Cd аккумуляторы для работы в ускоренных режимах заряжаются ещё быстрее (примерно около одного часа). Однако в последнем случае нужен контроль напряжения и температуры. Иначе, из-за быстрого роста давления, может начаться процесс деградации аккумуляторов.

После того, как заряд закончен в герметичном аккумуляторе еще продолжается выделение кислорода из-за окисления гидроксильных ионов на положительном электроде. За счет процесса саморазряда уменьшается потенциал, и процесс выделения кислорода постепенно уменьшается и становится равным поглощению его на кадмиевом электроде. Тогда давление уменьшается. О том, детально разобрано по указанной ссылке.

Эксплуатация никель-кадмиевых аккумуляторов (Ni-Cd)

Постепенно при эксплуатации никель-кадмиевых аккумуляторов в них происходят изменениями, оказывающие влияние на работоспособность. Эти изменения вызывают постепенное падение напряжения аккумулятора и снижение его разрядной емкости.

Какие факторы приводят к отказу в работе Ni-Cd аккумуляторов:

  • Уменьшение рабочей поверхности электродов;
  • потеря активной массы электродов;
  • изменение состава и объема щелочного электролита, а также его перераспределение в батарее;
  • возникновение утечек по проводникам, вызванные ростом дендритов кадмия;
  • процессы, которые связаны с необратимым расходом воды и кислорода;
  • распад органических веществ.

Изменения в положительном электроде (оксидно-никелевый)

После определенного, достаточно большого, количества циклов происходит изменение плотности активной массы положительного электрода. Возникает, так называемое, набухание оксидно-никелевого электрода. Кроме того, уменьшается его прочность. В результате снижается качество контакта активной массы с основой электрода. Как следствие, падает электрическая проводимость электрода и уменьшается ёмкость аккумулятора.

Уменьшение прочности положительного электрода вызывается в основном из-за регулярном перезаряда. Как говорилось выше, это сопровождается выделением кислорода в герметичном корпусе аккумулятора. В батареях с электродами из металлокерамики эти изменения наблюдаются в значительно меньшей степени. При эксплуатации никель-кадмиевых аккумуляторов наблюдается увеличение кристаллов активной массы. Это приводит к уменьшению рабочей поверхности электродов и падению ёмкости.

Изменения в отрицательном электроде (кадмиевый)

На кадмиевом электроде основным процессом, вызывающим его деградацию, является миграция активной массы. У отработавшего длительное время Ni-Cd аккумулятора активную массу отрицательного электрода можно найти как в сепараторе, так и на положительном электроде. В результате наблюдается потеря активной массы, а также блокировка поверхностного слоя отрицательного электрода.

Это ухудшает доступ щелочного электролита вглубь электрода. В результате растет внутреннее сопротивление аккумулятора. Миграция активной массы и нарастание дендритов сквозь сепаратор до положительного электрода вызывает короткие замыкания и нарастание саморазряда. Как и в оксидно-никелевом электроде, так и в кадмиевом укрупняются кристаллы, и набухает активная масса.

Срок службы никель-кадмиевого аккумулятора сокращают и другие необратимые процессы. В частности, из-за высокого окислительного потенциала положительного электрода, на нём окисляются органические примеси. Это специальные стабилизирующие и активирующие добавки в этом типе аккумуляторов. Металлокерамическая основа электрода при своем окислении потребляет воду и выделяет гидроксид никеля (Ni(OH) 2).

Увеличение давления в никель-кадмиевом аккумуляторе также оказывает пагубное влияние на состояние аккумулятора. Когда снижается ёмкость кадмиевого электрода, то меняется баланс ёмкостей положительных и отрицательных пластин. В результате создаются условия для выделения водорода. При малой скорости рекомбинации водород начинает скапливаться и возникает угроза резкого увеличения давления. Такая картина часто наблюдается при быстром заряде. У призматических и дисковых моделей Ni-Cd аккумуляторов при повышенном давлении корпус может деформироваться. Герметичность может сохраниться, но плотности сборки нарушается, растет внутреннее сопротивление батареи и снижается разрядное напряжение.

Стоит помнить, что водород также скапливается при постоянной разрядке батареи до 0 вольт. Кроме того, внутри аккумулятора есть азот, попадающий туда при герметизации. Так, что внутри еще происходит восстановление нитратов, находящихся в электролите. Это также вызывает увеличение давления. У щелочных никель-кадмиевых аккумуляторов имеется аварийный клапан, чтобы сбросить давление. Но делается это однократно, поскольку при этом происходит необратимые изменения в химическом элементе.

Свой вклад в падение работоспособности Ni-Cd аккумулятора вносит и щелочной электролит. Точнее изменение его состава и объема. В результате изменения структуры и набухания электродов происходит отбор электролита. В результате растет внутреннее сопротивление батареи. Состав электролита постепенно меняется. По сравнению с первоначальным состоянием может значительно увеличится объем карбонатов. Электропроводность электролита падает, и параметры батареи при разряде ухудшаются. Особенно это становится заметно при низких температурах.

Как влияет эксплуатация и температура на процесс деградации

Одним из наиболее важных факторов, оказывающих воздействие на процесс деградации никель-кадмиевого аккумулятора является температура. При повышении температуры на каждые десять градусов химические процессы ускоряются в два-четыре раза.

Влияние температуры становится еще более заметным при увеличении тока заряда, поскольку это приводит к нагреву батареи при перезаряде. Уменьшение ёмкости кадмиевого электролита при низкой температуре будет превышать снижение ёмкости положительного электрода. Это накладывает некоторые ограничения на использование аккумуляторов в северных регионах. В такой ситуации при заряде растёт скорость выделения водорода.

На процесс деградации никель-кадмиевых аккумуляторов большое влияние оказывает характер эксплуатации. Что сюда входит:

  • глубина и режим разряда;
  • режим зарядки;
  • временной интервал м/у зарядом и разрядом (если циклирование непрерывное);
  • периоды хранения и эксплуатации.

На графике ниже можно видеть длительность работы аккумулятора в циклах в зависимости от глубины разряда.

Нужно отметить, что Ni-Cd аккумуляторы имеют достаточно высокую стойкость к случайному перезаряду. Если переразряд происходит нечасто, то водород легко рекомбинируется. При устранении поляризации напряжение батареи восстанавливается.

При постоянной подзарядке никель-кадмиевых аккумуляторов нужно обеспечить ток, равный 0,03-0,05 от номинальной ёмкости. Если батарея постоянно эксплуатируется в таком режиме, то помимо величины тока влияет и температура ОС. Когда температура повышается, то увеличивается образование кислорода. Это ускоряет деградацию аккумулятора. С целью функционирования с непрерывной подзарядкой (температура 50-55 градусов Цельсия) были созданы специальные модели цилиндрических аккумуляторов. Они имеют электроды рулонного типа со сроком эксплуатации, как минимум, 4 года. В этих батареях скорректированный состав электролита и проделана подготовка для ускорения поглощения газов.

Если разряжать Ni-Cd аккумулятор после длительного подзаряда, то его ёмкость будет немного ниже, чем у аккумуляторов, заряженных с нуля. Но это явление временное и ёмкость придёт в норму после нескольких циклов заряд-разряд.

Маркировка щелочных никель-кадмиевых аккумуляторов (Ni-Cd)

Маркировка Ni-Cd аккумуляторов может выглядеть следующим образом:

40 НК, K, L, H; 250 P(П), K

Символы обозначают следующее:

  • 40 - число аккумуляторов в батарее или блоке батареи;
  • НК, К — никель-кадмиевый тип аккумулятора (обозначение НК соответствует ТУ 16-90 ИЛВЕ.563330.001ТУ, обозначение К соответствует МЭК 623, ГОСТ Р МЭК 60623-2002);
  • L, H — тип Ni-Cd аккумулятора в зависимости от режима разряда (L - длительный режим разряда, Н - короткий режим разряда);
  • 250 – значение номинальной емкости (ампер-часы);
  • Р(П) – пластиковое исполнение бака аккумуляторной батареи;
  • К - каркасное исполнение блока аккумуляторов.

Плюсы и минусы никель-кадмиевых аккумуляторов (Ni-Cd)

В заключение кратко напомним преимущества и недостатки никель кадмиевых аккумуляторов.

Плюсы Ni-Cd аккумуляторов

  • Большое число циклов заряд-разряд (больше 1000);
  • Длительной срок хранения вне зависимости от степени заряженности;
  • Быстрый и простой способ заряда;
  • Выдерживают серьёзную нагрузку;
  • Есть возможность работы при низких температурах;
  • Хорошо подходят для жестких условий эксплуатации;
  • Сохраняют ёмкость при низких температурах;
  • Стоят недорого.

Минусы Ni-Cd аккумуляторов

  • Эффект памяти и необходимость работ по его устранению;
  • Достаточно высокая степень саморазряда;
  • Низкая энергетическая плотность по сравнению с другими типами аккумуляторных батарей;
  • Токсичность материалов. Особенно это касается кадмия. В ряде стран запрещено производство и использование таких батарей. Требуется специальное оборудование и технология для их утилизации.

Вот и всё, что на этот момент хотелось рассказать про никель-кадмиевые аккумуляторы. Если у вас есть вопросы или дополнения по теме, то оставляйте их в комментариях.

Опубликовано в

(NiMH) и литий-ионных аккумуляторов (Li-ion), которые нужно хранить заряженными.

История изобретения

В 1899 году Вальдмар Юнгнер (Waldmar Jungner) из Швеции изобрёл никель-кадмиевый аккумулятор, в котором в качестве положительного электрода использовался никель, а в качестве отрицательного - кадмий. Двумя годами позже Эдисон (Edison) предложил альтернативную конструкцию, заменив кадмий железом. Из-за высокой (в сравнении с сухими или свинцово-кислотными аккумуляторами) стоимости, практическое применение никель-кадмиевых и никель-железных аккумуляторов было ограниченным.

После изобретения в 1932 году Шлехтом (Shlecht) и Акерманом (Ackermann) спрессованного анода было внедрено много усовершенствований, что привело к более высокому току нагрузки и повышенной долговечности. Хорошо известный сегодня герметичный никель-кадмиевый аккумулятор стал доступен только после изобретения Ньюманом (Neumann) полностью герметичного элемента в 1947 году.

Принцип действия

Принцип действия никель-кадмиевых аккумуляторов основан на обратимом процессе:

2NiOOH + Cd + 2H 2 O ↔ 2Ni(OH) 2 + Cd(OH) 2 E 0 = 1,30 В.

Никелевый электрод представляет собой пасту гидроксида никеля, смешанную с проводящим материалом и нанесенную на стальную сетку, а кадмиевый электрод - стальную сетку с впрессованным в неё губчатым кадмием. Пространство между электродами заполнено желеобразным составом на основе влажной щелочи, который замерзает при -27°С . Индивидуальные ячейки собирают в батареи, обладающие удельной энергией 20–35 Вт*ч/кг и имеющие большой ресурс - несколько тысяч зарядно-разрядных циклов.

Параметры

  • Теоретическая энергоёмкость: 237 Вт·ч /кг
  • Удельная энергоёмкость: 45–65 Вт·ч/кг
  • Удельная энергоплотность: 50–150 Вт·ч/дм ³
  • Удельная мощность: 150…500 Вт/кг
  • ЭДС = 1,37
  • Рабочее напряжение = 1,35…1,0 В
  • Нормальный ток зарядки = 0,1…1 C, где С - ёмкость
  • Срок службы: около 100-900 циклов заряда/разряда.
  • Саморазряд: 10% в месяц
  • Рабочая температура: −50…+40 °C

В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно - в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за пять минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор полностью зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки. Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает внутреннее давление газов в тяжёлых условиях эксплуатации.

Цикл разряда начинается с 1,35 В и заканчивается на 1,0 В (соответственно 100% ёмкости и 1% оставшейся ёмкости)

Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды более технологичны, дешевле в производстве и обладают более высокими показателями рабочей ёмкости, в связи с чем все аккумуляторы бытового назначения имеют прессованные электроды. Однако прессованные системы подвержены так называемому «эффекту памяти ». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится. В электрохимической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0,1 В. Типичный контроллер устройства, использующего аккумулятор, интерпретирует это снижение напряжения как полный разряд батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование ёмкости аккумулятора. Тем не менее, в типичном случае контроллер побуждает пользователя выполнять всё новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от «эффекта беспамятства» недорогих контроллеров.

Бытовой никель-кадмиевый аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость, и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя его напряжение будет правильным. То есть использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.

При хранении NiCd-аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумуляторов с хранения, рекомендуется хранить их в разряженном виде - тогда после первой же зарядки аккумуляторы будут полностью готовы к использованию. Для полной разрядки батареи и выравнивания напряжений на каждом разряжаемом элементе можно подключить цепочку из двух кремниевых диодов и резистора на каждый элемент, тем самым ограничив напряжение на уровне 1-1.1 В на элемент. При этом падение напряжения на каждом кремниевом диоде составляет 0,5–0,7 В, поэтому выбирать диоды для цепочки необходимо вручную, используя, например, мультиметр. После длительного хранения батареи необходимо провести два-три цикла заряд/разряд током, численно равным номинальной ёмкости (1C), чтобы она вошла в рабочий режим и работала с полной отдачей.

Области применения

Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента , особенно если аппаратура потребляет большой ток. Так как внутреннее сопротивление никель-кадмиевого аккумулятора на один-два порядка ниже, чем у обычных марганцево-цинковых и марганцево-воздушных батарей, мощность выдаётся стабильнее и без перегрева.

Никель-кадмиевые аккумуляторы применяются на электрокарах (как тяговые), трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолётов и вертолётов. Используются как источники питания для автономных шуруповёртов/винтовёртов и дрелей , однако здесь намечается тенденция к вытеснению их высокотоковыми батареями различных литиевых систем.

Несмотря на развитие других электрохимических систем и ужесточение экологических требований, никель-кадмиевые аккумуляторы остаются основным выбором для высоконадёжных устройств, потребляющих большую мощность, например фонарей для дайвинга .

Длительный срок хранения, относительная нетребовательность к постоянному уходу и контролю, способность стабильно работать на морозе до -40 °C и отсутствие возможности возгорания при разгерметизации в сравнении с литиевыми, малый удельный вес в сравнении со свинцовыми и дешевизна в сравнении с серебряно-цинковыми, меньшее внутренне сопротивление, большая надёжность и морозостойкость в сравнении с NiMH обуславливают по-прежнему широкое применение никель-кадмиевых аккумуляторов в военной технике, авиации и портативной радиосвязи.

Дисковые никель-кадмиевые аккумуляторы

Никель-кадмиевые аккумуляторы выпускаются также в герметичном "таблеточном" конструктиве, наподобие батареек для часов. Электроды в таком аккумуляторе - две прессованные тонкие таблетки из активной массы, сложенные в пакет с сепаратором и плоской пружиной и завальцованные в никелированный стальной корпус диаметром с монету. Используются для питания различных, в основном маломощных, нагрузок (током C/10-C/5). Допускают только небольшие зарядные токи, не более С/10, так как внутри корпуса должна успевать происходить рекомбинация выделяющихся газов. Благодаря замкнутой конструкции допускают длительный перезаряд с непрерывной рекомбинацией и выделением избыточной энергии в виде тепла. Напряжение такого аккумулятора ниже, чем у негерметичного, и мало изменяется в процессе разряда вследствие избытка активной массы катода, создаваемого с целью ускорения рекомбинации кислорода.

Дисковые аккумуляторы (как правило, в батареях по 3 шт. в общей оболочке, типоразмера аналогичного советскому Д-0,06) широко применялись в персональных компьютерах выпуска 1980–90 годов, в частности -286/386 и ранних 486, для питания энергонезависимой памяти настроек (CMOS NVRAM) и часов реального времени при отключенном сетевом питании. Срок службы аккумуляторов в таком режиме составлял несколько лет, после чего батарея, в большинстве случаев - впаянная в материнскую плату , подлежала замене. С развитием CMOS-технологии и уменьшением потребляемой мощности NVRAM и RTC аккумуляторы были вытеснены одноразовыми литиевыми элементами ёмкостью порядка 200 мА·ч (CR2032 и др.), устанавливаемыми в гнёзда-защёлки и легко заменяемыми пользователем, с аналогичным сроком непрерывной работы.

В СССР дисковые аккумуляторы были практически единственными доступными в широкой продаже аккумуляторами (кроме автомобильных и, позднее, NiCd размера AA на 450 мА·ч). Помимо отдельных элементов, предлагалась 9-вольтовая батарея из семи аккумуляторов Д-0,1 с разъёмом, аналогичным "Кроне" , которая, однако, входила в отсек питания не у всех радиоприёмников, для которых предназначалась. Поставлялись только простейшие зарядные устройства с током С/10, заряжавшие аккумулятор или батарею примерно за 14 часов (время контролировалось пользователем).

Название
аккумулятора
Диаметр ,
мм
Высота,
мм
Напряжение,
В
Ёмкость,
А*ч
Рекомендуемый
ток разряда, мА
Применение
Д-0,03 11,6 5,5 1,2 0,03 3 фотоаппараты ,
слуховые аппараты
Д-0,06 15,6 6,4 1,2 0,06 12 фотоаппараты , фотоэкспонометры ,
слуховые аппараты , дозиметры
Д-0,125 20 6,6 1,2 0,125 12,5 аккумуляторные электрические фонарики [ ] , миниатюрные радиоприёмники
Д-0,26 25,2 9,3 1,2 0,26 26 аккумуляторные электрические фонарики, фотовспышки , калькуляторы (Б3-36)
Д-0,55 34,6 9,8 1,2 0,55 55 фотовспышки , аккумуляторные электрические фонарики, калькуляторы (Б3-34)
7Д-0,125 8,4 0,125 12,5 замена батарее Крона

Производители

NiCd-аккумуляторы производят множество фирм, в том числе такие крупные интернациональные компании, как GP Batteries, Samsung (под брендом Pleomax), VARTA , GAZ, Konnoc, Metabo, EMM, Advanced Battery Factory, Panasonic/Matsushita Electric Industrial , Ansmann и др. Среди отечественных производителей можно назвать НИАИ (создан на базе Центральной аккумуляторной лаборатории, 1946 г.), "Космос", ЗАО "Опытный завод НИИХИТ", ЗАО "НИИХИТ-2".

Безопасная утилизация

Плавка продуктов утилизации NiCd-аккумуляторов происходит в печах при высоких температурах, кадмий в этих условиях становится чрезвычайно летучим, и в случае, если печь не оборудована специальным улавливающим фильтром, токсичные вещества (например пары кадмия) выбрасываются во внешнюю среду, отравляя окружающие территории. Вследствие этого оборудование для утилизации - более дорогое, чем для утилизации свинцовых батарей.

См. также

Напишите отзыв о статье "Никель-кадмиевый аккумулятор"

Литература

  • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.
  • Федотов Г. А. Электрические и электронные устройства для фотографии. Л.: Энергоатомиздат, 1984.
  • . Источники тока химические. Термины и определения.
  • .

Примечания

Отрывок, характеризующий Никель-кадмиевый аккумулятор

– Мы сейчас очистим вам. – И Тимохин, еще не одетый, побежал очищать.
– Князь хочет.
– Какой? Наш князь? – заговорили голоса, и все заторопились так, что насилу князь Андрей успел их успокоить. Он придумал лучше облиться в сарае.
«Мясо, тело, chair a canon [пушечное мясо]! – думал он, глядя и на свое голое тело, и вздрагивая не столько от холода, сколько от самому ему непонятного отвращения и ужаса при виде этого огромного количества тел, полоскавшихся в грязном пруде.
7 го августа князь Багратион в своей стоянке Михайловке на Смоленской дороге писал следующее:
«Милостивый государь граф Алексей Андреевич.
(Он писал Аракчееву, но знал, что письмо его будет прочтено государем, и потому, насколько он был к тому способен, обдумывал каждое свое слово.)
Я думаю, что министр уже рапортовал об оставлении неприятелю Смоленска. Больно, грустно, и вся армия в отчаянии, что самое важное место понапрасну бросили. Я, с моей стороны, просил лично его убедительнейшим образом, наконец и писал; но ничто его не согласило. Я клянусь вам моею честью, что Наполеон был в таком мешке, как никогда, и он бы мог потерять половину армии, но не взять Смоленска. Войска наши так дрались и так дерутся, как никогда. Я удержал с 15 тысячами более 35 ти часов и бил их; но он не хотел остаться и 14 ти часов. Это стыдно, и пятно армии нашей; а ему самому, мне кажется, и жить на свете не должно. Ежели он доносит, что потеря велика, – неправда; может быть, около 4 тысяч, не более, но и того нет. Хотя бы и десять, как быть, война! Но зато неприятель потерял бездну…
Что стоило еще оставаться два дни? По крайней мере, они бы сами ушли; ибо не имели воды напоить людей и лошадей. Он дал слово мне, что не отступит, но вдруг прислал диспозицию, что он в ночь уходит. Таким образом воевать не можно, и мы можем неприятеля скоро привести в Москву…
Слух носится, что вы думаете о мире. Чтобы помириться, боже сохрани! После всех пожертвований и после таких сумасбродных отступлений – мириться: вы поставите всю Россию против себя, и всякий из нас за стыд поставит носить мундир. Ежели уже так пошло – надо драться, пока Россия может и пока люди на ногах…
Надо командовать одному, а не двум. Ваш министр, может, хороший по министерству; но генерал не то что плохой, но дрянной, и ему отдали судьбу всего нашего Отечества… Я, право, с ума схожу от досады; простите мне, что дерзко пишу. Видно, тот не любит государя и желает гибели нам всем, кто советует заключить мир и командовать армиею министру. Итак, я пишу вам правду: готовьте ополчение. Ибо министр самым мастерским образом ведет в столицу за собою гостя. Большое подозрение подает всей армии господин флигель адъютант Вольцоген. Он, говорят, более Наполеона, нежели наш, и он советует все министру. Я не токмо учтив против него, но повинуюсь, как капрал, хотя и старее его. Это больно; но, любя моего благодетеля и государя, – повинуюсь. Только жаль государя, что вверяет таким славную армию. Вообразите, что нашею ретирадою мы потеряли людей от усталости и в госпиталях более 15 тысяч; а ежели бы наступали, того бы не было. Скажите ради бога, что наша Россия – мать наша – скажет, что так страшимся и за что такое доброе и усердное Отечество отдаем сволочам и вселяем в каждого подданного ненависть и посрамление. Чего трусить и кого бояться?. Я не виноват, что министр нерешим, трус, бестолков, медлителен и все имеет худые качества. Вся армия плачет совершенно и ругают его насмерть…»

В числе бесчисленных подразделений, которые можно сделать в явлениях жизни, можно подразделить их все на такие, в которых преобладает содержание, другие – в которых преобладает форма. К числу таковых, в противоположность деревенской, земской, губернской, даже московской жизни, можно отнести жизнь петербургскую, в особенности салонную. Эта жизнь неизменна.
С 1805 года мы мирились и ссорились с Бонапартом, мы делали конституции и разделывали их, а салон Анны Павловны и салон Элен были точно такие же, какие они были один семь лет, другой пять лет тому назад. Точно так же у Анны Павловны говорили с недоумением об успехах Бонапарта и видели, как в его успехах, так и в потакании ему европейских государей, злостный заговор, имеющий единственной целью неприятность и беспокойство того придворного кружка, которого представительницей была Анна Павловна. Точно так же у Элен, которую сам Румянцев удостоивал своим посещением и считал замечательно умной женщиной, точно так же как в 1808, так и в 1812 году с восторгом говорили о великой нации и великом человеке и с сожалением смотрели на разрыв с Францией, который, по мнению людей, собиравшихся в салоне Элен, должен был кончиться миром.
В последнее время, после приезда государя из армии, произошло некоторое волнение в этих противоположных кружках салонах и произведены были некоторые демонстрации друг против друга, но направление кружков осталось то же. В кружок Анны Павловны принимались из французов только закоренелые легитимисты, и здесь выражалась патриотическая мысль о том, что не надо ездить во французский театр и что содержание труппы стоит столько же, сколько содержание целого корпуса. За военными событиями следилось жадно, и распускались самые выгодные для нашей армии слухи. В кружке Элен, румянцевском, французском, опровергались слухи о жестокости врага и войны и обсуживались все попытки Наполеона к примирению. В этом кружке упрекали тех, кто присоветывал слишком поспешные распоряжения о том, чтобы приготавливаться к отъезду в Казань придворным и женским учебным заведениям, находящимся под покровительством императрицы матери. Вообще все дело войны представлялось в салоне Элен пустыми демонстрациями, которые весьма скоро кончатся миром, и царствовало мнение Билибина, бывшего теперь в Петербурге и домашним у Элен (всякий умный человек должен был быть у нее), что не порох, а те, кто его выдумали, решат дело. В этом кружке иронически и весьма умно, хотя весьма осторожно, осмеивали московский восторг, известие о котором прибыло вместе с государем в Петербург.
В кружке Анны Павловны, напротив, восхищались этими восторгами и говорили о них, как говорит Плутарх о древних. Князь Василий, занимавший все те же важные должности, составлял звено соединения между двумя кружками. Он ездил к ma bonne amie [своему достойному другу] Анне Павловне и ездил dans le salon diplomatique de ma fille [в дипломатический салон своей дочери] и часто, при беспрестанных переездах из одного лагеря в другой, путался и говорил у Анны Павловны то, что надо было говорить у Элен, и наоборот.
Вскоре после приезда государя князь Василий разговорился у Анны Павловны о делах войны, жестоко осуждая Барклая де Толли и находясь в нерешительности, кого бы назначить главнокомандующим. Один из гостей, известный под именем un homme de beaucoup de merite [человек с большими достоинствами], рассказав о том, что он видел нынче выбранного начальником петербургского ополчения Кутузова, заседающего в казенной палате для приема ратников, позволил себе осторожно выразить предположение о том, что Кутузов был бы тот человек, который удовлетворил бы всем требованиям.
Анна Павловна грустно улыбнулась и заметила, что Кутузов, кроме неприятностей, ничего не дал государю.
– Я говорил и говорил в Дворянском собрании, – перебил князь Василий, – но меня не послушали. Я говорил, что избрание его в начальники ополчения не понравится государю. Они меня не послушали.
– Все какая то мания фрондировать, – продолжал он. – И пред кем? И все оттого, что мы хотим обезьянничать глупым московским восторгам, – сказал князь Василий, спутавшись на минуту и забыв то, что у Элен надо было подсмеиваться над московскими восторгами, а у Анны Павловны восхищаться ими. Но он тотчас же поправился. – Ну прилично ли графу Кутузову, самому старому генералу в России, заседать в палате, et il en restera pour sa peine! [хлопоты его пропадут даром!] Разве возможно назначить главнокомандующим человека, который не может верхом сесть, засыпает на совете, человека самых дурных нравов! Хорошо он себя зарекомендовал в Букарещте! Я уже не говорю о его качествах как генерала, но разве можно в такую минуту назначать человека дряхлого и слепого, просто слепого? Хорош будет генерал слепой! Он ничего не видит. В жмурки играть… ровно ничего не видит!
Никто не возражал на это.
24 го июля это было совершенно справедливо. Но 29 июля Кутузову пожаловано княжеское достоинство. Княжеское достоинство могло означать и то, что от него хотели отделаться, – и потому суждение князя Василья продолжало быть справедливо, хотя он и не торопился ого высказывать теперь. Но 8 августа был собран комитет из генерал фельдмаршала Салтыкова, Аракчеева, Вязьмитинова, Лопухина и Кочубея для обсуждения дел войны. Комитет решил, что неудачи происходили от разноначалий, и, несмотря на то, что лица, составлявшие комитет, знали нерасположение государя к Кутузову, комитет, после короткого совещания, предложил назначить Кутузова главнокомандующим. И в тот же день Кутузов был назначен полномочным главнокомандующим армий и всего края, занимаемого войсками.
9 го августа князь Василий встретился опять у Анны Павловны с l"homme de beaucoup de merite [человеком с большими достоинствами]. L"homme de beaucoup de merite ухаживал за Анной Павловной по случаю желания назначения попечителем женского учебного заведения императрицы Марии Федоровны. Князь Василий вошел в комнату с видом счастливого победителя, человека, достигшего цели своих желаний.
– Eh bien, vous savez la grande nouvelle? Le prince Koutouzoff est marechal. [Ну с, вы знаете великую новость? Кутузов – фельдмаршал.] Все разногласия кончены. Я так счастлив, так рад! – говорил князь Василий. – Enfin voila un homme, [Наконец, вот это человек.] – проговорил он, значительно и строго оглядывая всех находившихся в гостиной. L"homme de beaucoup de merite, несмотря на свое желание получить место, не мог удержаться, чтобы не напомнить князю Василью его прежнее суждение. (Это было неучтиво и перед князем Василием в гостиной Анны Павловны, и перед Анной Павловной, которая так же радостно приняла эту весть; но он не мог удержаться.)
– Mais on dit qu"il est aveugle, mon prince? [Но говорят, он слеп?] – сказал он, напоминая князю Василью его же слова.
– Allez donc, il y voit assez, [Э, вздор, он достаточно видит, поверьте.] – сказал князь Василий своим басистым, быстрым голосом с покашливанием, тем голосом и с покашливанием, которым он разрешал все трудности. – Allez, il y voit assez, – повторил он. – И чему я рад, – продолжал он, – это то, что государь дал ему полную власть над всеми армиями, над всем краем, – власть, которой никогда не было ни у какого главнокомандующего. Это другой самодержец, – заключил он с победоносной улыбкой.
– Дай бог, дай бог, – сказала Анна Павловна. L"homme de beaucoup de merite, еще новичок в придворном обществе, желая польстить Анне Павловне, выгораживая ее прежнее мнение из этого суждения, сказал.
– Говорят, что государь неохотно передал эту власть Кутузову. On dit qu"il rougit comme une demoiselle a laquelle on lirait Joconde, en lui disant: «Le souverain et la patrie vous decernent cet honneur». [Говорят, что он покраснел, как барышня, которой бы прочли Жоконду, в то время как говорил ему: «Государь и отечество награждают вас этой честью».]
– Peut etre que la c?ur n"etait pas de la partie, [Может быть, сердце не вполне участвовало,] – сказала Анна Павловна.
– О нет, нет, – горячо заступился князь Василий. Теперь уже он не мог никому уступить Кутузова. По мнению князя Василья, не только Кутузов был сам хорош, но и все обожали его. – Нет, это не может быть, потому что государь так умел прежде ценить его, – сказал он.
– Дай бог только, чтобы князь Кутузов, – сказала Анпа Павловна, – взял действительную власть и не позволял бы никому вставлять себе палки в колеса – des batons dans les roues.
Князь Василий тотчас понял, кто был этот никому. Он шепотом сказал:
– Я верно знаю, что Кутузов, как непременное условие, выговорил, чтобы наследник цесаревич не был при армии: Vous savez ce qu"il a dit a l"Empereur? [Вы знаете, что он сказал государю?] – И князь Василий повторил слова, будто бы сказанные Кутузовым государю: «Я не могу наказать его, ежели он сделает дурно, и наградить, ежели он сделает хорошо». О! это умнейший человек, князь Кутузов, et quel caractere. Oh je le connais de longue date. [и какой характер. О, я его давно знаю.]
– Говорят даже, – сказал l"homme de beaucoup de merite, не имевший еще придворного такта, – что светлейший непременным условием поставил, чтобы сам государь не приезжал к армии.
Как только он сказал это, в одно мгновение князь Василий и Анна Павловна отвернулись от него и грустно, со вздохом о его наивности, посмотрели друг на друга.

В то время как это происходило в Петербурге, французы уже прошли Смоленск и все ближе и ближе подвигались к Москве. Историк Наполеона Тьер, так же, как и другие историки Наполеона, говорит, стараясь оправдать своего героя, что Наполеон был привлечен к стенам Москвы невольно. Он прав, как и правы все историки, ищущие объяснения событий исторических в воле одного человека; он прав так же, как и русские историки, утверждающие, что Наполеон был привлечен к Москве искусством русских полководцев. Здесь, кроме закона ретроспективности (возвратности), представляющего все прошедшее приготовлением к совершившемуся факту, есть еще взаимность, путающая все дело. Хороший игрок, проигравший в шахматы, искренно убежден, что его проигрыш произошел от его ошибки, и он отыскивает эту ошибку в начале своей игры, но забывает, что в каждом его шаге, в продолжение всей игры, были такие же ошибки, что ни один его ход не был совершенен. Ошибка, на которую он обращает внимание, заметна ему только потому, что противник воспользовался ею. Насколько же сложнее этого игра войны, происходящая в известных условиях времени, и где не одна воля руководит безжизненными машинами, а где все вытекает из бесчисленного столкновения различных произволов?

Все о никель-кадмиевых аккумуляторах: характеристики, эксплуатация, плюсы и минусы

Никель-кадмиевые аккумуляторы (Ni-Cd) на данный момент все ещё достаточно широко используются в народном хозяйстве. По своей конструкции они относятся к группе щелочных аккумуляторов. Эти батареи востребованы, несмотря на то, что их производство и применение ограничивается из соображений охраны окружающей среды (кадмий является ядовитым веществом). Но полностью отказаться от них не получается, поскольку эти аккумуляторные батареи используют в устройствах, где другие батареи работать не могут. В частности это эксплуатация с разрядными и зарядными токами большой величины. Это достаточно простые в обслуживании устройства с длительным сроком эксплуатации. Поэтому они заслуживают рассмотрения в отдельной статье.

Первый никель-кадмиевый аккумулятор создал Вальдмар Юнгнер ещё в 1899 году. Но тогда производство этих щелочных аккумуляторов обходилось значительно дороже, чем других видов батарей. Так, что об этом изобретении на некоторое время забыли. В 1932 году был разработан метод осаждения активного материала на пористый никелевый электрод. Это приблизило выпуск промышленных аккумуляторов Ni-Cd.

В 1947 году был проведен ряд работ, в ходе которых осуществили рекомбинацию газов, выделяющихся при заряде, без их отведения. В результате на свет появились герметичные Ni-Cd аккумуляторы, которые применяются до сих пор. Среди производителей никель-кадмиевых аккумуляторов можно назвать такие крупные компании, как GP Batteries, Самсунг, Варта, GAZ, Konnoc, Advanced Battery Factory, Панасоник, Metabo, Ansmann и другие.

Несмотря на широкое распространение в народном хозяйстве за последние десятилетия, никель-кадмиевые аккумуляторы постепенно сужают область применения. Их постепенно теснят никель-металлогидридные, а также литиевые батареи.


В частности Ni-Cd батареи уступают им место портативной технике. Причиной тому является опасность кадмия для человека и окружающей среду. Для утилизации таких аккумуляторов требуется специальное оборудование для улавливания кадмия. для автомобиля проводится проще, быстрее и лучше отработана. Но до сих пор существует достаточно много направлений, где никель-кадмиевые батареи незаменимы.

Применение никель-кадмиевых аккумуляторов (Ni-Cd)

Никель-кадмиевые аккумуляторы с небольшими размерами применяются в технических устройствах, требующих для своей работы большой ток. В таких условиях Ni-Cd аккумуляторы выдают стабильную мощность и не перегреваются в отличие от других типов аккумуляторных батарей. Никель-кадмиевые аккумуляторы широко используются в троллейбусах, трамваях, в роли тяговых АКБ на электрических карах, встречаются промышленные аккумуляторы Ni-Cd. Кроме того, широкое применение они нашли на морском и речном транспорте.

Ni-Cd аккумуляторы можно встретить в вертолетах и самолетах в роли бортовых батарей, в портативных инструментах (шуруповёрт, перфоратор и т. п.). Однако в инструментах все чаще встречаются литиевыми батареями. Никель-кадмиевые аккумуляторные батареи пока не могут заменить в тех портативных устройствах, которые имеют потребление большой мощности. Хотя в некоторых устройствах их успешно заменяют , которые не имеют в своём составе вредного кадмия.

Широкое применение нашли Ni-Cd батареи в дисковом исполнении. Этот вариант широко использовался в качестве батареи для питания энергонезависимой памяти в первых персональных компьютерах. Они были распаяны на материнской плате. Впоследствии их заменили литиевыми аккумуляторами. Дисковые батарейки также широко применялись в фотоаппаратах, вспышках, калькуляторах, фонариках, радиоприёмниках, слуховых аппаратах и т. п.

Ni-Cd аккумуляторы могут долго храниться, просты в обслуживании, малочувствительны к низким температурам, имеют низкое внутреннее сопротивление и малый удельный вес. Все это пока перевешивает отрицательный момент, связанный с наличием в них ядовитого кадмия. Никель-кадмиевые аккумуляторы по-прежнему доминируют при использовании в авиации, военной технике, устройствах мобильной радиосвязи. Дополнительно можете прочитать материал о том, как восстанавливаются Ni─Cd .

Устройство никель-кадмиевых аккумуляторов (Ni-Cd)

Конструкция Ni-Cd аккумуляторов

Конструктивно никель-кадмиевый аккумулятор представляет собой положительный и отрицательный электрод, разделенные сепаратором. Они погружены в щелочной электролит и все это закрыто в герметичном металлическом корпусе. Положительный электрод имеет в своем составе NiOOH (оксид-гидроксид никеля). В составе отрицательного присутствует кадмий (Cd) в компаунде. В роли электролита выступает раствор KOH (гидроксид калия). Это сильная щелочь, не имеющая запаха. Преимущества KOH в том, что вещество не взрывоопасное и не пожароопасное. Массовая доля KOH в электролите по ГОСТ Р 50711-94 должна составлять не меньше 85 процентов в твердом и не меньше 45 процентов в жидком виде.

Чтобы увеличить площадь поверхности электродов, их выпускают из фольги малой толщины. Сепаратор между электродами делается из нетканого материала, который не взаимодействует со щелочью. Сам электролит в процессе реакции не расходуется.

Один никель-кадмиевый элемент выдает напряжение около 1 вольта. Поэтому они объединяются в батареи с плотностью энергии примерно 60 Вт-ч на один килограмм.

На изображении ниже можно посмотреть основные элементы щелочного никель кадмиевого аккумулятора серии KL.



Борн или токовывод предназначен для съем тока с аккумулятора и выступает в роли клеммы для соединения батарей. Через пробку обеспечивается заливка электролита, а также выход газа, образующегося в процессе зарядки. Соединение электродов вместе с контактными планками обеспечивает съём и подачу с электродов на борн. Контактные планки имеют сварное соединение с электродами.

Электрод представляет собой ламели, расположенные горизонтально. В них находится активное вещество в перфорированной ленте из стали. Ребро дает жесткость электрода и обеспечивает перетекание тока на контактную планку. Электроды разной полярности разделяются рамочным сепаратором, который не препятствует свободной циркуляции электролита.

Реакции, проходящие на электродах Ni-Cd аккумулятора

Процессы на положительном электроде

Основные электрохимические реакции, протекающие на положительном электроде никель-кадмиевой аккумуляторной батареи, можно описать следующими формулами:

В процессе заряда

Ni(OH) 2 + OH — ⇒ NiOOH + H 2 O + e —

В процессе разряда

NiOOH + H 2 O + e — ⇒ Ni(OH) 2 + OH —

Оксид-гидроксид никеля (NiOOH) на положительном электроде может быть в двух вариантах:

  • α- Ni(OH) 2 ;
  • β-Ni(OH) 2 .

Эти формы различаются по своей плотности и гидратации. Если батарея разряжена, то на положительном электроде есть обе эти формы гидроксида никеля. Когда Ni-Cd аккумулятор заряжается, то форма β-Ni(OH) 2 превращается в β-NiOOH. При этом кристаллическая решетка вещества несколько изменяется. На заключительной стадии зарядки происходит образование γ-NiOOH. Количество фаз β и γ гидроксида никеля будет зависеть от конкретных условий заряда.

Фаза γ интенсивно образуется при большой скорости зарядки или при перезаряде. В результате образования γ-NiOOH происходит коренная перестройка структуры оксидов. Для сравнения, плотность фазы β составляет 4,15, а фазы γ─3,85 гр./см 3 . По этой причине при перезаряде Ni-Cd аккумулятора происходит изменение объем активной массы положительного электрода. Электрохимические свойства β и γ также отличаются. Для формы γ-NiOOH заряд проходит менее эффективно и коэффициент использования по току в этом случае меньше формы β. Форма γ также имеет меньший разрядный потенциал и саморазряд в два раза меньший, чем для β.

Процессы на отрицательном электроде

На отрицательном электроде никель-кадмиевой батареи протекают следующие реакции:

При заряде

Cd(OH) 2 + 2e − ⇒ Cd + 2OH −

При разряде

Cd + 2OH − ⇒ Cd(OH) 2 + 2e −

Ёмкость кадмиевого электрода в никель-кадмиевых батареях превышает ёмкость положительного электрода примерно на 20─70 процентов. По этой причине считается, что потенциал отрицательного электрода при заряде-разряде, остается неизменным.

Характеристики никель-кадмиевых аккумуляторов (Ni-Cd)

Номинальное напряжение никель-кадмиевых герметичных аккумуляторов составляет 1,2 вольта. Заряд током 1/10 от ёмкости происходит за 16 часов. Замер ёмкости Ni-Cd аккумулятора производится при разряде током 2/10 от номинальной ёмкости до напряжения один вольт.

На изображении ниже можно видеть разрядные характеристики никель-кадмиевых аккумуляторов при различных режимах разряда.

На графиках ниже можно посмотреть зависимость разрядной ёмкости от нагрузочного тока и температуры.

Саморазряд никель-кадмиевых аккумуляторов зависит в основном от термодинамической неустойчивости электрода из оксида-гидроксида никеля. Влияние тока утечки между электродами на саморазряд небольшое. Но постепенно увеличивается со временем эксплуатации батареи. Тепловыделение в Ni-Cd аккумуляторах во многом зависит от степени заряженности. После того, как аккумулятор набрал 70 процентов емкости, активизируется процесс выделения кислорода. В результате из-за ионизации кислорода на отрицательных электродах происходит разогрев аккумулятора. По окончании зарядки температура в Ni-Cd аккумуляторе поднимается на 10─15 градусов Цельсия. Если заряд осуществляется в ускоренном режиме, то увеличение температуры может составлять 40─45 градусов Цельсия.

После отключения от заряда потенциал положительного (оксидно-никелевого) электрода уменьшается и происходит постепенное выравнивание заряда глубинного и поверхностного слоя. Через некоторое время интенсивность саморазряда снижается. У различных серий Ni-Cd аккумуляторов саморазряд и стабилизации остаточной емкости могут значительно различаться. Саморазряд, помимо снижения ёмкости, ещё приводит к понижению напряжения на 0,03─0,05 вольта. Это явление объясняется постепенным выравниванием заряда в глубине и на поверхности электрода. Кроме того, влияние оказывает частичная пассивация активной массы.

Хранение никель-кадмиевых аккумуляторов (равно, как и свинцово-кислотных) при низкой температуре снижает саморазряд. При 20 градусах Цельсия саморазряд в два раза больше, чем при 0.

На следующем изображении показан график изменения потери емкости для никель-кадмиевых аккумуляторов при различных температурах.

Чтобы компенсировать саморазряд при хранении аккумулятора, можно поставить его на подзарядку малым током. Обычно величина тока подзаряда составляет 0,03-0,05 от ёмкости. Но конкретное значение оговаривается производителем аккумулятора. Способность выдерживать длительный перезаряд у разная у никель-кадмиевых аккумуляторов различной конструкции. Дисковые щелочные никель-кадмиевые аккумуляторы, которые имеют ламельные электроды большой толщины, к перезаряду приспособлены меньше всего. Но есть и такие конструкции, которые способны без последствий выдержать перезаряд несколько месяцев.

Что касается энергетических характеристик Ni-Cd аккумуляторов, то они также различаются в зависимости от разновидностей батареи.

Дисковые никель-кадмиевые аккумуляторы с 2 электродами имеют удельные энергетические характеристики 15─18 Вт-ч на килограмм и 35─45 Вт-ч на литр. Та же разновидность, но с 4 электродами имеет удельные энергетические характеристики в два раза больше. Для цилиндрических Ni-Cd аккумуляторов эти величины составляют 45 Вт-ч на килограмм и 130 Вт-ч на литр.

Что влияет на разряд Ni-Cd аккумуляторов?

Разрядные характеристики конкретных моделей зависят от следующих характеристик:

  • толщина, структура, внутреннее сопротивление электродов;
  • плотность сборки групп электродов;
  • характеристики сепаратора (толщина и структура);
  • объем электролита;
  • специфические особенности конструкции батареи.


Дисковые Ni-Cd аккумуляторы с прессованными электродами большой толщины используются в условиях продолжительного разряда. В этом случае происходит постепенное снижение ёмкости и напряжения до 1,1 вольта. При разряде до 1 вольта ёмкости остаётся около 5─10 процентов от номинала. Такие аккумуляторные батареи демонстрируют значительное снижение разрядного напряжения и теряемой емкости Ni-Cd аккумуляторов при возрастании тока разряда до величины 0,2*C. Объясняется это тем, что активная масса не имеет возможности равномерно разряжаться на разной глубине электродов.

Для аккумуляторных батарей, работающих в режиме разряда средней интенсивности, делаются электроды меньшей толщины, и увеличивается их число до 4. В результате ток разряда возрастает до 0,6 от ёмкости.

Есть еще, так называемые, короткоразрядные аккумуляторы. В них установлены металлокерамические электроды с малым внутренним сопротивлением. Эти модели имеют самые высокие энергетические показатели среди других разновидностей никель-кадмиевых аккумуляторов. У них напряжение при разряде держится выше 1,2 вольта до того момента, пока они не исчерпают 90 процентов ёмкости батареи. Эти аккумуляторы могут использоваться при разрядке большими значениями тока (3─5С).

Стоит отметить ещё цилиндрические батареи с рулонными электродами. Эти современные аккумуляторы могут разряжаться длительное время током 7─10С. На графиках разряда, представленных выше можно видеть, что температура ОС оказывает существенное влияние на характеристики никель-кадмиевых аккумуляторов. Наибольшее значение ёмкости аккумулятор имеет при 20 градусах Цельсия. При повышении температуры она практически не меняется. Но при понижении до 0 градусов емкость падает тем быстрее, чем больше величина тока разряда. Это понижение ёмкости связано с уменьшением разрядного напряжения, которое вызвано ростом поляризационного и омического сопротивления. Сопротивление возрастает из-за малого объема электролита.

Так, что состав щелочи (электролита) и её концентрация существенно отражаются на характеристиках аккумулятора. От этого зависит температура образования солей, кристаллогидратов, льда и прочих элементов.

Если электролит замерз, то разряд вообще исключен. Нижнее значение рабочей температуры Ni-Cd аккумуляторов в большинстве случаев составляет минус 20 градусов Цельсия. Для некоторых видов батарей состав электролита корректируется, и нижняя граница температурного диапазона расширяется до минус 40 градусов Цельсия.

Что влияет на заряд Ni-Cd аккумуляторов?

При зарядке герметичного никель-кадмиевого аккумулятора важным является ограничение перезаряда. При перезарядке увеличивается давления внутри батареи из-за выделения кислорода. Так, что эффективность использования тока падает по мере приближения к 100-ной зарядке.

На изображении ниже можно посмотреть графики характеризующие зависимость ёмкости при разряде цилиндрического аккумулятора.



Зарядку Ni-Cd аккумуляторов допускается проводить в температурном диапазоне 0─40 градусов Цельсия. Рекомендуемый интервал 10─30 градусов. Поглощение кислорода на кадмиевом электроде замедляется при снижении температуры, что приводит к росту давления. Если температура выше рекомендуемой, то растёт потенциал и на положительном оксидно-никелевом электрода кислород начинает выделяться очень рано. При равной температуре кислород выделяется тем активнее, чем больше ток заряда. При это скорость поглощения кислорода почти не изменяется. У эта величина зависит от конструкции батареи, а точнее, от транспортировки кислорода от положительного к кадмиевому отрицательному электроду. На это влияет плотность компоновки, толщины, структура электродов, а также материала сепаратора и объема электролита.

Чем меньше толщина электродов и чем выше плотность их компоновки, тем эффективнее будет проходить процесс заряда. Цилиндрические аккумуляторы с рулонными электродами являются наиболее эффективными в этом плане. Для них эффективность заряда при изменении тока от 0,1 до 1С почти не меняется. Стандартным производители называют режим зарядки, в результате которого батарея с напряжением 1 вольт полностью заряжается за 16 часов током 0,1 от ёмкости. Некоторые модели при заряде в таком режиме требуют 14 часов. Конкретные показатели уже зависят от конструктивных особенностей и объема активной массы.

Все вышесказанное справедливо для гальваностатического заряда. Это заряд при постоянном значении силы тока. Но заряд может также вестись с плавным или ступенчатым снижением силы тока на заключительной стадии зарядки. Тогда на начальном этапе ток может устанавливаться гораздо выше стандартного значения 0,1 от ёмкости. Часто бывает реальная необходимость в увеличении скорости зарядки. Проблему решают с использованием аккумуляторов, характеристики которых позволяют эффективно принимать заряд током высокой плотности. Ток поддерживается постоянным на протяжении всего процесса зарядки. Также совершенствуются системы контроля, которые не допускают перезаряд батареи.

Цилиндрические никель-кадмиевые аккумуляторы обычно заряжаются в следующих режимах:

  • 6─7 часов током 0,2 от ёмкости;
  • 3─4 часа током 0,3 от ёмкости.

При ускорении не рекомендуется допускать перезаряд больше 120─140 процентов. Тогда будет обеспечена ёмкость не меньше номинала. Ni-Cd аккумуляторы для работы в ускоренных режимах заряжаются ещё быстрее (примерно около одного часа). Однако в последнем случае нужен контроль напряжения и температуры. Иначе, из-за быстрого роста давления, может начаться процесс деградации аккумуляторов.

После того, как заряд закончен в герметичном аккумуляторе еще продолжается выделение кислорода из-за окисления гидроксильных ионов на положительном электроде. За счет процесса саморазряда уменьшается потенциал, и процесс выделения кислорода постепенно уменьшается и становится равным поглощению его на кадмиевом электроде. Тогда давление уменьшается. О том, детально разобрано по указанной ссылке.

Никель-кадмиевый аккумулятор (НК) является одним и старейших и наиболее хорошо изученных типов химических источников тока. Никель-кадмиевая химическая система была предложена в 1899 году Вальдемаром Джунгером, что в историческом смысле ставит НК на второе место после свинцово-кислотных аккумуляторов. Спустя сравнительно короткое время, НК аккумуляторы начали активно использоваться в различных областях индустрии, а после изобретения способа изготовления герметичных никель-кадмиевых аккумуляторов (НКГ) последовало резкое улучшение эксплуатационных качеств, что еще более расширило границы применения НКГ.

Именно по этой причине, компания АО "НИАИ "Источник" специализируется на производстве НКГ аккумуляторов, обладающих высочайшими потребительскими характеристиками:

  • Отсутствие необходимости в обслуживании
  • Отсутствие выделения газа и электролита
  • Способность работать в любом положении
  • Устойчивость к тяжелым климатическим условиям
  • Механическая прочность и устойчивость к сверхзаряду
  • Большой срок службы (до 7 лет)
  • Высокая сохраняемость заряда и высокая стабильность характеристик.

Никель-кадмиевый аккумулятор состоит из двух рабочих электродов. В разряженном состоянии положительный электрод содержит гидрат закиси никеля, а отрицательный - гидроксид кадмия. Электроды и сепаратор имеют достаточно большую пористость и пропитаны водным раствором щёлочи.

Основная реакция, протекающая в аккумуляторе, описывается уравнением:

2 Ni (OH) 2 +Cd (OH) 2 2Ni OOH+Cd+H 2 O

Во время заряда из активной массы электродов в электролит выделяется вода, которая разбавляет электролит и увеличивает его объём. Во время разряда происходит обратный процесс.

В конце заряда на положительном электроде идёт побочная реакция выделения кислорода:

4 OH - O 2 + 2 H 2 O +4e

Выделившийся на положительном электроде кислород ионизируется на отрицательном электроде.

Конструкция аккумуляторов и аккумуляторных батарей (АБ)

Электроды . В герметичных призматических никель-кадмиевых аккумуляторах применяются спечённые (металлокерамические) электроды, состоящие из подложки, выполненной из растяжной никелевой решётки, на которую нанесён высокопористый слой никеля. Пористый слой заполняется активной массой с помощью химической пропитки. В последнее время в качестве основы электродов стал применяться пеноникель, получаемый никелированием пенополиуретана с последующим отжигом в восстановительной среде. В пеноникель вмазывается активная электродная масса.

Аккумуляторы . Герметичные аккумуляторы производятся в металлических корпусах. Улотнение борнов призматических аккумуляторов осуществляется, как правило, при помощи резиновых колец. В качестве сепараторов используются ткани и нетканные материалы (войлоки, фетры) из поливинилхлорида, полипропилена, полиамида, капрона и других материалов. Могут комбинироваться несколько слоёв сепараторов из различных материалов.

В герметичных аккумуляторах ёмкость отрицательного электрода должна быть больше, чем ёмкость положительного. Экспериментально определяемое соотношение емкостей должно быть не менее 1,2. Такое соотношение позволяет избежать выделения водорода на отрицательном электроде.

В качестве электролита используются 20-40 % раствор КОН с добавкой LiOH. Конкретный состав электролита выбирается в зависимости от температуры при эксплуатации. Если аккумуляторы предназначены для работы при отрицательной температуре, то концентрацию КОН повышают, а содержание LiOH уменьшают до нуля. Улучшение работоспособности при повышенной температуре достигается использованием 20-30 процентный раствора КОН с добавкой 15-50 Г/л LiOH. Для герметичных аккумуляторов большое значение имеет правильный выбор количества электролита, что также определяется условиями эксплуатации аккумулятора. Для поглощения кислорода, выделяющегося при заряде, необходимо, чтобы часть порового пространства отрицательного электрода и сепаратора была свободна от электролита. При слишком большом количестве электролита поглощение кислорода замедляется, и аккумулятор во время заряда может деформироваться (при заряде по времени) или преждевременно отключиться от заряда при срабатывании сигнализатора давления. При недостаточном количестве электролита, особенно при малых токах заряда и повышенной температуре окружающей среды аккумулятор может попасть в так называемый «тепловой разгон», когда из-за повышенной скорости ионизации кислорода аккумулятор начинает разогреваться, в результате чего напряжение на нём снижается. При ещё большем уменьшении количества электролита это начинает сказывается на разрядных характеристиках аккумулятора. В различных типах аккумуляторов количество электролита колеблется от 2 до 4 см 3 /Ач. С увеличением концентрации электролита его плотность растёт, а объём уменьшается.

Батареи . Крепление аккумуляторов в батарее должно обеспечить отсутствие перемещения любого из них при механических перегрузках. Расположение герметичных аккумуляторов в пространстве произвольное, но вниз крышкой не рекомендуется, особенно для аккумуляторов с аварийным клапаном, т.к. в конце заряда часть электролита из блока электродов стекает на крышку аккумулятора. Межэлементные соединения должны быть рассчитаны на минимальные потери напряжения и не вызывать механических нагрузок на токовыводы аккумуляторов. Пайка непосредственно к корпусу или крышке аккумулятора не допускается. В батареях из герметичных аккумуляторов рекомендуется предусматривать выводы от каждого аккумулятора, выполняемые по двухпроводной схеме, при помощи которых осуществляется поэлементный доразряд и контроль за напряжением аккумуляторов. Если поэлементный контроль вызывает затруднения, то допускается контролировать напряжение на группах из 2-5 аккумуляторов. Напряжение на каждой группе должно контролироваться автоматическим устройством, прекращающем разряд при достижении предельно допустимого напряжения. Потребление устройства на собственные нужды должно быть минимальным при работе и равным нулю при хранении батареи в составе изделия. Значения уставок должны составлять:

  • для одного аккумулятора - (0,5 ± 0,4) В,
  • для двух аккумуляторов - (1,7 ± 0,3) В,
  • для трёх аккумуляторов - (2,8 ± 0,2) В,
  • для четырёх аккумуляторов - (3,8 ± 0,2) В,
  • для пяти аккумуляторов - (5,0 ± 0,2) В.

Если в батарее не более пяти аккумуляторов, контроль напряжения ведётся на выводах батареи. Если батарея не делится на одинаковое количество групп, то допустим перекрёстный контроль нескольких аккумуляторов соседними отключающими устройствами.

Обозначение аккумуляторов и батарей

В наименовании аккумуляторов буквы НК указывают на электрохимическую систему (никель-кадмиевая). Буква Г относятся к конструктивному исполнению аккумуляторов - герметичные. После букв через тире проставляют номинальную ёмкость аккумулятора. За значением номинальной ёмкости проставляются буквы, указывающие режим разряда: К - короткий (менее 1 часа), С - средний (2-8 ч), Д - длинный (10-20 ч). Буква А ставится в тех случаях, когда аккумулятор снабжён датчиком давления. Цифры перед буквенным обозначением аккумулятора соответствуют количеству аккумуляторов в батарее. В отдельных случаях в конце обозначения записывается климатическое исполнение и категория размещения.

С 1993 г. введён ГОСТ 26367.3-93 (МЭК 622-88) на герметичные призматические никель-кадмиевые аккумуляторы, являющийся прямым применением соответствующего стандарта МЭК, которым предусматриваются следующие обозначения аккумуляторов латинским шрифтом. Первая буква K относится к никель-кадмиевой электрохимической системе. Далее записывается одна из букв, обозначающих форму корпуса: С - призматический (герметичный), R - В - дисковый. После этого для герметичных призматических аккумуляторов указывается вид положительной пластины: Р - ламельная, S - спечённая (металлокерамическая). Затем для всех типов аккумуляторов записывается режим разряда: L - длительный, М - средний, Н - короткий, Х - сверхкороткий, после чего для призматических аккумуляторов указывается номинальная ёмкость, а для дисковых и цилиндрических - диаметр и высота (через дробь). Для дисковых аккумуляторов габариты указываются в десятых долях миллиметра. В конце обозначения записывают класс стойкости к воздействию температуры. Класс I - температура от -30 до 50 о С (без обозначения); класс II - от -40 до 60 о С; класс III - от -60 до 60 о С.

Обозначение батареи состоит, как правило, из обозначения аккумулятора, перед которым стоит цифра, указывающая количество аккумуляторов в батарее. В конце иногда указывают климатическое исполнение батареи (например, 10НКГ-8К-В1). В некоторых случаях производитель даёт батарее условный индекс (например, 11МО1).

Способы заряда

Заряд аккумуляторов, как правило, проводится постоянным током, при этом аккумуляторам сообщается 105-150 % номинальной ёмкости. Ток заряда обычно составляет 0,1-0,3 Сн. Для герметичных аккумуляторов кроме контроля времени заряда применяется также контроль конечного напряжения заряда, внутреннего давления (при помощи сигнализаторов давления) и сообщенной ёмкости (при помощи электронных счётчиков ампер-часов). В некоторых случаях применяют датчики максимального напряжения, уставка срабатывания которых зависит от температуры и (или) тока заряда, или термореле, выдающие сигнал на отключение заряда при повышении температуры до заданного значения.

Хотя герметичные аккумуляторы дороже открытых и для первых требуется более сложное зарядное и контрольно-испытательное оборудование, эксплуатационные расходы для них меньше, чем для открытых аккумуляторов, так как для герметичных аккумуляторов не требуются устройства вентиляции и периодическая доливка электролита, что связано с содержанием дополнительного персонала.

Эффективность заряда зависит от температуры и тока заряда. С увеличением тока заряда напряжение заряда возрастает. Для герметичных аккумуляторов следует избегать условий, при которых напряжение заряда достигает значений 1,6 В, т.к. это способствует выделению водорода. Для аккумуляторов, предназначенных для коротких режимов разряда, с увеличением тока заряда разрядная ёмкость возрастает, а для аккумуляторов, предназначенных для средних режимов, проходит через максимум. Оптимальным является заряд при температуре 15-25 о С током 0,1-0,5 Сн. С повышением температуры заряда и снижением тока заряда отдаваемая при разряде ёмкость снижается и может составлять до 50-70 % от номинальной. В диапазоне температур 15-25 о С возможен заряд герметичных аккумуляторов при постоянном напряжении 1,45 - 1,50 В. При напряжениях выше 1,5 В заряд при постоянном напряжении не рекомендуется, т.к. в результате перегрева аккумуляторы могут быть перезаряжены. Перезаряд аккумуляторов при заряде их от источника с постоянным напряжением опасен в результате явления, получившего название «тепловой разгон». Суть его заключается в том, что когда аккумуляторы полностью заряжены, весь ток расходуется на выделение на положительном электроде кислорода, большая часть кислорода, в свою очередь, поглощается на кадмиевом электроде, в результате чего практически всё проходящее электричество превращается в тепло, и аккумулятор начинает быстро разогреваться. С повышением температуры напряжение аккумуляторов снижается, что приводит к повышению тока заряда и дальнейшему лавинообразному разогреву. Если при комнатной температуре «тепловой разгон» открытых аккумуляторов начинается при напряжениях, близких к 1,7 В, то после длительного перезаряда, сопровождавшегося перегревом, тепловой разгон может начинаться и при напряжении 1,3 В. Обычно это происходит в процессе длительного заряда при постоянном напряжении, когда в результате разогрева аккумулятора ток ионизации кислорода на отрицательном электроде возрастает настолько, что скорость прохода кислорода через сепаратор и скорость выхода кислорода из блока электродов становятся соизмеримыми. После нескольких циклов в таких условиях кадмиевый электрод пассивируется до такой степени, что при заряде на нём выделятся водород. Для герметичных аккумуляторов тепловой разгон может начаться при напряжениях ниже 1,7 В, поскольку в них весь выделяющийся при заряде кислород должен поглотиться внутри аккумулятора. Для того чтобы избежать теплового разгона следует размещать батарею вдали от источников тепла (двигатели, мощные приборы и т.п.), тщательно выбирать режим заряда, а сам заряд проводить на автоматизированных стендах, имеющих несколько уровней зашиты (по времени заряда, напряжению, току, по ёмкости и т.д.). Необходимо, чтобы погрешность стабилизации напряжения была не более ±1 %. При выборе напряжения заряда необходимо, чтобы после сообщения аккумулятору 110 - 150 % номинальной ёмкости значение зарядного тока не превышало 0,02 - 0,003 Сн А. Заряд при повышенных напряжениях можно использовать только при одновременном ограничении его длительности. При низкой температуре заряд при постоянном напряжении теряет свою эффективность из-за значительного снижения токов заряда.

При параллельном соединении батарей заряжать их надо через разделительные диоды или подключать каждую батарею к собственному зарядному устройству. Батареи не следует длительное время хранить в заряженном или полузаряженном состоянии (кроме, конечно, батарей хранения), т.к. из-за различия токов саморазряда аккумуляторов может появиться разбаланс по степени заряженности, что с одной стороны создаёт опасность перезаряда наиболее полно заряженных аккумуляторов, что снижает ёмкость батареи вследствие падения напряжения наиболее разряженных аккумуляторов. Разбаланс по уровню заряженности может привести к переполюсовке одного из аккумуляторов во время разряда и выделению на оксидно-никелевом электроде водорода, что может сопровождаться срабатыванием клапана или сигнализатора давления и даже деформацией герметичных аккумуляторов. Перед длительным хранением в разряженном состоянии рекомендуется доразрядить каждый аккумулятор на индивидуальные резисторы до напряжения не выше 0,1 В, что позволяет выровнять заряженность аккумуляторов.

Срок службы никель-кадмиевых батарей

Ресурс аккумуляторов определяется как их конструкцией, так и режимом эксплуатации. Если конкретный тип аккумулятора не имеет явных конструктивных недостатков, то определяющим фактором являются условия эксплуатации. В большинстве случаев циклирование аккумуляторов является наиболее часто употребимым способом их эксплуатации. Достаточно широкое распространение получило использование аккумуляторов в аварийных режимах, когда заряженные аккумуляторы большую часть времени хранятся в заряженном состоянии, как правило, при небольшом токе подзаряда, который компенсирует саморазряд аккумуляторов и небольшое снятие ёмкости при кратковременных подключениях аккумуляторов на нагрузку.

Работоспособность аккумуляторов при различных режимах циклирования

К основным параметрам режима эксплуатации относятся ток разряда, разрядная ёмкость, способ защиты от переразряда, ток заряда, способ защиты от перезаряда, температура. При разряде никель- кадмиевые аккумуляторы нагреваются, а в начале заряда до того как начнётся интенсивное выделение кислорода - охлаждаются.

Увеличение тока разряда и снижение температуры ведут к снижению среднего напряжения разряда и потере ёмкости, если защита от перезаряда основана на прекращении разряда при снижении напряжения до достаточно высокого уровня (выше чем 1 В на аккумулятор). Срок службы существенно зависит и от глубины разряда. Он уменьшается почти в 10 раз при её изменении от 10 до 70 %.

Снижение тока заряда ведёт к увеличению длительности заряда и уменьшению коэффициента использования тока, в результате чего снижается разрядная ёмкость, особенно, если температура заряда превышает 30 о С. Увеличение тока заряда также может приводить к снижению разрядной ёмкости, если заряд прекращается при достижении достаточно низкого напряжения (менее 1,5 В при 25 о С). КПД по энергии колеблется от 70 до 85 % и растёт при увеличении напряжения разряда, снижении напряжения заряда и увеличении КПД по току.

Срок службы герметичных аккумуляторов зависит также от сочетания значений конечного напряжения заряда и конечного напряжения разряда. Наибольшие потери ёмкости происходят при циклировании режимами, где заряд ограничивается низким напряжением (около 1,48 В), а разряд - высоким напряжением (1,10 - 1,16 В). Достаточно быстро снижается ёмкость и в тех случаях, когда заряд постоянно прекращается по срабатыванию сигнализатора давления, а глубина разряда находится на уровне 15 - 20 % с ограничением разряда по напряжению (не ниже 1,09 В). В этом случае кислород не успевает поглощаться, и избыточное давление в аккумуляторе находится на уровне 123 - 147 кПа, при этом увеличивается крутизна зарядных и разрядных кривых. Изменение характеристик связано с пассивацией активных масс электродов.

Снижение напряжения разряда может вызвано образованием в активной массе кадмиевого электрода интерметаллического соединения Ni5Cd21, которое разряжается при напряжении на аккумуляторе 1,05 - 0,95 В (так называемая «вторая площадка» или «эффект памяти»). Наиболее характерно образование этого сплава для электродов, полученных пропиткой спечённых основ. Образованию сплава способствуют заряды при повышенной температуре. Интерметаллическое соединение полностью разрушается при разряде аккумулятора до 0,8 - 0,5 В. Лучше всего проводить поэлементный разряд батареи на сопротивления, при этом напряжение каждого аккумулятора снижается до нуля вольт без опасности переполюсовки. После поэлементного доразряда ёмкость аккумуляторов восстанавливается до значений, близких к первоначальным.

Потери ёмкости уменьшаются при снижении конечного напряжения разряда с 1,16 до 1,04 В и увеличении конечного напряжения заряда с 1,48 до 1,54 В. Наибольшей стабилизации ёмкости можно добиться, уменьшив конечное напряжение разряда до 0,5-0,8 В. При дополнительном проведении периодических закорачиваний на сопротивления каждого аккумулятора батареи до нуля вольт ёмкость может даже увеличиться по сравнению с начальной

Работоспособность аккумуляторов при подзаряде

В режиме длительного подзаряда используются в основном призматические аккумуляторы. Срок эксплуатации в зависимости от тока подзаряда составляет от 2 до 15 лет и более. Оптимальным является ток, численно равный 0,001 - 0,005 Сн А. При увеличении тока подзаряда срок службы и надёжность сокращаются. При эксплуатации в режиме подзаряда типы отказов те же, что и при циклировании, но их интенсивность ниже.

На первом разряде после длительного подзаряда напряжение батареи несколько ниже, чем у свежезаряженных, но после нескольких циклов оно быстро возвращается к нормальному уровню. Снижение напряжения разряда после длительного подзаряда связано с уменьшением уровня заряженности положительного электрода.

Ёмкость аккумулятора после 10 лет подзаряда до 25 %, а после 16 лет - до 35 % выше начальной, что свидетельствует об увеличении ёмкости положительного электрода. При определении ёмкости электродов в избытке электролита в негерметичном виде установлено, что ёмкость положительного электрода возросла на 58 - 70 %, а ёмкость отрицательных электродов на 10 - 13 %. Ёмкость отрицательного электрода падает. После длительного подзаряда практически весь избыток ёмкости отрицательного электрода находится в заряженном состоянии, поэтому на разряде ёмкость аккумулятора ограничивается не положительным электродом, как в начале срока службы, а обоими электродами сразу. Напряжение заряда аккумуляторов после 10 лет подзаряда находится на обычном уровне и не превышает 1,5 В. После 16 лет подзаряда на контрольном цикле напряжение заряда повышается до 1,55 - 1,58 В, а у трети аккумуляторов оно достигает 1,6 - 1,7 В, причём, повышение с 1,55 до 1,65 В происходит в конце заряда, что также является следствием избыточной заряженности отрицательного электрода. Причины этих явлений те же, что и при циклировании аккумуляторов.

Герметичные никель-кадмиевые аккумуляторы нашего производства нашли самое широкое применение в космической, военной, общепромышленной и бытовой технике.

В настоящее время, АО «НИАИ Источник» является единственным в России разработчиком и одновременно изготовителем герметичных никель-кадмиевых аккумуляторных батарей для космических аппаратов. Нами выпускается 10 типов аккумуляторов НКГ, которые применяются в 21 батареях, работающих и работавших на таких космических аппаратах, как:

  • Международная космическая станция
  • Орбитальные станции «Мир», «Салют» и «Алмаз».
  • Межпланетные станции «Марс», «Венера» и «Вега»
  • Спутники серий «Метеор», «Молния», «Астрон», «Надежда» и «Космос».

Кроме того, аккумуляторы типа НКГ применяются в наземных установках ракетных войск стратегического назначения, на кораблях, подводных лодках и прочих объектах, где требуется обеспечение энергий вне зависимости от обстоятельств.

Руководитель отдела никель-кадмиевых аккумуляторов,

кандидат технических наук,