Лямбда-зонд на страже соблюдения экологических норм: обзор и чистка кислородного датчика. Все, что следует знать автовладельцу о лямбда-зонде — датчике кислорода

Лямбда-зонд. Агент экологической разведки


О назначении лямбда-зонда, или кислородного датчика, сегодня хотя бы приблизительно знает большинство автовладельцев. Пополнить багаж знаний позволит информация, предоставленная российским представительством группы компаний Bosch.

Принцип действия лямбда-зонда

При сгорании в бензиновом двигателе происходит физико-химический процесс, в ходе которого углеводородные молекулы топлива реагируют с кислородом, содержащимся в поступающем воздухе. Возникающие при этом химические соединения на 99% безвредны (азот, углекислый газ, водяной пар), но оставшийся процент содержит вредные элементы, такие, как угарный газ CO, несгораемые углеводороды HC и окиси азота NOx. Одной из целей развития автомобильных технологий является устранение этих компонентов эмиссии в максимально возможной степени. Ключевыми факторами при этом являются оптимизация процесса сгорания в двигателе и система очистки выхлопа.

Трехканальный каталитический конвертер по-прежнему остается наиболее эффективным средством преобразования HC и CO в безопасные воду и углекислый газ (окисление) и NOx в азот (восстановление) в бензиновых двигателях. В то же время катализатор работает только в узком диапазоне пропорций воздушно-топливной смеси, близком к 14,7:1 (λ=1). Если смесь перенасыщена топливом (λ«1), коэффициент преобразования NOx остается высоким, но CO и HC окисляются недостаточно. Если смесь слишком бедная (λ>1), ситуация меняется на противоположную.

Для поддержания оптимальной пропорции воздушно-топливной смеси необходим датчик, передающий сведения о составе выхлопных газов в систему управления двигателем. Именно для этого служит лямбда-зонд, измеряющий остаточное содержание кислорода в выхлопном газе и передающий эти данные в блок управления в форме электрического сигнала. В зависимости от сигнала воздушно-топливная смесь обогащается или обедняется. В дизельных двигателях лямбда-зонд выполняет другую функцию: вместе с массовым расходомером воздуха он помогает точно определять степень рециркуляции выхлопных газов для каждого рабочего режима.

Типы зондов

За последние тридцать лет получили распространение два типа лямбда-зондов - стоковые LSH и LSF и широкополосные LSU. В стоковых выхлопные газы проходят по внешней стороне керамического измерительного элемента, внутри которого находится эталонный воздух. В зависимости от остаточного содержания кислорода в выхлопе, на двух полюсах сенсорного элемента возникает разная концентрация молекул кислорода. Поскольку керамический датчик пропускает ионы кислорода, они могут перемещаться между двумя сторонами сенсорной ячейки, создавая электрическое напряжение. Стоковые датчики генерируют высокое напряжение (около 0,9 В) при насыщенной смеси (низкое содержание остаточного кислорода в выхлопных газах) и низкое (около 0,1 В) - при бедной смеси (высокое содержание кислорода). Скачок напряжения между отдельными уровнями происходит при λ=1. Классический стоковый зонд с подогревом или без представляет собой так называемый контактный датчик. В 1994 г. компания Bosch первой в мире начала на базе керамической планарной технологии серийный выпуск стоковых зондов, устойчивых к высоким температурам и воздействиям окружающей среды. Современное поколение зондов LSF4.2 отличается быстрым временем реагирования, готовностью к работе через 10 секунд после пуска двигателя и долгим сроком службы.

Широкополосные зонды, выпускающиеся с 1998 г., отличаются от стоковых более широким диапазоном измерения и производятся исключительно на базе планарной технологии. Принцип действия широкополосного зонда основан на постоянном поддержании значения λ=1 в измерительной камере при помощи насосного тока. Измерительная камера отделена от потока выхлопных газов пористым диффузионным барьером. При насыщенной смеси в измерительную ячейку накачивается кислород, для чего к насосной ячейке подводится «отрицательный» ток. При λ=1 насосный ток равен нулю. При обедненной смеси кислород выкачивается из измерительной ячейки «положительным» током.

Исходящий сигнал широкополосного зонда пропорционален остаточному содержанию кислорода в выхлопных газах. Такие датчики необходимы, прежде всего, в бензиновых двигателях с прямым впрыском на обедненных смесях, а также в газовых и дизельных двигателях, чтобы блок управления двигателем мог получать точные данные о составе смеси даже при λ>1. Последнее поколение широкополосных зондов Bosch, LSU4.9, поддерживает диапазон измерений при значениях от 0,7 до бесконечности, а также отличается высоким уровнем точности сигнала и временем реагирования менее 30 мс. Благодаря этому возможен индивидуальный контроль состава смеси для каждого цилиндра и, как следствие, более экономичная и экологичная работа двигателя. Полная готовность датчика к работе достигается в течение менее 10 секунд после пуска двигателя, что позволяет еще больше сократить вредные выбросы в фазе прогрева.

Текущие разработки

Лямбда-зонды Bosch© Фото: BoschСтоковые и широкополосные зонды еще долго будут использоваться в современных транспортных средствах, при этом выбор типа датчика автопроизводителем будет зависеть от конструкции двигателя и профиля требований. В некоторых случаях могут применяться комбинации зондов обоих типов. Например, с широкополосным датчиком перед катализатором и стоковым после него.

Лямбда-зонды непрерывно совершенствуются: в настоящее время специалисты Bosch разрабатывают передовой широкополосный датчик с расширенным диапазоном измерения, сокращенным временем реагирования и намного более долгим сроком службы. Новый зонд под условным названием LSU ADV должен поступить в серийное производство в 2007 г. По заявлениям Bosch, он способен обнаруживать остаточное содержание кислорода в выхлопных газах уже при λ=0,65, время реагирования составляет менее 30 мс, а в рабочее состояние зонд приходит всего за 5 секунд. Разработчики компании утверждают, что характеристики зонда LSU ADV делают возможными совершенно новые функции и способы применения, например мониторинг насоса дополнительного воздуха в фазе прогрева или монтаж зонда перед турбокомпрессором. Установка датчика рядом с двигателем позволяет еще точнее контролировать состав смеси индивидуально для каждого цилиндра. Другие направления совершенствования лямбда-зонда - повышение водостойкости и миниатюризация, связанная с постоянным сокращением монтажного пространства в современных автомобилях.

Справка

Группа компаний Bosch является ведущим международным производителем автомобильного и промышленного оборудования, потребительских и бытовых изделий. Объем продаж корпорации, штат которой насчитывает около 250 тысяч сотрудников, составил в 2005 финансовом году 41,5 млрд евро. Основанная Робертом Бошем (1861–1942) в 1886 году в Штутгарте под названием «Мастерская точной механики и электротехники», компания в настоящее время является крупнейшим концерном в области производства, сбыта и технического обслуживания, насчитывая около 270 дочерних компаний и свыше 12 тысяч сервисных центров в более чем 140 странах.

Особая учредительская структура группы компаний Bosch гарантирует ее финансовую независимость и свободу предпринимательства. Она позволяет компании осуществлять необходимые инвестиции, обеспечивающие ее будущее, а также выполнять все социальные обязательства, как было завещано ее основателем. 92% Robert Bosch GmbH принадлежат благотворительному фонду Robert Bosch Stiftung. Предпринимательская деятельность осуществляется компанией Robert Bosch Industrietreuhand KG.

В России в 1904 году было открыто одно из первых зарубежных представительств компании. В настоящее время Bosch представлена пятью компаниями и производственными филиалами в 14 городах Российской Федерации с общим штатом 1720 человек. Bosch представляет в России широкую линейку высококачественных продуктов: от автомобильных запчастей, диагностического оборудования и электроинструментов до бытовой техники, систем безопасности и промышленного оборудования.

В 2005 году консолидированные продажи на российском рынке увеличились с?248 млн до?287 млн. Общие продажи за прошедший финансовый год, включая показатели неконсолидированных предприятий, возросли с?321 млн до?402 млн.

К современным транспортным средствам предъявляются достаточно жесткие требования по содержанию вредных веществ в отработавших газах. Необходимая чистота выхлопа обеспечивается сразу несколькими системами автомобиля, строящими свою работу на основании показаний множества датчиков. Но все же основная ответственность по «обезвреживанию» выхлопных газов ложится на плечи каталитического нейтрализатора, встраиваемого в систему выпуска. Катализатор в силу особенностей происходящих внутри него химических процессов является очень чувствительным элементом, которому на вход должен подаваться поток со строго определенным составом компонентов. Чтобы его обеспечить, необходимо добиться наиболее полного сгорания поступающей в цилиндры двигателя рабочей смеси, что возможно только при соотношении воздух/топливо соответственно 14.7:1. При такой пропорции смесь считается идеальной, а показатель λ=1 (отношение реального количества воздуха к необходимому). Бедной рабочей смеси (избыток кислорода) соответствует λ>1, богатой (перенасыщение топливом) – λ<1.

Точную дозировку осуществляет управляемая контроллером электронная система впрыска, однако качество смесеобразования все равно надо каким-то образом контролировать, так как в каждом конкретном случае возможны отклонения от указанной пропорции. Эта задача решается с помощью так называемого лямбда-зонда, или датчика кислорода. Разберем его конструкцию и принцип работы, а также поговорим о возможных неисправностях.

Устройство и работа кислородного датчика

Итак, лямбда-зонд предназначен для определения качества топливо-воздушной смеси. Делается это посредством замера количества остаточного кислорода в выхлопных газах. Затем данные отправляются в электронный блок управления, который производит коррекцию состава смеси в сторону обеднения или обогащения. Местом установки кислородного датчика является выпускной коллектор или приемная труба глушителя. Автомобиль может оснащаться одним или двумя датчиками. В первом случае лямбда-зонд устанавливается перед катализатором, во втором – на входе и выходе катализатора. Наличие двух датчиков кислорода позволяет более тонко воздействовать на состав рабочей смеси, а также контролировать насколько эффективно выполняет свою функцию каталитический нейтрализатор.

Существуют два типа датчиков кислорода – обычные двухуровневые и широкополосные. Обычный лямбда зонд имеет сравнительно простое устройство и генерирует сигнал волнообразной формы. В зависимости от наличия/отсутствия встроенного нагревательного элемента такой датчик может иметь разъем с одним, двумя, тремя или четырьмя контактами. Конструктивно обычный кислородный датчик представляет собой гальванический элемент с твердым электролитом, роль которого выполняет керамический материал. Как правило, это диоксид циркония. Он проницаем для ионов кислорода, однако проводимость возникает только при нагреве до 300-400 °С. Сигнал снимается с двух электродов, один из которых (внутренний) контактирует с потоком отработавших газов, другой (внешний) – с атмосферным воздухом. Разность потенциалов на выводах появляется только при соприкосновении с внутренней стороной датчика выхлопных газов, содержащих остаточный кислород. Выходное напряжение обычно составляет 0.1-1.0 В. Как уже отмечалось, обязательным условием работы лямбда-зонда является высокая температура циркониевого электролита, которая поддерживается встроенным нагревательным элементом, запитанным от бортовой сети автомобиля.

Система управления впрыском, получая сигнал лямбда-зонда, стремится приготовить идеальную топливо-воздушную смесь (λ=1), сгорание которой приводит к появлению на контактах датчика напряжения 0.4-0.6 В. Если смесь бедная, то содержание кислорода в выхлопе велико, поэтому возникает лишь небольшая разность потенциалов (0.2-0.3 В). В этом случае длительность импульса на открытие форсунок будет увеличена. Чрезмерное обогащение смеси приводит к практически полному сгоранию кислорода, а, значит, в системе выпуска его содержание будет минимальным. Разность потенциалов составит 0.7-0.9 В, что станет сигналом к уменьшению количества топлива в рабочей смеси. Так как режим работы двигателя при езде постоянно меняется, то и корректировка происходит также непрерывно. По этой причине значение напряжения на выходе датчика кислорода колеблется в ту и другую сторону относительно среднего значения. В итоге сигнал получается волнообразным.

Введение в действие каждого нового стандарта, ужесточающего нормы выбросов, повышает требования к качеству смесеобразования в двигателе. Обычные кислородные датчики на основе циркония не отличаются высоким уровнем точности сигнала, поэтому они постепенно вытесняются широкополосными датчиками (LSU). В отличие от своих «собратьев» широкополосные лямбда-зонды измеряют данные в широком диапазоне λ (например, современные зонды Bosch способны считывать значения при λ от 0.7 до бесконечности). Преимуществами датчиков подобного типа являются возможность управления составом смеси каждого цилиндра по отдельности, быстрое реагирование на происходящие изменения и небольшое время, необходимое для включения в работу после запуска двигателя. В результате мотор работает в наиболее экономичном режиме с минимальной токсичностью выхлопа.

Конструкция широкополосного лямбда-зонда предполагает наличие двух типов ячеек: измерительных и накачивающих (насосных). Они разделены между собой диффузионным (измерительным) зазором шириной 10-50 мкм, в котором постоянно поддерживается один и тот же состав газовой смеси, соответствующий λ=1. Такой состав обеспечивает напряжение между электродами на уровне 450 мВ. Измерительный зазор отделен от потока отработавших газов диффузионным барьером, использующимся для откачивания или накачивания кислорода. При бедной рабочей смеси выхлопные газы содержат много кислорода, поэтому он откачивается из измерительного зазора с помощью подводимого к насосным ячейкам «положительного» тока. Если же смесь обогащенная, то кислород, наоборот, закачивается в область измерения, для чего направление тока меняется на противоположное. Электронный блок управления считывает значение потребляемого насосными ячейками тока, находя ему эквивалент в лямбда. Выходной сигнал широкополосного датчика кислорода обычно имеет форму кривой, незначительно отклоненной от прямой линии.

Датчики типа LSU могут быть пяти- или шестиконтактными. Как и в случае с двухуровневыми лямбда зондами, для их нормального функционирования требуется наличие нагревательного элемента. Рабочая температура составляет порядка 750 °С. Современные широкополосники прогреваются всего за 5-15 секунд, что гарантирует минимум вредных выбросов в ходе пуска двигателя. Необходимо следить, чтобы разъемы датчика не были сильно загрязнены, так как через них воздух поступает внутрь в качестве эталонного газа.

Признаки неисправности лямбда-зонда

Кислородный датчик – один из самых уязвимых элементов двигателя. Срок его службы ограничивается 40-80 тысячами км пробега, после которых могут наблюдаться перебои в работе. Сложность диагностики неисправностей, связанных с датчиком кислорода, заключается в том, что он в большинстве случаев «умирает» не сразу, а начинает постепенно деградировать. Например, увеличивается время отклика или передаются неправильные данные. Если по какой-то причине ЭБУ совсем перестал получать информацию о составе отработавших газов, он начинает использовать в работе усредненные параметры, при которых состав топливо-воздушной смеси далек от оптимального. Признаками выхода из строя лямбда-зонда являются:

  • Повышенный расход топлива;
  • Нестабильная работа мотора на холостом ходу;
  • Ухудшение динамических характеристик автомобиля;
  • Повышенное содержание CO в выхлопных газах.

Двигатель с двумя датчиками кислорода более чувствителен к возникающим в системе коррекции смеси неисправностям. При поломке одного из зондов практически невозможно обеспечить нормальное функционирование силового агрегата.

Существует ряд причин, которые могут привести к преждевременной поломке лямбда-зонда или сокращению срока его службы. Вот некоторые из них:

  • Применение бензина плохого качества (этилированного);
  • Неисправности системы впрыска;
  • Пропуски зажигания;
  • Сильный износ деталей ЦПГ;
  • Механическое повреждение самого датчика.

Диагностика и взаимозаменяемость датчиков кислорода

Проверить исправность простого циркониевого датчика в большинстве случаев можно с помощью вольтметра или осциллографа. Диагностика самого зонда заключается в замере напряжения между сигнальным проводом (обычно черного цвета) и массой (может быть желтого, белого или серого цвета). Получаемые значения должны изменяться примерно раз в одну-две секунды от 0.2-0.3 В до 0.7-0.9 В. Необходимо помнить, что корректными показания будут только при полном прогреве датчика, который гарантированно произойдет после достижения двигателем рабочей температуры. Неисправности могут касаться не только измерительного элемента лямбда зонда, но и цепи нагрева. Но обычно нарушение целостности этой цепи фиксируется системой самодиагностики, записывающей код ошибки в память. Обнаружить разрыв можно также путем измерения сопротивления на контактах нагревателя, предварительно отсоединив разъем датчика.

Если самостоятельно установить работоспособность лямбда-зонда не получилось или есть сомнения в правильности произведенных измерений, то лучше обратиться в специализированный сервис. Необходимо точно установить, что проблемы в работе двигателя связаны именно с датчиком кислорода, потому что его стоимость довольно высока, а неисправность может быть вызвана абсолютно другими причинами. Не обойтись без помощи специалистов и в случае с широкополосными кислородными датчиками, для диагностики которых часто применяется специфическое оборудование.

Неисправный лямбда зонд лучше менять на датчик такого же типа. Возможна и установка рекомендованных производителем аналогов, подходящих по параметрам и количеству контактов. Вместо датчиков без подогрева можно установить зонд с нагревателем (обратная замена невозможна), правда, в этом случае необходимо будет проложить дополнительные провода цепи нагрева.

Ремонт и замена лямбда зонда

Если датчик кислорода эксплуатировался длительное время и вышел из строя, то, скорее всего, свои функции перестал выполнять сам чувствительный элемент. В такой ситуации единственным решением является замена. Иногда начинает сбоить новый или проработавший совсем недолго лямбда-зонд. Причиной тому может быть образование на корпусе или самом рабочем элементе датчика различного рода отложений, мешающих нормальному функционированию. В данном случае можно попробовать почистить зонд с помощью ортофосфорной кислоты. После осуществления процедуры чистки датчик промывается водой, сушится и устанавливается на автомобиль. Если с помощью таких действий функциональность восстановить не удастся, то другого пути кроме покупки нового экземпляра нет.

При замене лямбда зонда стоит соблюдать определенные правила. Откручивать датчик лучше на остывшем до 40-50 градусов двигателе, когда тепловые деформации не столь велики и детали не сильно раскалены. При монтаже необходимо смазать резьбовую поверхность специальным герметиком, исключающим прикипание, а также убедиться в целостности прокладки (уплотнительного кольца). Затягивание рекомендуется осуществлять с установленным производителем моментом, обеспечивающим нужную герметичность. При подключении разъема не лишним будет проверить жгут электропроводки на наличие повреждений. После того, как лямбда зонд окажется на своем месте, проводятся испытания на различных режимах работы двигателя. Подтверждением корректной работы кислородного датчика станет отсутствие перечисленных выше признаков неисправности и ошибок в памяти электронного блока управления.

Что такое лямбда зонд?

Устройство автомобиля – это сложнейшая конструкция, которая имеет огромное количество датчиков. В чем-то автомобиль можно сравнить с человеческим организмом, и если проводить эту аналогию, то такой механизм, как лямбда зонд можно сравнить с дыхательной системой человека.

Действительно, если обратиться к механику с вопросом – что становится причиной резкого падения тяги у автомобиля, то скорее всего специалист усомнится в исправности лямбда зонда. В критической ситуации потребуется его замена, но на практике – в ряде случаев этого можно избежать

Для чего нужен лямбда зонд?

В ситуации поломки автомобиля знание принципа работы механизма не помешает никому. Во-первых, так механику будет сложнее одурачить владельца авто, приписывая к смете ненужные услуги. Во-вторых, водитель обладая знаниями технических особенностей деталей своего авто может сам поставить «диагноз», а возможно и устранить неполадку.

Так для чего же предназначен лямбда зонд? Он создает условия для работы , который в свою очередь предназначен для фильтрации выхлопных газов. К слову, катализаторы обязаны своим широким распространением экологам и ярым борцам за чистоту окружающей среды. Именно катализаторы позволяют сделать выхлоп наименее вредным, а лямбда зонд осуществляет контроль за эффективной работой этого механизма.

Лямбда зонд унаследовал свое название от соответствующей буквы греческого алфавита. Также лямбдой принято называть величину количества кислорода в топливно-воздушной смеси, которая составляет 14,7 долей воздуха на 1 долю топлива. Обеспечить такую пропорциональность способен механизм электронного впрыска топлива с обратной связью с лямбда зондом.

Также предназначение лямбда зонда определяет его месторасположение – перед катализатором в выпускном коллекторе. Установленный на этом участке, лямбда зонд вычисляет объем излишек кислорода в топливно-воздушной смеси. При появлении дисбаланса прибор дает сигнал в блок управления впрыска. Но, порой одного датчика становится недостаточно, поэтому в последних моделях автомобилей все чаще предусмотрено два датчика кислорода, между которыми располагается катализатор. При такой конструкции контроля точность анализа выхлопа топлива увеличивается в разы.

В основе лямбда зонда гальванические элементы с твердым керамическим электролитом из диоксида циркония. Поверх покрытия нанесен слой оксида иттрия и напыление из токопроводящих пористых платиновых электродов. Электроды на поверхности механизма действуют по принципу забора выхлопа и воздуха из атмосферы. Лямбда зонд начинает работать только после того, как прогрев достигнет 300 градусов по Цельсию. Высокая температура приводит в действие циркониевый электролит, который пропускает сигнал об уровне выходного напряжения. При заведении непрогретого двигателя, датчики кислорода не работают, а их нагрузку при низкой температуре выполняют другие датчики двигателя.

Существуют также датчики, которые используют вместо циркония двуокись титана. Их принцип работы заключается в том, что они изменяют объемное сопротивление по количеству содержания кислорода в выхлопе. Большим минусом этого механизма является то, что они имеют сложную конструкцию и не могут генерировать ЭДС. Однако, именно они включены в конфигурацию многих самых продаваемых моделей автомобилей.

Еще одной разновидностью датчиков являются механизмы с дополнительным подогревом. Такой принцип позволяет им быстрее активизироваться, а значит, результат показателей параметров получается более точный.

Чем грозит поломка лямбда зонда?

В первую очередь, поломка лямбда зонда может грозить авто владельцу увеличением расхода топлива и ухудшением разгона. Основная причина таких последствий заключается в том, что при поломке показания лямбда зонда не будут соответствовать действительности. По этой же причине соотношение топлива и кислорода в результате может получиться неидеальным. Однако, даже при неисправности лямбда зонда машина все же будет на ходу. Но, критичность ситуации зависит от устройства автомобиля. Существуют модели, которые при отказе этого механизма, могут расходовать топливо в колоссальных объемах, поэтому становится необходим экстренный ремонт.

Также существует ряд причин, способных вывести лямбда зонд из строя. К примеру, механизм может сломаться лишь частично, а именно – лямбда зонд продолжает работу, однако точность показаний резко падает. Лямбда зонд также может перестать активизироваться при определенной температуре. В любом случае, установить точную причину поломки может только специалист. Стоит отметить, что если лямбда зонд окончательно вышел из строя, то менять его нужно только на аналогичный механизм. В противном случае бортовой компьютер может просто не принимать его сигналы.

В случае, если отказывают сразу два датчика, то автомобиль может полностью выйти из строя. Единственный вариант передвижения, который остается в таком случае – это буксир или эвакуатор. Стоит помнить, что лямбда зонд чрезвычайно чувствителен к поломкам. Его могут вывести из строя некачественные поршневые кольца, сложный состав топлива и пропуски зажигания. В первую очередь, усугубить поломку может использование этилированного топлива, которое благодаря содержащемуся в нем свинцу выводит из строя платиновые электроды. Достаточно пару раз заправиться таким бензином, чтобы окончательно разрушить лямбда зонд.

Датчик кислорода (он же лямбда зонд), нужен для определения концентрации кислорода в выхлопных газах автомобиля, их состав находится в зависимости от соотношения воздуха и горючего в рабочей консистенции, которая подается в цилиндр мотора. Та информация, которая выдается датчиками в виде напряжения, употребляется ЭБУ, для того чтоб корректировать впрыск горючего. В нашей публикации мы поведаем вам что такое лямбда зонд, механизм работы, устройство и главные его составляющие.

Для того чтоб полностью сгорел один литр горючего, нужно 14,7 литра воздуха. Это будет самый лучший состав топливовоздушной консистенции. При его использовании содержание вредных веществ в газах будет мало, дожигание будет происходить в каталитическом нейтрализаторе.

Общие сведения.

Кислородные датчики бывают 2-ух типов: резистивные и химические. Последний тип работает по принципу элемента, вырабатывающего ток. Механизм работы второго - это резистор, который средством конфигурации собственного сопротивления дает данные ЭБУ.

Самое огромное распространение получили химические кислородные датчики. Применяемый в их принцип, основан на свойствах диоксида циркония, создающий различное электронное напряжение при различном содержании кислорода в отработанных газах.

Когда работа системы подачи горючего обычная, изменение датчика может выполняться по нескольку раз с секунду. Это и позволяет поддерживать лучший состав консистенции в разливных режимах.

Основной частью датчика является глиняний наконечник, который изготовлен на базе диоксида циркония, на внешную и внутреннюю поверхности на него наносится платина. Корпус и наконечник соединяются вполне герметично. Наконечник находится в потоке газов, которые поступают через отвесите в защитном экране. Лямбда зонд принципно работает отлично, когда его температура не ниже 350 о С. Потому современные датчики снабжаются нагревательным элементом, для того чтоб резвее начать свою работу. Различают датчики, количеством применяемых проводов: провод «массы» сигнала, провод сигнала, провод «массы» обогрева, провод питания обогрева. Если в датчике нет нагревателя, они могут укомплектовываться одним либо 2-мя сигнальными проводами, если же нагреватель есть, то проводов будет три либо четыре. Чаше всего черные провода относятся к сигнальному проводу, а светлые к нагревателю. Провода датчика имеют теплостойкое изоляционное покрытие, а механизмы без усилий могут выдерживать температуру до 900 о С.

Где в большинстве случаев устанавливается лямбда зонд?

Потому что рабочая температура кислородного датчика примерно 350 о С, устанавливают (без нагревателя) его поближе к движку либо перед нейтрализатором (если нагревательный элемент присудствует).

В неких машинах в каталитическом нейтрализаторе располагают датчик температуры, который не в коем случае не нужно путать с кислородным датчиком. Кислородных датчика может быть в машине два: одни перед нейтрализатором, другой — после него.

Устройство датчика кислорода:

  • защитный экран с отверстием для отработавших газов.
  • наконечник из керамики.
  • обогрев.
  • внешний защитный экран с отверстием для входа атмосферного воздуха.
  • токопроводящий контакт цепи обогрева.
  • уплотнительное кольцо.
  • манжета проводов уплотнительная.
  • проводка.
  • глиняний изолятор.
  • токосъемник электронного сигнала.
  • железный корпус с резьбой.

Предпосылки, почему лямбда зонд может выйти из строя:

Применение несоответствующей марки горючего либо этилированного бензина .

  1. Внедрение при установке датчика герметиков, которые содержат в собственном составе силикон либо вулканизируются при комнатной температуре.
  2. Датчики перенагреваются из-за того, что некорректно установлен угол опережения зажигания, перебоев в зажигании, переобогащения топливовоздушной консистенции и т.д.
  3. Плохие неоднократные пробы пуска мотора через малые промежутки времени, что может привести к накапливанию в выпускном трубопроводе не спаленного горючего, которое может с легкостью возгореться, при всем этом появляется ударная волна.
  4. Вы инспектировали работу цилиндров мотора с не подсоединенными свечками зажигания.
  5. На глиняний наконечник датчика попала неважно какая эксплуатационная жидкость, растворитель либо моющее средство.
  6. Нехороший контакт, обрыв либо замыкание выходной цепи датчика на «массу».
  7. Отсутствие плотности в выпускной системе.

Почему могут быть неисправными датчики кислорода:

  1. На малых оборотах движок работает нестабильно.
  2. Повышен расход горючего.
  3. Динамические свойства авто очень ухудшаются.
  4. После остановки мотора наблюдается свойственное потрескивание в районе, где размещается каталитический нейтрализатор.
  5. Увеличивается температура в районе каталитического нейтрализатора либо он греется до раскаленного состояния.
  6. На неких автомобилях зажигается лампа «СНЕСК ENGINE» когда режим движения уже установлен.

Как верно снять и установить датчик, правила:

1.Во избежание повреждений, демонтаж датчика, делается лишь на прохладном движке, перед этим провода датчика нужно отсоединить (при выключенном зажигании).

2. Перед тем как подменять датчик нужно проверить его маркировку, она должна соответствовать обозначенной в аннотации по эксплуатации машины.

3. Произвести наружный осмотр, для того чтоб:

  • убедиться что на устройстве нет механических повреждений;
  • проверить есть ли уплотнительное кольцо;
  • проверить есть ли специальной противопригарной смазки на резьбы.

4. Завернуть датчик кислорода до упора (рукою) потом дотянуть его усилием 4-5 кгм. Соединение при всем этом должно быть герметичным.

5. Проверить работоспособность по характеристикам, которые можно проконтролировать.

6. Соединить электронный разъем (если их несколько, то разъемы).

Некие датчики крепятся к выпускному трубопроводу с помощью специальной пластинки. Меж выпускным трубопроводом и пластинкой должна быть особая прокладки, которая будет обеспечивать плотность. Проверка датчиков кислорода должна осуществляться при достижении его рабочей температуры, примерно 350-400°С при использовании газоанализатора, цифрового вольтметра, осциллографа и омметра.

Контролируются такие характеристики как:

  1. Когда Лямбда значение равно 0,8 (обогащенная горючая смесь) на сигнальном проводе напряжение должно быть более 0,75В;
  2. Когда Лямбда значение равно 1,2 (обедненная горючая смесь) на сигнальном выводе напряжение должно быть менее 0,30В;
  3. При обедненной горючей консистенции время срабатывания — менее 260 мс;
  4. При обогащенной горючей консистенции время срабатывания — менее 430 мс;
  5. Сопротивление при рабочей температуре 350 + 50 «С, должно быть менее 12кОм.

Основной признак, указывающий на возможную неисправность зонда, - повышение расхода топлива в привычном ритме езды. Конечно, могут быть и другие причины повышенного расхода, но в случае с отказом лямбда-зонда машина начинает кушать значительно прожорливее.

Неисправный лямбда-зонд приводит к увеличению количества топлива в рабочей смеси. Этому могут сопутствовать:

  • плохой запуск двигателя;
  • заливание свечей;
  • троение двигателя на холостом ходу;
  • нестабильные обороты.

Если компьютерная диагностика не определяет конкретных причин вышеперечисленных неисправностей, вероятно, некорректно работает лямбда-зонд. Как раз, его неисправность компьютерная диагностика иногда не видит.
Принцип работы лямбда-зонда
Во-первых, почему «лямбда». Этой греческой буквой в автомобилестроении обозначают коэффициент избытка воздуха в смеси воздух-топливо. Напомню, оптимальное соотношение топливо/воздух составляет 1 к 14,7. Почему не датчик, а «зонд». Вероятно потому, что рабочая область датчика находится внутри выхлопной системы, через нее проходит отработавшая смесь. Что-то напоминает медицинские зонды.
Большинство современных лямбда-зондов имеет конструкцию, изображенную на рисунки ниже

Датчики такой конструкции имеют встроенный электрический нагреватель, как минимум три, обычно – четыре вывода. Нагреватель необходим для корректной работы датчика, которая достигается при его нагревании до 300 – 400 градусов Цельсия.

Некоторые лямбда-зонды не имеют собственного нагревательного элемента (одно- и двухвыводные датчики). Учитывая, что датчики установлены в выпускной коллектор, через несколько минут работы двигателя они самостоятельно выходят в рабочий режим. Но все эти «несколько минут» двигатель работает с некорректными показаниями лямбда-зонда, потребляет больше топлива.

Основная задача лябда-зонда – сообщить блоку управления двигателя о количественном составе не участвовавшего в процессе воспламенения кислорода. Поэтому их часто называют датчики кислорода (O2-sensor).

Рабочая зона датчика – наконечник из пористой керамики. Он имеет сложную структуру, которую можно упрощенно изобразить:


Непосредственно рабочий элемент выполнен из оксида циркония 1 с напыленными платиновыми электродами 2,3 (вот почему лямбда-зонды такие дорогие). Один выход датчика подключается к заземлению 4 либо к выводам датчика. Второй выход (сигнальный) 5 – к выводам на блок управления двигателем.

При нагревании до высокой температуры диоксид циркония приобретает свойства твердого электролита. Напряжение на выходе датчика (ЭДС) скачкообразно зависит от концентрации смеси.


Таким образом, при обогащенной смеси датчик формирует на выходе напряжение приблизительно 0,9 Вольт, при обедненной – менее 0,2 Вольта.

В некоторых автомобилях установлены два лямбда-зонда: до и после катализатора. Последний служит для уточнения данных, а также для определения эффективности работы катализатора.