Что такое параметры конденсаторов v losses. Прибор для проверки электролитических конденсаторов

Частотные характеристики конденсаторов являются важными параметрами, которые необходимы для разработки схем. Понимание частотных характеристик конденсатора позволит вам определить, например, какие шумы может подавлять конденсатор или какие флуктуации напряжения цепи питания он может контролировать. Эта статья описывает два типа частотных характеристик: |Z| (импеданс или полное сопротивление) и ESR (эквивалентное последовательное сопротивление конденсатора).

Частотные характеристики конденсаторов

Импеданс Z идеального конденсатора определяется формулой 1, где ω - угловая частота, а C - емкость конденсатора.

Рисунок 1. Идеальный конденсатор

(1)

Из формулы 1 видно, что с увеличением частоты импеданс конденсатора уменьшается. Это показано на рисунке 1. В идеальном конденсаторе нет потерь и эквивалентное последовательное сопротивление (ESR) равно нулю.


Рисунок 2. Частотная характеристика идеального конденсатора

Рисунок 3. Реальный конденсатор


Рисунок 4. Пример частотной характеристики реального конденсатора

Причина, по которой графики |Z| и ESR имеют такой вид как на рисунке 4, можно объяснить следующим образом.

Низкочастотная область

|Z| в этой области уменьшается обратно пропорционально частоте, как и в идеальном конденсаторе. Значение ESR определяется диэлектрическими потерями в конденсаторе.

Область резонанса

Высокочастотная область

(2)


Итак, мы рассмотрели частотную характеристику реального конденсатора. Здесь важно запомнить, что c повышением частоты ESR и ESL уже нельзя игнорировать. Поскольку существуют большое количество приложений, в которых конденсаторы используются на высоких частотах, ESR и ESL становятся важными параметрами, характеризующими конденсатор помимо значения его емкости.

Частотные характеристики конденсаторов различных типов


Рисунок 5. Частотные характеристики конденсаторов разных типов.

Для всех типов конденсаторов |Z| ведет себя одинаково до частоты 1 кГц. После 1 кГц импеданс увеличивается сильнее в алюминиевых и танталовых электролитических конденсаторах, чем в монолитных керамических и пленочных конденсаторах.
Это происходит из-за того, что алюминиевые и танталовые конденсаторы имеют высокое удельное сопротивление электролита и большое ESR. В пленочных и монолитных керамических конденсаторах используются металлические материалы для электродов и, следовательно, они обладают очень маленьким ESR.
Монолитные керамические конденсаторы и пленочные показывают примерно одинаковые характеристики до точки собственного резонанса, но у монолитных керамических конденсаторов резонансная частота выше, а |Z| в индуктивной области ниже.
Эти результаты показывают, что импеданс монолитных керамических конденсаторов SMD типа в широком диапазоне частот имеет небольшое значение. Это делает их наиболее подходящими для высокочастотных приложений.

Частотные характеристики монолитных керамических конденсаторов

Существует также несколько типов монолитных керамических конденсаторов, изготовленных из различных материалов и имеющих различную форму. Давайте посмотрим, как эти факторы влияют на частотные характеристики.

ESR в емкостной области зависит от диэлектрических потерь, вызванных материалом диэлектрика. 2-й класс диэлектрических материалов на основе сегнетоэлектриков имеет высокую диэлектрическую постоянную и, как правило, высокое ESR. 1-ый класс материалов - температурно-компенсированные материалы на основе параэлектриков - имеют низкие диэлектрические потери и низкое ESR.
На высоких частотах в области резонанса и индуктивной области, в дополнение к сопротивлению материала электродов, их форме и количеству слоев, ESR зависит от скин-эффекта и эффекта близости. Электроды часто делают из Ni, но для дешевых конденсаторов иногда применяют Cu, который тоже имеет низкое сопротивление.

ESL

ESL монолитных керамических конденсаторов сильно зависит от внутренней структуры электродов. Если размеры внутренних электродов задаются длиной, шириной и толщиной, то индуктивность ESL может быть определена математически. Значение ESL уменьшается, когда электроды конденсатора короче, шире и тоньше.
На рисунке 6 показана связь между номинальной емкостью и резонансной частотой различных типов монолитных керамических конденсаторов. Вы можете видеть, что при уменьшении размеров конденсатора собственная резонансная частота увеличивается, а ESL уменьшается для одинаковых значений емкости. Это означает, что небольшие конденсаторы короткой длины лучше подходят для высокочастотных приложений.


Рисунок 6.

На рисунке 7 показан обратный LW конденсатор с короткой длиной L и большой шириной W. Из частотных характеристик, показанных на рисунке 8, можно увидеть, что LW конденсатор имеет меньший импеданс и лучшие характеристики, чем обычный конденсатор такой же емкости. С помощью LW конденсаторов можно достичь тех же характеристик, как у обычных конденсаторов, но меньшим числом компонентов. Уменьшение числа компонентов, позволяет сократить расходы и уменьшить монтажное пространство.

Рисунок 7. Внешний вид обратного LW конденсатора.


Рисунок 8. |Z| и ESR обратного LW конденсатора и конденсатора общего назначения

Не смотря на то, что большинство современных мультиметров оснащены функцией измерения емкости конденсаторов, в том числе и электролитических, однако возможность замерить ESR (эквивалентное последовательное сопротивление) на самом деле является большой редкостью.

В то же время значение ESR электролитических конденсаторов является одним из важных показателей, свидетельствующий о качестве и возрасте электролитического конденсатора. У каждого электролитического конденсатора, из-за его старения, со временем, происходит постепенное высыхание электролита, вследствие чего происходит уменьшение проводимости электролита и таким образом увеличивается значение ESR. Такой конденсатор после этого перестает выполнять свою роль и должен быть обязательно заменен.

В данной статье опишем простой измеритель ESR , который позволяет измерять показатель ESR электролитических конденсаторов емкостью более 1 мкф.

Описание работы простого ESR метра

Измеренная величина выводится на микроамперметр. Преимущество схемы – возможность оценить состояние конденсатора, не выпаивая его из платы устройства. Как и во всех подобных схемах , которые можно найти в интернете, основой его является генератор импульсов.

В данной конструкции он собран на одном элементе (DD1.1) и RC-цепи R1 и С1, которая определяет частоту работы генератора. В данном случае это около 100 кГц. Сигнал с генератора усиливается оставшимися пятью элементами микросхемы DD1 до амплитуды в районе 250мВ, который потом поступает на исследуемый Cx.

Исследуемый конденсатор подключается к контактам X1 и X2 ESR измерителя. Для защиты тестера от заряда, имеющегося в конденсаторе Cx, предусмотрена линия защиты состоящая из С4, R8, VD1 и VD2. Измеряемый сигнал после прохождения через конденсатор Cx усиливается транзистором VT1, далее выпрямляется четырьмя диодами VD3-VD6, а затем отфильтровывается конденсатором С6.



К выводам X3 и X4 через резистор R14 подключается микроамперметр со шкалой полного отклонения около 50мкA. Значения, отображаемые на индикаторе в основном пропорционально значению ESR конденсатора. Конечно, необходимо путем калибровки связать значение ESR и емкость нового конденсатора, чтобы можно было обнаружить не соответствие при испорченном конденсаторе.

Калибровка ESR измерителя

Правильно собранный и проверенный на ошибки ESR метр должен заработать при первом же включении. В качестве источника питания можно порекомендовать блок питания на . После подачи питания (5 В) прибор должен сразу показать величину ESR. Для получения более точных значений можно вместо постоянного резистора R14 подключить переменный на 25 кОм и использовать его для точной настройки.

Настройка выполняется просто - путем подключения резисторов малых сопротивлений вместо исследуемого конденсатора. Разметка шкалы должна быть примерно такой: при подключении резистора 1 Ом отклонение стрелки должно быть более 90%, при резисторе в 10 Ом отклонение в районе 40% и при 47 Ом только 10%.

К сведенью, реальное сопротивление (ESR) рабочего электролитического конденсатора не должно превышать 10 Ом.

Как очень просто узнать значение ESR любого конденсатора при ремонтах, используя подручные приборы мы сейчас и разберёмся. Конденсатор, как все знают, имеет такой параметр как ESR (эквивалентное последовательное сопротивление - ЭПС) и измерения его очень полезны при диагностике проблем с электропитаниям. Например в линейных источниках питания, высокий ESR конденсатора фильтра может привести к чрезмерной пульсации тока и далее к перегреву конденсатора с последующим выходом из строя. В общем сейчас мы расскажем, как измерить ESR (ЭПС) конденсатора без - с помощью обычного звукового генератора и мультиметра.

Немного теории про конденсатор

Типичный конденсатор может быть смоделирован как идеальный конденсатор последовательно с резистором - эквивалентное последовательное сопротивление. Если мы приложим напряжение переменного тока на конденсатор при тестировании через токоограничивающий резистор, получим следующую схему:

Схему можно рассматривать как простой резисторный делитель, если частота источника переменного тока достаточно высока, поскольку реактивное сопротивление конденсатора обратно пропорционально частоте практически для любой емкости. Таким образом, мы можем использовать значение измеряемого напряжения на конденсаторе для расчета ESR:

Для ESR получаем такую вышеприведённую формулу. Если использовать генератор с 50 омным выходом, то можно подключить конденсатор при тестировании непосредственно к выходу функционального генератора и измерить напряжение переменного тока на конденсаторе, после чего рассчитать ESR с помощью вышеприведенного уравнения.

Какое напряжение использовать для проверки

Так как электролитические конденсаторы являются поляризованными, мы можем либо использовать напряжение переменного тока с фиксированным значением постоянного тока или просто использовать переменное напряжение достаточно низкого уровня, так чтоб емкости на тесте не превышали максимальное обратное напряжение (обычно меньше 1 В). Большинство ESR метров используют именно этот второй подход, поскольку он прост в реализации и не нужно беспокоиться о полярности измерения. Здесь выберем 100 мВ предел измерения напряжения. Это напряжение выбирается потому, что оно ниже прямого напряжения на p/n-переходе (от 0,2 до 0,7 вольт в зависимости от типа полупроводника) так что можно выполнить измерения ESR прямо в схеме - не выпаивая конденсатор.

На приведенном ниже графике показано расчетное значение ESR в зависимости от измеряемого напряжения при использовании 100 мВ сигнала от 50 Ом источника ЗЧ.


Вообще расчет до сих пор основывался на допущении, что реактивное сопротивление конденсатора близко к нулю. Поэтому для того, чтобы получить наиболее точный результат, важно выбрать частоту измерения на основе значения параметров конденсатора так, чтоб реактивное сопротивление игнорировалось. Напомним, что реактивное сопротивление конденсатора равно:

Если мы игнорируем это и зафиксируем реактивное сопротивление - получим зависимость емкости от частоты. На приведенном ниже графике показаны такие отношения для трех значений (0.5, 1, 2 Ом).


Этот график служит для определения минимальной частоты, необходимой для измерения данной емкости для того, чтобы реактивное сопротивление было ниже заданного значения. Например, если есть конденсатор 10 мкф, минимальная частота на 2 Ома примерно 8 кГц. Если мы хотим, чтобы реактивное сопротивление было меньше 1 Ом, то минимальная частота нужна примерно 16 кГц. И если мы хотим снизить реактивное сопротивление еще до 0,5 Ом, нужно будет задать частоту генератора выше 30 кГц.

Выбор частоты для измерения ЭПС

С одной стороны более высокие частоты лучше для измерения ЭПС из-за снижения реактивного сопротивления, но не всегда желательно. Реактивное сопротивление за счет индуктивности в цепи возрастает пропорционально частоте входного сигнала и эта реактивность может значительно исказить результат измерения. Так что на больших конденсаторах фильтров БП, используемая частота обычно составляет от 1 до 5 кГц, а для небольших конденсаторов на высоких частотах может быть использована от 10 до 50 кГц. Таким образом мы узнали теоретические основы измерения эквивалентного последовательного сопротивления конденсаторов и практический метод домашней проверки ЭПС без применения специальных .


Электролитический конденсатор - необходимая в хозяйстве радиолюбителя вещь. Часто оказывается, что нету под рукой столь нужной маленькой копеечной детальки - из-за такой ерунды приходится ехать в магазин. В целях избежать такой ситуации решил обзавестись такой коробочкой.

Сама коробочка продается в этом магазине - - стоит 2.2$ Так что наш восточный сосед насыпал нам кучку конденсаторов на 3$. Очень неплохая цена для 200 конденсаторов. В конце концов содержимое можно отдать (выкинуть, разобрать в познавательных целях, бусы сплести и т.д.) - а в коробочку в 15 ячеек что-то положить.

Дошло все за 2 недели внезапно.

Фото упаковки (в пленке была)

Размеры:






Есть вешалка на гвоздь:-)

В коробке находятся 200 электролитических конденсатора таких номиналов:



От транспортировки конденсаторы в коробочке почти не перемешались. Чтобы не путаться, я подписал номиналы (почему продавец так не делает сам - не понятно)



Измерения конденсаторов проводил популярным тут тестером (версия в коробочке)

Прибор измеряет емкость, ESR, Vloss. С емкостью более менее все понятно.
Описание Vloss стырил отсюда - :

… он косвенно указывает на уровень утечки конденсатора. Как известно, реальный конденсатор имеет сопротивление диэлектрика между обкладками. Благодаря этому сопротивлению конденсатор медленно разряжается из-за, так называемого, тока утечки.

Так вот, при заряде конденсатора коротким импульсом тока напряжение на его обкладках достигает определённого уровня. Но, как только заряд конденсатора прекращается, напряжение на заряженном конденсаторе падает на очень небольшую величину. Разность между максимальным напряжением на конденсаторе и тем, что наблюдается после завершения заряда и выражают как Vloss. Чтобы было удобней, Vloss выражают в процентах.

Т.е. если он меньше 5% значит все ок.

Про ESR (ЭПС) - Equivalent series resistance(эквивалентное последовательное сопротивление) - тут можно почитать про параметр и способ измерения - .

Определяют по таблице:



Для маленьких емкостей до 5 Ом. Если сильно больше номинала таблицы - то такой кондер лучше выкинуть.

Пациент №1
0.1мкФ; 50В; 4х7 мм; 15 штук; Фирма NCK

Пациент №2
0.22 мкФ; 50 В; 15 штук; 5х11 мм; фирма Chang

ESR должен быть 5. Тут скорее всего прибор не умеет мерить нормально на маленьких емкостях.

Пациент №3
0.47 мкФ; 50 В; 15 штук; 5х11 мм; фирма Chang

ESR должен быть 5.Тут скорее всего прибор не умеет мерить нормально на маленьких емкостях.

Пациент №4
1 мкФ; 50 В; 15 штук; 5х11 мм; фирма Chang

ESR по таблице должен быть 4.5. Тут скорее всего прибор не умеет мерить нормально на маленьких емкостях

Пациент №5
2.2 мкФ; 50 В; 15 штук; 5х10 мм; фирма Chang

ESR по таблице должен быть 4.5 Тут скорее всего прибор не умеет мерить нормально на маленьких емкостях

Пациент №6
3.3 мкФ; 50 В; 15 штук; 5х10 мм; фирма Chang

ESR по таблице должен быть 4.7 Тут скорее всего прибор не умеет мерить нормально на маленьких емкостях

Пациент №7
4.7 мкФ; 50 В; 15 штук; 5х11 мм; фирма Chang

ESR по таблице должен быть 3.0 Тут скорее всего прибор не умеет мерить нормально на маленьких емкостях

Пациент №8
10 мкФ; 25 В; 15 штук; 5х11 мм; фирма Chang


ESR по таблице должен быть 5.3 Тут все ок с ESR

Пациент №9
22 мкФ; 25 В; 15 штук; 5х10 мм; фирма Chang

Что-то судя по таблице пичально тут с ESR

Пациент №10
22 мкФ; 16 В; 15 штук; 5х11 мм; фирма Chang

ESR по таблице должен быть 3.6 Тут с ESR все ок

Пациент №11
47 мкФ; 16 В; 10 штук; 5х10 мм; фирма Jackcon

По таблице ESR должен быть около 1. Сами все видите.

Пациент №12
47 мкФ; 25 В; 10 штук; 5х10 мм; фирма Chang

Что такое ESR?

Теория

ESR - Equivalent Series Resistance - один из параметров конденсатора, характеризующий его активные потери в цепи переменного тока. В эквиваленте его можно представить, как включенный последовательно с конденсатором резистор, сопротивление которого определяется, главным образом, диэлектрическими потерями, а так же сопротивлением обкладок, внутренних контактных соединений и выводов конденсатора. В русскоязычной аббревиатуре - Эквивалентное Последовательное Сопротивление - ЭПС .

Потери в диэлектрике, обусловленные особенностями его поляризации, составляют основную часть потерь в конденсаторе и определяются материалом, а так же толщиной слоя диэлектрика. В электролитических конденсаторах значимой частью ESR является сопротивление жидкого электролита, который используется в качестве составляющей одной из обкладок для обеспечения максимальной площади соприкосновения с диэлектриком. Если сопротивление электролита в конденсаторе рассмотреть как проводник с поперечным сечением, равным площади одной из обкладок и длиной проводника, приблизительно равной толщине пропитанной бумаги, можно предположить, что эта величина будет относительно небольшой. В реальных конденсаторах средних размеров типовое значение составит 0.01Ом при 20°C. Но, следует учитывать, что для конденсаторов большой ёмкости, используемых в фильтрах выпрямителей ИИП на рабочей частоте порядка 100кГц, когда его реактивное сопротивление измеряется тысячными долями Ома, эта величина будет составлять достаточно большие потери. Величина диэлектрических потерь на таких частотах в электролитических конденсаторах фильтров ИИП обычно в несколько раз больше, и лишь в самых лучших случаях может быть примерно равна и даже меньше потерь в электролите.

Сопротивление электролита существенно зависит от температуры по причине изменения степени его вязкости и подвижности ионов. В процессе работы происходит нагрев диэлектрика и электролита переменным током, в связи с чем может существенно уменьшаться сопротивление электролита, тогда ESR конденсатора будет определяться, главным образом, его диэлектрическими потерями. В случаях разогрева до температуры кипения, электролит утрачивает свои первоначальные свойства и при последующем охлаждении становится более вязким, что значительно повышает его сопротивление. Дальнейшая эксплуатация будет вызывать ещё больший разогрев и ухудшение качества электролита, что в последствии приведёт к непригодности конденсатора для дальнейшей работы в устройстве. Обычно неисправные электролитические конденсаторы, в которых кипел электролит, определяются визуально по вздувшемуся и разгерметизированному корпусу.

Для надёжности работы электролитических конденсаторов очень важен правильный выбор его типа, номинала и максимального напряжения в зависимости от режимов. Для фильтров преобразователей, работающих на частотах десятков килогерц, производители выпускают специальные конденсаторы с малым ESR и указывают полное сопротивление переменному току (импеданс Z) для всех номиналов в таблицах. Тип таких конденсаторов сопровождается пометкой в технической документации - Low impedance или Low ESR .

Практика

Электролитические конденсаторы это навереное единственные электронные элементы, которые страдают от высыхания. Если у вас есть любые электронные устройства, которые на протяжении многих лет работали, но вдруг перестали исправно функционировать, имеются хорошие шансы, что один или несколько электролитических конденсаторов внутри него деградировали и стали причиной проблемы. Электролитические конденсаторы выходят из строя несколькими способами: они могут стать электрически проводящие, вызывая постоянный ток через них, что может даже их взорвать. Они могут уменьшаться в величине емкости. Но наиболее часто увеличивается их эквивалентное последовательное сопротивление, которое является очень нежелательным.

ESR электролитического конденсатора обычно составляет доли Ом для конденсаторов низкого напряжения (таких как 1000µF, 16V), и может быть два или три Ома для малой емкости и высокого рабочего напряжения (1uF, 450V). Когда конденсатор стареет, это сопротивление возрастает, и часто из-за этого оборудование полностью прекращает функционировать. Очень часто конденсаторы увеличивают сопротивление ESR до 100 раз от их нормального сопротивления, в то время как их емкость остается хорошей! На измерении емкости они покажут близкое к правильному значение, но они уже не годные! Для анализа состояния конденсатора применяются измерители и пробники ESR. ESR-метр может проверить конденсаторы, даже когда они находятся в цепи. Соединенные параллельно с ним другие детали будут иметь минимальное влияние на измерение. Сколько примерно должен иметь сопротивления тот или иной исправный конденсатор - смотрите в таблице . Таковы особенности, которые делают ESR-метр незаменимым прибором для диагностики и ремонта электронного оборудования.