Как работает турбина машины. Принцип действия, а также мое подробное видео

Статья о том, что такое турбонаддув, как он работает, его основные плюсы и минусы. В конце статьи - видео об особенностях и принципах работы турбонаддува.


Содержание статьи:

Автомобильный двигатель должен обладать такими характеристиками, которые позволили бы ему не отставать от современности. Технические усовершенствования с каждым годом даются все труднее, потому что велосипед-то изобретать никому не хочется, а улучшать качество мотора необходимо.

Поэтому весьма неплохим решением является использование системы принудительного нагнетания воздуха в камеру сгорания. Самые последние инженерные конструкции охватывают не только улучшение принудительного нагнетания воздуха в топливную систему, но и установку такого же устройства в систему выхлопа отработанных газов.

Для чего нужен турбонаддув


Чтобы понимать важность работы турбонаддува и принцип его действия, необходимо знать, что двигатель не может потреблять топливо в чистом виде. Для вспышки бензина в герметичной емкости нужен воздух, иначе двигатель работать не будет.

То есть, в камеру сгорания должна поступать смесь, состоящая из топлива и воздуха в нужной пропорции. В цилиндре эта смесь сгорает. Появившиеся в результате сгорания газы совершают свою главную работу и затем удаляются через систему выхлопа.

Обычный турбонагнетатель дает возможность увеличить мощность двигателя путем нагнетания дополнительного давления воздуха в цилиндре. За счет этого воспламеняемость смеси многократно увеличивается, и мощность мотора, разумеется, тоже повышается.


Проще говоря, с помощью турбонаддува воздух сжимается, и в камеру сгорания он поступает в большем количестве, нежели при атмосферном давлении.

Устройство и принцип работы турбонагнетателя


Главная деталь нагнетателя, выполняющая основную функцию – это крыльчатка с лопастями. Вращаясь с огромной скоростью (200 тыс. оборотов в минуту) и действуя как компрессор, она закачивает воздух в турбинную камеру.

После этого происходит сжатие воздуха, за счет чего объем, который этот воздух занимает, уменьшается. Однако давно известно, что по законам физики во время сжатия воздух имеет свойство нагреваться. И это является главным недостатком системы турбонаддува.

Разумеется, эта проблема не могла пройти мимо внимания конструкторов. Решая эту задачу, специалисты попробовали использовать промежуточное охлаждение воздуха на пути его перехода в двигатель.

В результате появился интеркулер. В этом устройстве применяется эффект теплообменника, который имеет свойство охлаждать воздух за счет хладагента. Интеркулер способен увеличить мощность мотора до 20%, и при этом он еще снижает вероятность детонации выхлопных газов.

Особой разницы между турбонаддувом бензиновых и дизельных двигателей почти нет. Отличие лишь в степени наддува. Дизельные двигатели требуют большего давления, и поэтому они оснащены более мощными нагнетателями воздуха. В бензиновых моторах установлены нагнетатели меньшей мощности, потому что при слишком большом давлении в камере сгорания может возникнуть детонация.

Преимущества турбонаддува


«Дармовая» дополнительная мощность. Существует расхожее мнение: наличие добавочной турбины на выхлопном коллекторе мотора порождает добавочную энергию, которая должна вращать точно такую же турбину на впуске, в результате чего выхлопные газы становятся бесплатным источником энергии для нагнетателя.

Однако эта концепция весьма спорная, потому что существует так называемое сопротивление выпуска. Автомобильные конструкторы многие десятилетия добивались снижения этого сопротивления, потому что именно в этом случае повысится мощность двигателя.

Для этого в систему монтируется специальное генерирующее устройство, которое значительно снижает выходное сопротивление. Поэтому было бы неправильным считать работу турбонаддува на дармовой энергии. «Дешевая придаточная энергия» - это будет звучать более точно.

В техническом отношении этот процесс не представляет ничего сложного. Нагнетатель представляет собой устройство, состоящее из двух колес – компрессорного и турбинного. Турбинное колесо захватывает выхлопные газы, приводящие его в движение. В результате начинает вращаться и компрессорное колесо, которое и служит для сжатия воздуха.

Компрессор в обязательном порядке контактирует с системой охлаждения, потому что в процессе действия его температура поднимается довольно высоко. Сила наддува регулируется с помощью перепускного клапана. В случае необходимости он может переводить часть выхлопа мимо турбины, чтобы понизить внутрисистемное давление.

Повышение мощности двигателя без увеличения его объема и массы. Технология турбонаддува позволяет повышать мощность двигателя без увеличения объема цилиндров и их количества. В результате легкие и небольшие по размеру моторы приобретают отличные характеристики, и, кроме этого, сокращается общая масса автомобиля, уменьшаются тормозной путь и время разгона.

Экономичность. Расход топлива у двигателей, оснащенных системой турбонаддува, в разы меньше, нежели расход топлива у мотора такой же мощности с простым атмосферным нагнетанием воздуха. Это объясняется тем, что в цилиндрах с турбонаддувом на один ход поршня тратится намного меньше топлива за счет полного его сгорания. То есть, бедная смесь компенсируется дополнительным напором воздуха, и в результате мощность увеличивается.

Недостатки


Зависимость от оборотов. «Турбояма». Проблема заключается в следующем: нет активного ускорения при разгоне на малых оборотах. Динамика разгона слабая, уступающая даже машинам с атмосферным нагнетанием. А все дело в том, что при малых оборотах энергия выхлопных газов слабая, и, соответственно, турбина нагнетателя тоже вращается слабо, создавая минимальное давление смеси в камере сгорания. То есть, нужный эффект от турбонаддува возникает только при высоких оборотах двигателя.

Кроме этого, есть еще одна проблема: медленность процесса нагнетания воздуха. Действительно, для того, чтобы создать нужное давление на впуске, необходимо некоторое время. Специалисты проводят инженерные исследования в этой области, и уже в какой-то степени удалось уменьшить этот интервал в динамике работы нагнетателя.

Помимо этого, наличие вариатора или автоматической трансмиссии дает возможность машине во время разгона автоматически переключаться на пониженную передачу. За счет этого вредные последствия от инертности нагнетателя ликвидируются.

Сегодня имеются следующие способы решения проблемы инертности турбонаддува:

  • битурбонаддув (двойной наддув);
  • турбина с адаптивной геометрией;
  • комбинированный наддув.
При двойном турбонаддуве применяются две небольшие турбины, которые в совокупности работают намного быстрее, чем одна с номинальным размером. Число цилиндров распределяется между этими турбинами поровну. Аналогом такой системы может быть применение нескольких компрессоров, которые приходят в движение на разных оборотах мотора, каждый в своем режиме.

Турбина с адаптивной геометрией способна изменять размер впускного канала и тем самым регулировать силу потока выхлопных газов, что также повышает эффективность работы системы.

Комбинированный наддув состоит из турбокомпрессора и механического нагнетателя. Нагнетатель создает нужное давление на малых оборотах, но как только обороты возрастают до определенной величины, в работу включается турброкомпрессор.

Высокая температура. Как уже было сказано, сжатие воздуха влечет за собой его нагрев, что отражается на работе мотора не самым лучшим образом. Поэтому зачастую приходится подключать дополнительное охлаждение, и на это уходит часть энергии.

Однако несмотря на перечисленные недостатки, турбонаддув – это отличное средство для повышения мощности и эффективности ДВС, а также его экономичности. Кроме того, многолетний опыт специалистов показывает, что варианты усовершенствования этой системы еще не исчерпаны.

Считается, что престижный автомобиль просто обязан быть динамичным. Да и любому спешащему автолюбителю хочется победить время скоростью своего коня, без глобальных на это затрат топлива. И вот сегодня, в 21 веке, под массивным капотом скрыт скромный четырехцилиндровый рядный блок, разгоняющий до 100 км/час даже достаточно массивную машину за несколько секунд. А все потому, что у него есть турбина — приспособление, которое применяется в моторах с турбонаддувом.

Принцип действия турбины

Турбина, как инженерное творение было придумано и разработано в 1905 году швейцарцем Альфредом Буше. Он получил патент на компрессор, который приводился в действие за счет отработанных газов автомобиля. Целью его долгого пути развития и усовершенствования является повышение топливной эффективности.

Чтобы увеличить мощность при уменьшении рабочего объема двигателя, нужно в той же камере сгорания сжечь больше бензина. С химической точки зрения, сгорание – это реакция окисления, окислителем в которой считается кислород. Нужно умудриться забрать с внешней атмосферы больше воздуха. То есть, для решения проблемы, необходимо повысить количество топливно-воздушной смеси, подаваемую на двигатель.

Суть же турбины вот в чем: выпускающиеся под давлением из выпускного коллектора газы, попадают в систему выхлопа, вращая, как крылья мельницы, колесо с лопатками — турбину. В то же время, закрепленный с ней на одном валу, компрессор начинает нагнетать в цилиндры дополнительный воздух, тем самым повышая так недостающее количество окислителя в камере сгорания. Число оборотов турбины тесно связано с давлением газов в, так называемой, горячей части. Управлять ими можно при помощи специального клапана. В холодной части работает нагнетатель, доставляющий дополнительную порцию атмосферного воздуха во впускной коллектор. То есть, можно условно разделить турбонагнетатель на ротор и компрессор. Если потребление окислителя резко сокращается, например, при сбросе газа, когда ротор еще инерционно крутится, излишний воздух удаляется через специальный клапан впускного коллектора, называемый «блоу оф».

В отличие от механических нагнетателей в турбонаддуве нет отбора мощности от двигателя, а значит, КПД такой конструкции должен быть намного выше.

Этот круговорот вторичного использования энергии продуктов сгорания топлива эффективно повышает мощность двигателя.

Проблемы турбированных двигателей и их решение

И даже в работе такого гениального изобретения, как турбина, есть свои скрытые негативные стороны.

А дело в том, что пока мотор не раскрутится до определенных оборотов, турбина практически не работает. А начав работать, превращает смирный атмосферный мотор в ревущего хищника. Это, как два двигателя в одном: если едешь не торопясь, он ведет себя просто как маломощный мотор. Но, когда нужна дополнительная мощность, например, при обгоне, турбонаддув действует как пинок, ускоряющий автомобиль, будто под капотом находится мотор большего объема. Другими словами, на малых оборотах количество газов совсем небольшое, и их скорость и давление также мало. Поэтому и турбина раскручивается до совсем небольших оборотов, и толку от компрессора с его подачей дополнительного воздуха почти равно нулю. В результате этого непредвиденного дефекта на низах мотора отсутствует нужная мощность. И только примерно с 4000 об/мин турбонаддув «выстреливает».

Обороты, при которых турбина и компрессор начинают работать эффективно, называются «турбо-зоной», а процесс преодоления более низкого диапазона оборотов закрепилось в названии «турбо-яма».

Для борьбы с таким дефектом можно поставить две турбины вместо одной, по одному нагнетателю на каждую долю блока цилиндров. Такую схему часто называют «би-турбо». Или установить механический нагнетатель, помогающий мотору на низких оборотах. Если турбина все-таки одна, то современные многоступенчатые трансмиссии позволяют передать передаточные числа таким образом, что турбо-яма в принципе не ощущается, фактически мотор не покидает турбо-зоны. Исключение составляет только момент, когда нужно двинуться с места.

Еще один не оставленный без внимания нюанс – это то, что турбина, компрессор и все его компоненты работают в зоне самых высоких температур, так как выхлопные газы достигают температуры в 2500-3000 градусов С. Кроме того, так как турбокомпрессор нагнетает воздух двигателя под давлением, плюс еще давление, создаваемое клапанами в цилиндре, воздух в камерах сильно нагревается. Его температура может подниматься до температур, достаточных для возникновения детонации. Поэтому в комплексе с турбиной под капот устанавливают специальный охладитель, называемый «интеркуллер», обладающий также дополнительными положительными свойствами. В основном моторы с турбонагнетателем рассчитывают только на высокооктановый бензин.

Турбина на авто – и мечта, и реальность

Долгое время турбонаддув оставался исключительно дизельным явлением. Однако рост цен на нефть быстро вернул инженеров к мысли о необходимости срочной модернизации всей линейки двигателей. За что нам и можно сказать спасибо! Ведь это и привело к возможности любого желающего стать обладателем скоростного авто, всего лишь приобретя комплекс с турбонаддувом, полностью готовый к эксплуатации, с уже устраненными проблемами, наполненный сплошными плюсами и позволяющий получать лишь удовольствие от езды.

С появлением на рынках турбин, появилось множество других нововведений, таких как подшипники с керамическими шариками , которые сами по себе заполнены смазкой, и другие. Также турбонаддув помог в решении такой проблемы, как снижение рабочего объема двигателей при сохранении необходимой мощности . Что, в свою очередь, уменьшает выбросы, радуя экологов.

Неизвестно, что будет под капотами автомобилей лет через 20 – ближайшее будущее мы смело можем именовать турбо эрой.

Здравствуйте, уважаемые читатели и посетители блога Автогид.ру. Сегодня в статье мы с вами разберёмся и узнаем как работает турбина на бензиновом двигателе. Тема, конечно интересная и в первую очередь для владельцев бензиновых турбированных автомобилей. Зачастую информации о принципе работы и устройстве турбины на бензиновом моторе достаточно мало или она слишком сложна для восприятия обыкновенного человека.

Использование турбины позволяет любому двигателю с малым объёмом увеличить мощность без возрастания расхода топлива и сокращения ресурса эксплуатации. После подключения турбины мотор словно получает невидимый пинок и работает значительно шустрее. Существуют особенности использования бензиновых моторов, оснащённых турбинами.

Их необходимо учитывать для продления срока службы устройства и использования двигателя машины с максимальной эффективностью. Перед тем как говорить о принципе работы турбины на бензиновом двигателе надо узнать историю её появления и широкого использования производителями автомобилей.

История появления турбированного бензинового мотора

Первые двигатели внутреннего сгорания, как и все технические первопроходцы имели очень «сырой» вид и требовали доработки. Время шло и на рынке появлялись надёжные и долговечные модели бензиновых моторов, которые радовали водителей своей неприхотливостью в обслуживании и выносливостью. Требования к моторам среди потребителей возрастали и критерии контролирующих органов ужесточались.

Первоначально развитие бензиновых моторов осуществлялось во многом по экстенсивному пути. Для увеличения мощность двигателя его объём просто увеличивался. Все было отлично если бы не возрастающий пропорционально расход топлива и количество вредных выбросов в окружающую среду. Продолжаться это больше так не могло и перед инженерами и создателями двигателей внутреннего сгорания была поставлена очень непростая задача.

Добиться увеличения мощность ДВС (двигателя внутреннего сгорания) без увеличения объёма мотора и расхода топлива. Решений было предложено большое количество, но выбрано было единственное верное направление развития моторов. Было решено работать над увеличением эффективности образования и сгорания топливно-воздушной смеси в моторе автомобиля.

Единственный верный способ увеличить эффективность сгорания смеси топлива и воздуха – это увеличить поступление воздуха в цилиндры мотора. При этом дополнительный объём воздуха должен был поступать принудительно за счёт создаваемого давления.

Дополнительное количество воздуха значительно усиливало сгорание топлива в цилиндрах мотора и тем самым высвобождая дополнительные мощности при неизменном объёме. Идея простая, но требующая реализации в виде появления устройства для нагнетания воздуха в цилиндры двигателя.

Для решения этой задачи автомобильные инженеры решили опираться на разработки авиационной промышленности. Она уже очень давно использовала турбины. Первые турбированные бензиновые моторы появились на грузовых автомобилях в тридцатых годах прошлого века. Грузовики использующие турбины прибавили в мощности и оптимизировали расход топлива.

Удачный опыт использования турбины как устройства для нагнетания массы воздуха в грузовых машинах подвиг конструкторов и инженеров автомобильной промышленности ускорить движение в этом направлении. Первые автомобили с бензиновыми моторами оснащёнными турбинами начали продаваться на территории США в 60-х годах прошлого века.

Первые модели автомобилей этого типа автолюбители из США встретили настороженно и с подозрительностью. Только через 10 лет в 70-х годах прошлого века их оценили по достоинству и начали активно использовать при создании машин со спортивным уклоном. На серийные модели автомобилей турбины устанавливали в очень малом количестве.

Это было вызвано тем, что первые модели моторов с турбинами оказались очень «прожорливыми» и имели массу прочих мелких недоработок, портящих первое впечатление. Значительный расход топлива не дал возможность наладить широкое производство машин с турбированным моторами. Значительно замедлило внедрение турбин в моторы нефтяной кризис, закончившийся увеличением цен на топливо. Люди стали больше экономить.

Лишь в конце 90-х годов после значительного улучшения конструкции турбины и бензинового мотора в целом удалось изменить ситуацию. Это стало отправной точкой начала эры развития и становления бензиновых турбированных двигателей.


Турбина бензинового мотора за счёт использования компрессора принудительно нагнетает в цилиндры массу воздуха. Значительно повышается обогащение кислородом топливно-воздушной смеси и улучшается сгораемость бензина. Коэффициент полезного действия существенно возрастает. Эффективность работы мотора увеличивается при неизменно объёме.

Мощность двигателя при использовании турбины возрастает прямо пропорционально количеству сжигаемого за единицу времени бензина. Для обеспечения максимального быстрого сгорания топлива в цилиндрах мотора необходим значительный объём воздуха. Именно его в достаточном количестве направляет турбина за счёт работы компрессора. Он принудительно подаётся в цилиндры, обогащая топливно-воздушную смесь.

Если разрезать турбину бензинового мотора вдоль корпуса можно увидеть следующее рабочие элементы:

Корпус подшипников.

Служит для размещения ротора, представленного валом несущим на себе турбинные и компрессорные кольца, оборудованные лопастями. Именно они при вращении захватывают воздуха и направляют его в цилиндры мотора.

Масляные каналы.

Пронизывают корпус турбины словно кровеносные сосуды на теле человека. Служат для своевременной доставки моторного масла к трущимся и вращающимся элементам. Снижают тем самым износ рабочих элементов бензиновой турбины.

Подшипник скольжения.

Его главная задача обеспечить свободное и плавное вращение ротора турбины с его лопастями для захвата достаточного количества воздуха. Его смазку и охлаждение обеспечивает циркулирующее в турбине моторное масло.

Корпус.

Корпус турбины, имеющий форму улитки обеспечивают защиты от внешних механических воздействий рабочие элементы устройства для нагнетания воздуха.

Привод турбины бензинового мотора осуществляется за счёт подачи отработанного газа энергия которого заставляет ротор вращать лопасти. Сложного в конструкции и работе ничего нет всё понятно и достаточно просто.

При запуске бензинового мотора отработанные газы и цилиндров мотора направляются прямиком в турбину. Они приводят в движение ротор, отдавая ему свою энергию. Далее, через приёмную трубу они поступают в глушитель и выводятся в окружающую среду.

Вал ротора раскручивает колесо компрессора и лопаточное колесо. Они захватывают воздух из окружающей среды, поступающий через воздушный фильтр мотора. Он принудительно подаётся в цилиндры двигателя. Компрессор турбины может повышать давление воздуха до 80%.

Работа турбины бензинового мотора позволяет обогащённую кислородом топливно-воздушную смесь наполнять цилиндры в большом количестве. Объём мотора остаётся неизменным, но его мощность существенно возрастает. В среднем использование турбины даёт возможность увеличить мощность силовой установки машины на 20-30%.

Что необходимо знать для грамотной эксплуатации бензиновой турбины?


Для обеспечения долговечной работы турбины на бензиновом моторе не нужно экономить на количестве и качестве моторного масла. Любители пропускать интервалы замены масла в моторе рано или поздно столкнуться с проблемами и нарушениями в работе турбины. Она очень восприимчива к качеству используемого масла. Дешёвое масло не сможет обеспечить необходимый уровень трения рабочих элементов и они при интенсивном использовании автомобиля достаточно быстро придут в негодность и потребуют замены.

При покупке автомобиля, оснащённого турбиной надо обязательно выполнить замену моторного масла и прочистку всей системы. Смешивать доливая другое масло нельзя, так как оно теряет свои свойства и эффективность его работы стремится к нулю. Полная замена масла позволит избежать вредных воздействий и усилить защиту турбины бензинового мотора.

Есть некоторые особенности эксплуатации мотора, оснащённого турбиной. После длительной поездки на машине двигатель во время остановки сразу глушить не нужно. Необходимо дать ему время поработать на холостых оборотах и немножко остыть. Резкое выключение мотора создаёт температурный перепад отрицательным образом, сказывающийся на прочности и надёжности рабочих элементов турбины мотора.

Преимущества и недостатки турбированного мотора


Главным преимуществом любого бензинового мотора, оснащённого турбиной является увеличение его мощности на 20-30%. При одинаковом объёме с традиционным атмосферным ДВС его мощность выше на треть. Эффективность использования топлива существенно повышается.

Максимальный уровень сгорания топливно-воздушной смеси позволяет существенно снизить выброс загрязняющих веществ в окружающую среду. Максимальное использование турбированных моторов повсеместно настоящая мечта защитника окружающей среды. На этом преимущества турбированного мотора заканчиваются.

Турбированные моторы очень требовательны к качеству используемого топлива и моторного масла. Всё это в совокупности приводит к увеличению расходов на использование автомобиля в долгосрочной перспективе. Обслуживание турбированного мотора потребует от водителя больших расходов денежных средств.

Ремонт турбины требует использования специального оборудования и материалов. Самостоятельно его выполнить очень проблематично. Зачастую век отремонтированной турбины недолог и в конечном итоге потребуется её замена. Это может ощутимо ударить по кошельку владельца машины.

Заключение

Появление турбированных моторов является ещё одной ступенькой развития силовой автомобильных установок. Современные требования к экологической составляющей двигателя существенно ужесточаются и конкуренция между производителями машин обостряется.

На мощностные характеристики, которые демонстрирует автомобиль, непосредственно влияет показатель наполнения цилиндров воздушно-топливной смеси. В целях увеличения степени обогащения этой смеси компании-производители оборудуют транспортные средства турбокомпрессорами . Вместе с тем, далеко не каждая модель и модификация той или иной марки автомобиля имеет под капотом турбированный мотор. Это первая причина, по которой владельцы устанавливают турбину на авто. Кроме того, турбонагнетатель имеет свойство со временем изнашиваться. В этом случае нужна замена турбины.

В чем преимущества турбин на автомобиле?

Турбированный силовой агрегат приобретает все большую популярность, и для этого есть множество причин, поскольку перечень преимуществ турбонагнетателя весьма обширен. Привлекательность турбины состоит в следующем:

  • значительное увеличение мощности транспортного средства;
  • существенное снижение топливного расхода;
  • быстрая окупаемость турбины, что зависит от частоты использования автомобиля;
  • экономия, поскольку имеющийся в машине двигатель не требуется менять на более мощную версию, что достаточно дорого;
  • стабильность функционирования двигателя;
  • экологичность - у авто с турбированным двигателем наблюдается меньшая степень токсичности выхлопных газов.

Как правильно выбрать турбину?

Турбина и двигатель должны функционировать сбалансировано, и каждый тип мотора требует определенной турбины. Разумеется, лучше всего приобретать оригинальный турбонаддув , в этом случае производитель учитывает все особенности двигателей своих же автомобилей и выпускает турбины под конкретные силовые агрегаты, которые идеально им подходят. Поскольку такие турбины стоят недешево, стоит обратить внимание на неоригинальные модели, но выпускаемые известными изготовителями, имеющими лицензии на такое производство. В этом случае турбины на каждом этапе производства проходят тщательное тестирование.

Каковы критерии выбора?

При выборе турбины следует определиться с тремя основными факторами:

  1. как планируется эксплуатировать автомобиль - для гонок или простых повседневных поездок;
  2. каковы характеристики мотора - чем меньше рабочий объем двигателя, тем меньшая турбина требуется, и наоборот. Для двигателей с объемом 3 и более литра понадобится сдвоенная или большая турбина;
  3. какой тип мотора планируется оснащать ей - от этого зависит материал, из которого она изготовлена. Дизельные и бензиновые агрегаты работают в разном температурном режиме, и турбина должна обладать соответствующей жароустойчивостью.

Не следует переоценивать возможности автомобиля и «вешать» на него силовые нагрузки, к которыми он может не справиться. Чтобы не ошибиться в выборе, лучше проконсультироваться со специалистом.

Слово «турбонаддув» хоть раз в жизни слышал, вероятно, каждый автомобилист. Еще в старые советские времена среди гаражных мастеров ходило множество невероятных слухов о колоссальном приросте мощности, даваемом турбонаддувом, однако реально с моторами такого типа в легковых авто никто тогда не сталкивался.

Сегодня же наддувные двигатели прочно вошли в нашу действительность, однако в реальности далеко не каждый может сказать о том, как работает турбина в автомобиле, и какая существует реальная польза либо вред от использования турбины.

Что ж, попробуем разобраться в этом вопросе и узнать, каков принцип работы турбонаддува, а также о том, какие он имеет преимущества и недостатки.

Автомобильная турбина — что это такое

Говоря простым языком, автомобильная турбина представляет собой механическое устройство, подающее в цилиндры воздух под давлением. Задачей турбонаддува является увеличение мощности силового агрегата при сохранении рабочего объема мотора на прежнем уровне.

То есть, по факту, используя турбонаддув, можно добиться пятидесятипроцентного (и даже более) прироста мощности в сравнении с безнаддувным мотором аналогичного объема. Обеспечивается повышение мощности тем, что турбина подает в цилиндры воздух под давлением, что способствует лучшему горению топливной смеси и, как результат, мощностной отдаче.

Чисто конструктивно турбина представляет собой механическую крыльчатку, приводимую в действие выхлопными газами двигателя. По сути, используя энергию выхлопа, турбонаддув способствует захвату и подаче «жизненно важного» для мотора кислорода из окружающего воздуха.

Сегодня турбонаддув выступает самой эффективной в техническом плане системой для повышения мощности мотора, а также достижения и токсичности отработанных газов.

Видео — как работает автомобильная турбина:

Турбина одинаково широко применяется как на бензиновых силовых агрегатах, так и на дизелях. При этом в последнем случае турбонаддув оказывается наиболее эффективным ввиду высокой степени сжатия и малой (относительно бензиновых моторов) частоты вращения коленвала.

Кроме того, эффективность применения турбонаддува на бензиновых двигателях ограничена возможностью проявления детонации, которая может возникать при резком увеличении оборотов мотора, а также температура выхлопных газов, которая составляет порядка одной тысячи градусов по Цельсию против шестисот у дизеля. Само собой, что подобный температурный режим способен привести к разрушению элементов турбины.

Конструктивные особенности

Несмотря на то, что турбонаддувные системы у различных производителей имеют свои отличия, существует и ряд общих для всех конструкций узлов и агрегатов.

В частности, любая турбина имеет воздухозаборник, установленный непосредственно за ним воздушный фильтр, заслонку дросселя, сам турбокомпрессор, интеркулер, а также впускной коллектор. Элементы системы соединяются между собой шлангами и патрубками, выполненными из прочных износостойких материалов.

Как наверняка заметили читатели, знакомые с конструкцией автомобиля, существенным отличием турбонаддува от традиционной системы впуска является наличие интеркулера, турбокомпрессора, а также конструктивных элементов, предназначенных для управления наддувом.

Турбокомпрессор или, как его еще называют, турбонагнетатель, представляет собой основной элемент турбонаддува. Именно он отвечает за увеличение давления воздуха во впускном тракте двигателя.

Конструктивно турбокомпрессор состоит из пары колес – турбинного и компрессорного, которые размещаются на роторном валу. При этом каждое из этих колес имеет собственные подшипники и заключено в отдельный прочный корпус.

Как работает турбонаддув в машине

Энергия отработанных выхлопных газов в двигателе направляется на турбинное колесо нагнетателя, которое под воздействием газов вращается в своем корпусе, имеющем особую форму для улучшения кинематики прохождения выхлопных газов.

Температура здесь весьма высока, а потому корпус и сам ротор турбины вместе с ее крыльчаткой выполняются из жаропрочных сплавов, способных выдерживать длительное высокотемпературное воздействие. Также в последнее время для этих целей используются керамические композиты.

Компрессорное колесо, вращаемое за счет энергии турбины, осуществляет всасывание воздуха, его сжатие и последующее нагнетание в цилиндры силового агрегата. При этом вращение компрессорного колеса также производится в отдельной камере, куда попадает воздух после прохождения через воздухозаборник и фильтр.

Видео — для чего нужен турбокомпрессор и как он работает:

Как турбинное, так и компрессорные колеса, как уже говорилось выше, жестко закрепляются на роторном валу. При этом вращение вала производится с помощью подшипников скольжения, которые смазываются моторным маслом из основной системы смазки двигателя.

Подача масла к подшипникам производится по каналам, которые располагаются непосредственно в корпусе каждого подшипника. Для того, чтобы герметизировать вал от попадания масла внутрь системы, используются специальные уплотнительные кольца из жаростойкой резины.

Безусловно, основной конструктивной сложностью для инженеров при проектировании турбонагнетателей является организация их эффективного охлаждения. Для этого в некоторых бензиновых моторах, где тепловые нагрузки наиболее высоки, нередко применяется жидкостной охлаждение нагнетателя. При этом корпус, в котором расположены подшипники, включается в двухконтурную систему охлаждения всего силового агрегата.

Еще одним важным элементом системы турбонаддува является интеркулер. Его предназначением выступает охлаждение поступающего воздуха. Наверняка многие из читателей этого материала зададутся вопросом о том, зачем охлаждать «забортный» воздух, если его температура и так невелика?

Ответ кроется в физике газов. Охлажденный воздух увеличивает свою плотность и, как результат, возрастает его давление. При этом конструктивно интеркулер представляет собой воздушный либо жидкостный радиатор. Проходя через него, воздух снижает температуру и увеличивает свою плотность.

Важной деталью системы турбонаддува автомобиля выступает регулятор давления наддува, представляющий собой перепускной клапан. Он применяется с целью ограничить энергию отработавших газов двигателя и направляет их часть в сторону от колеса турбины, что позволяет регулировать давление наддува.

Привод клапана может быть пневматическим или электрическим, а его срабатывание осуществляется за счет сигналов, получаемых от датчика давления наддува, которые обрабатываются блоком управления двигателем автомобиля. Именно электронный блок управления (ЭБУ) подает сигналы на открытие или закрытие клапана в зависимости от данных, получаемых датчиком давления.

Помимо клапана, регулирующего давление наддува, в воздушном тракте непосредственно после компрессора (где давление максимально) может монтироваться предохранительный клапан. Целью его использования является защита системы от скачков давления воздуха, которые могут быть в случае резкого перекрытия дроссельной заслонки двигателя.

Избыточное давление, возникающее в системе, стравливается в атмосферу с помощью так называемого блуофф-клапана, либо направляется на вход в компрессор клапаном типа bypass.

Принцип работы автомобильной турбины

Как уже писалось выше, принцип действия турбонаддува в автомобиле основывается на использовании энергии, выделяемой отработавшими газами двигателя. Газы вращают колесо турбины, которое, в свою очередь, через вал передает крутящий момент колесу компрессора.

Видео — принцип работы двигателя с турбонаддувом:

Тот, в свою очередь, сжимает воздух и осуществляет его нагнетение в систему. Охлаждаясь в интеркулере, сжатый воздух попадает в цилиндры двигателя и обогащает смесь кислородом, обеспечивая эффективную «отдачу» мотора.

Собственно, именно в принципе действия турбины в автомобиле кроются ее достоинства и недостатки, устранить которые инженерам весьма непросто.

Плюсы и минусы турбонаддува

Как уже известно читателю, турбина в автомобиле не имеет жесткой связи с коленчатым валом двигателя. По логике, подобное решение должно нивелировать зависимость оборотов турбины от частоты вращения последнего.

Тем не менее, в реальности эффективность работы турбины находится в прямой зависимости от оборотов мотора. Чем сильнее открыта , чем больше обороты мотора, тем выше энергия выхлопных газов, вращающих турбину и, как результат, больше объем воздуха, нагнетаемого компрессором в цилиндры силового агрегата.

Собственно говоря, «опосредованная» связь между оборотами и частотой вращения турбины не через коленвал, а через выхлопные газы, приводит к «хроническим» недостаткам турбонаддувов.

Среди них – задержка роста мощности мотора при резком нажатии на педаль «газа», ведь турбине нужно раскрутиться, а компрессору – дать цилиндрам достаточную порцию сжатого воздуха. Подобное явление называют «турбоямой», то есть моментом, когда отдача мотора минимальна.

Исходя из этого недостатка сразу исходит и второй – резкий скачок давления после того, как двигатель преодолевает «турбояму». Это явление получило название «турбоподхвата».

И главной задачей инженеров-мотористов, создающих наддувные двигатели, является «выравнивание» этих явлений для обеспечения равномерной тяги. Ведь «турбояма», по своей сути, обуславливается высокой инерционностью системы турбонаддува, ведь для приведения наддува «в полную готовность» требуется определенное время.

В результате потребность в мощности со стороны водителя в конкретной ситуации приводит к тому, что мотор не способен «выдать» все свои характеристики одномоментно. В реальной жизни это, например, потерянные секунды при сложном обгоне…

Безусловно, сегодня существует ряд инженерных ухищрений, позволяющих минимизировать и даже полностью исключить неприятный эффект. В их числе:

  • использование турбины с переменной геометрией;
  • использование пары турбокомпрессоров, расположенных последовательно либо параллельно (так называемые схемы twin-turdo или bi-turdo);
  • применение комбинированной схемы наддува.

Турбина, имеющая переменную геометрию, осуществляет оптимизацию потока выхлопных газов силового агрегата за счет изменения в режиме реального времени площади входного канала, через который они поступают. Подобная схема турбин очень распространена в турбонаддувах дизельных моторов. В частности, именно по этому принципу функционируют турбодизели Volkswagen серии TDI.

Схема с парой параллельных турбокомпрессоров используется, как правило, в мощных силовых агрегатах, построенных по V-образной схеме, когда каждый ряд цилиндров оснащен собственной турбиной. Минимизация эффекта «турбоямы» достигается за счет того, что две малые турбины имеют гораздо меньшую инерцию, нежели одна большая.

Система с парой последовательных турбин используется несколько реже двух перечисленных, но она же обеспечивает наибольшую эффективность за счет того, что двигатель оснащается двумя турбинами, обладающими различной производительностью.

То есть при нажатии на педаль «газа» в действие вступает малая турбина, а при росте скорости и оборотов подключается вторая, и они работают суммарно. При этом эффект «турбоямы» практически исчезает, а мощность нарастает планомерно сообразно ускорению и росту оборотов.

При этом многие автопроизводители используют даже не два, а три турбокомпрессора, как например компания BMW в своей схеме triple-turbo. А вот инженеры, проектировавшие суперкар Bugatti, вообще оснастили силовой агрегат сразу четырьмя последовательными компрессорами, что позволило достичь уникальных мощностных характеристик при вполне «гражданском» поведении мотора в рядовых режимах езды.