Поршень двигателя автомобиля: деталь достойна похвалы. Поршневой двигатель

Поршень является одним из элементов кривошипно-шатунного механизма, на котором основан принцип работы многих двигателей внутреннего сгорания. В приведенной статье рассмотрена конструкция и особенности данных деталей.

Определение

Поршень — это деталь, выполняющая в цилиндре возвратно-поступательные движения и обеспечивающая преобразование в механическую работу изменения давления газа.

Назначение

С участием этих деталей реализуется термодинамический процесс работы мотора. Так как поршень — это один из элементов кривошипно-шатунного механизма, он воспринимает давление, производимое газами, и передает усилие на шатун. К тому же он обеспечивает герметизацию камеры сгорания и отвод от нее тепла.

Конструкция

Поршень — это трехсоставная деталь, то есть его конструкция включает три компонента, выполняющих различные функции, и две части: головку, в которую объединяют днище и уплотняющую часть, и направляющую часть, представленную юбкой.

Днище

Может иметь различную форму в зависимости от многих факторов. Например, конфигурация днища поршней двигателя внутреннего сгорания определяется расположением прочих конструктивных элементов, таких как форсунки, свечи, клапаны, формой камеры сгорания, особенностями протекающих в ней процессов, общей конструкцией двигателя и т. д. В любом случае она определяет особенности функционирования.

Выделяют два основных типа конфигурации днища поршней: выпуклая и вогнутая. Первый обеспечивает большую прочность, но ухудшает конфигурацию камеры сгорания. При вогнутой форме днища камера сгорания, наоборот, имеет оптимальную форму, однако более интенсивно откладывается нагар. Реже (в двухтактных двигателях) встречаются поршни с днищем, представленным выступом отражателя. Это нужно при продувке для направленного перемещения продуктов сгорания. Детали бензиновых двигателей обычно имеют днище плоской или почти плоской формы. Иногда в них присутствуют канавки для полного открытия клапанов. У моторов с непосредственным впрыском поршни характеризуются более сложной конфигурацией. У дизельных двигателей они отличаются наличием камеры сгорания в днище, обеспечивающей хорошее завихрение и улучшающей смесеобразование.

Большинство поршней односторонние, хотя встречаются и двусторонние варианты, которые имеют два днища.

Расстояние между канавкой первого компрессионного кольца и днищем носит название огневого пояса поршня. Очень важно значение его высоты, которое различно для деталей из разных материалов. В любом случае выход высоты огненного кольца за рамки минимально допустимого значения может повлечь прогар поршня и деформацию посадочного места верхнего компрессионного кольца.

Уплотняющая часть

Здесь находятся маслосъемные и компрессионные кольца. У деталей первого типа каналы имеют сквозные отверстия для поступления внутрь поршня удаленного с поверхности цилиндра масла, откуда оно попадает в поддон картера. Некоторые из них имеют ободок из коррозионностойкого чугуна с канавкой для верхнего компрессионного кольца.

Состоящие из чугуна, служат для создания плотного прилегания поршня к цилиндру. Поэтому они являются источником наибольшего трения в моторе, потери от которого составляют 25% от общего количества механических потерь в моторе. Количество и расположение колец определяются типом и назначением двигателя. Наиболее часто используют 2 компрессионных и 1 маслосъемное кольцо.

Компрессионные кольца выполняют задачу предотвращения поступления газов в картер из камеры сгорания. Наибольшие нагрузки приходятся на первое из них, поэтому в некоторых двигателях его канавку укрепляют стальной вставкой. Компрессионные кольца могут быть трапециевидной, конической, бочкообразной формы. Некоторые из них имеют вырез.

Служит для удаления лишнего масла с цилиндра и препятствует его попаданию в камеру сгорания. Для этого в нем есть отверстия. Некоторые варианты имеют пружинный расширитель.

Направляющая часть (юбка)

Имеет бочкообразную (криволинейную) либо конусообразную форму для компенсации На ней находятся два прилива для поршневого пальца. На этих участках юбка имеет наибольшую массу. К тому же там наблюдаются наибольшие температурные деформации при нагреве. Для их снижения используют различные меры. В нижней части юбки может находиться маслосъемное кольцо.

Для передачи усилия от поршня или к нему применяют чаще всего кривошип либо шток. Поршневой палец служит для соединения данной детали с ними. Он состоит из стали, имеет трубчатую форму и может быть установлен несколькими способами. Чаще всего используют плавающий палец, который может проворачиваться в процессе работы. Для предотвращения смещения его фиксируют стопорными кольцами. Жесткое закрепление применяют значительно реже. Шток в некоторых случаях выполняет функцию направляющего устройства, заменяя юбку поршня.

Материалы

Поршень двигателя может состоять из различных материалов. В любом случае они должны обладать такими качествами, как высокая прочность, хорошая теплопроводность, сопротивляемость коррозии и низкие коэффициент линейного расширения и плотность. Для производства поршней используют сплавы алюминия и чугун.

Чугун

Отличается большой прочностью, износостойкостью и невысоким Последнее свойство обеспечивает возможность работы таких поршней с малыми зазорами, благодаря чему достигается хорошее уплотнение цилиндра. Однако вследствие значительного удельного веса чугунные детали используют лишь в тех двигателях, где возвратно движущиеся массы имеют силы инерции, составляющие не более шестой части сил давления на днище поршня газов. Кроме того, из-за низкой теплопроводности разогрев днища чугунных деталей в процессе работы двигателя достигает 350-450 ° С, что особо нежелательно для карбюраторных вариантов, так как приводит к калильному зажиганию.

Алюминий

Данный материал используют для поршней наиболее часто. Это объясняется небольшим удельным весом (алюминиевые детали легче чугунных на 30%), высокой теплопроводностью (в 3-4 раза больше, чем у чугуна), обеспечивающей разогрев днища не более чем до 250 °С, что предоставляет возможность увелич ения степен и сжатия и обеспечивает лучше е наполнени е цилиндро в, и высокими антифрикционны ми свойствами. При этом алюминий имеет больший в 2 раза, чем у чугуна, коэффициент линейного расширения , что вынуждает делать большие промежутки со стенками цилиндров, то есть размеры поршней из алюминия меньше, чем из чугун а, для одинаковых цилиндров . К тому же такие детали и меют меньшую прочность, особенно в нагретом состоянии (при 300 °С она снижается на 50-55%, тогда как у чугун ных — на 10%).

Для снижения степени трения стенки поршней покрывают в качестве которого используют графит и дисульфид молибдена.

Нагрев

Как было упомянуто, в процессе работы могут разогреваться до 250-450 °С. Поэтому необходимо принимать меры, направленные как на снижение нагрева, так и на компенсацию вызываемого им температурного расширения деталей.

Для охлаждения поршней используют масло, которое различными способами подают внутрь них: создают масляный туман в цилиндре, разбрызгивают его через отверстие в шатуне либо форсункой, впрыскивают в кольцевой канал, обеспечивают циркуляцию по трубчатому змеевику в днище поршня.

Для компенсации температурных деформаций на участках приливов юбки с двух сторон обтачивают металл на 0,5-1,5 мм в глубину в виде П- или Т-образных прорезей . Такая мера улучшает ее смазывание и предотвращает появлени е от температурных деформаций задиров, поэтому данны е углубления называют холодильниками. Их используют в сочетании с конусо- или бочкообразной формой юбки. Это компенсирует ее линейное расширение за счет того, что при нагреве юбка принимает цилиндрическую форму. Кроме того, используют компенсационные вставки , чтобы диаметр поршня испытывал ограниченное теплово е расширени е в плоскости качания шатуна. Также можно изолировать направляющую часть от головки, испытывающей наибольший нагрев. Наконец, стенкам юбки придают пружинящие свойства путем нанесения косого разреза по всей ее длине.

Технология производства

По способу изготовления поршни подразделяют на литые и кованые (штампованные). Детали первого типа применяют на большинств е автомобилей, а замена поршней на кованые используется при тюнинге. Кованые варианты отличаются повышенной прочностью и долговечностью, а также меньшей массой. Поэтому установка поршней такого типа повышает надежность и производительность двигателя. Это особо важно для моторов, работающих в условиях повышенных нагрузок, в то время как для повседневной эксплуатации достаточно литых деталей.

Применение

Поршень — это многофункциональная деталь. Поэтому его используют не только в двигателях. Например, существует поршень суппорта тормозной системы, так как она функционирует аналогичным образом . Также кривошипно-шатунный механизм применяют на некоторых моделях компрессоров, насосов и прочем оборудовании.

Поршень - деталь поршневой группы двигателя, находящаяся внутри цилиндра. При помощи шатуна поршень соединен с коленчатым валом. Конструкция спроектирована таким образом, что поршень во время работы двигателя постоянно совершает возвратно-поступательное движение, преобразуя энергию расширяющихся при сгорании газов во вращение коленчатого вала.

Устройство поршня

Поршень состоит из трех частей, хотя и выполняется из единой заготовки: днища, уплотняющей части и юбки. К поршень присоединяется при помощи шатуна. Поршень надевается на шатун и , продетым сквозь деталь. Форма днища поршня двигателя внутреннего сгорания никогда не бывает плоской. В зависимости от конструкции днище может иметь сложную конфигурацию. Сверху над днищем могут быть расположены свечи, форсунки и клапаны.

Расстояние от днища поршня до первого компрессионного кольца называется огневым поясом поршня

Чаще всего в днище поршня можно видеть углубления, предназначенные для того, чтобы не соприкасались с поверхностью поршня. Углубления, как правило, имеют большую глубину с одного края, так как расположенные над ними клапаны установлены под углом. В целом, как правило, общую форму днища делают вогнутой. Это обусловлено тем, что поршень, поднимаясь вверх, является одновременно , а для оптимального распространения пламени вогнутое днище подходит как нельзя лучше. У этой формы есть и свои недостатки - в нижней части впадины быстрее отлагается нагар.


Расстояние от днища поршня до первого компрессионного кольца называется огневым поясом поршня. Поскольку поршень работает в условии экстремально высоких температур, огневой пояс имеет строго просчитанную высоту, которая зависит еще и от материала, из которого выполнен поршень. Снижение высоты ниже определенного предела может привести к преждевременному прогоранию поршня.

В прошлом поршень выполнялся из стали целиком, но в современных двигателях нередко применяются облегченные поршни из алюминиевых сплавов

Поршень - высокоточная деталь, так как одна из его задач - служить основой для компрессионных колец, уплотняющих камеру сгорания в момент сжатия. Со временем поршень изнашивается и обгорает, что приводит к снижению уплотнения - раскаленные газы начинают просачиваться между телом поршня и кольцом, и попадают в картер, а из картера в камеру сгорания просачивается масло.

Из этого следует, что может служить признаком износа поршней. Кроме того, об этом можно судить по появлению дыма в потоке выхлопных газов - дым образуется в результате сгорания попадающего в пространство над поршнем масла.


Сочетание днища и уплотняющей части (служащей основой для колец) называется головкой поршня. В прошлом поршень выполнялся из стали целиком, но в современных двигателях нередко применяются облегченные поршни из алюминиевых сплавов. Алюминий уступает стали в прочности, поэтому для создания основы для верхнего компрессионного кольца его снабжают ободком из обладающего высокими антикорозионными и прочностными свойствами чугуна. В чугунном ободке, вплавленном в тело поршня, нарезают канавку, в которое и вставляется . Этот вид чугуна называется нирезистом.

В нижней части головки расположены каналы для маслосъемных колец. Их нарезают на станке и снабжают сквозными отверстиями, через которое снятое с зеркала цилиндра масло по внутренней стенке поршня стекает в поддон картера блока цилиндров.


Юбка или направляющая часть поршня снабжена двумя приливами, или бобышками, в которых проделаны отверстия . Поскольку в месте расположения бобышек поршень имеет наибольшую толщину, в нем чаще всего возникают деформации под воздействием температуры. Для того, чтобы избежать риска деформации, часть метала с бобышек срезают на фрезеровочном станке. Служащие для охлаждения и повышающие интенсивность смазывания поршня углубления именуются на техническом сленге «холодильниками».

Материалы для производства поршней

К материалам, применяемым для изготовления поршней, предъявляются высокие требования. Прежде всего, материал должен обладать высокой механической прочностью при малой плотности и низком коэффициенте линейного расширения, высокой теплопроводностью и корозионной стойкостью, хорошими антифрикционными свойствами. Исходяиз этого, поршни делают либо из серого чугуна, либо из алюминиевого сплава, нередко с вкраплением чугуна.

Чугунные поршни отличаются прочностью и износостойкостью, работают с малыми зазорами. Недостаток чугуна - большой вес. Поэтому чугунные поршни применяются, как правило, . У чугуна низкая теплопроводность, поэтому сильно нагревается днище. Это недостаток, так как высокая температура внутри камеры сгорания до зажигания может приводить к некорректному сгоранию топлива, которое называется калильным зажиганием. Особенно остро эта проблема стояла в прежние годы, когда преобладающим устройством впрыска был карбюратор.

Гораздо чаще в современных двигателях применяются поршни из алюминиевого сплава. В числе их достоинств малый вес, высокая теплопроводность (благодаря чему температура днища редко поднимается выше 250 °C). Именно благодаря этому фактору инженерам удалось в свое время найти способ существенно поднять степень сжатия в бензиновых двигателях. Основной недостаток алюминия - большой коэффициент линейного расширения, что заставляет делать большие зазоры, снижая способность поршня к уплотнению. Кроме того, механическая прочность алюминия при нагреве резко (до 50%) падает, чего с чугуном не происходит. Тем не менее, недостатки не оказались фатальными, так как инженерам удалось придумать способы нивелировать отрицательные свойства материала. Например, чтобы уменьшить потери при сжатии, юбке поршня придают овально-конусную форму. Чтобы не допусать деформации от перегрева, юбку изолируют от головки при помощи материала с низкой теплопроводностью и тп.

Самые "крепкие" поршни - кованые, то есть сделаные из заготовок, полученных методом литья, а впоследствии подвергнутых ковке. Ковка - механическая обработка нагретого до ковочной температуры металла. Для каждого металла существует своя ковочная температура; у алюминия она не высока - всего лишь в районе 500 градусов.

Поршень является одним из самых значимых элементов при преобразовании химической энергии топлива в тепловую, а затем - в механическую, как в прямом, так и в переносном смысле. Моторные характеристики во многом зависят от того, насколько хорошо поршень выполняет свои задачи. Это определяет эффективность и, что ещё важнее, надёжность мотора. Особое значение данный параметр принимает, когда идёт речь о модификациях автомобилей в салонах тюнинга, или о спортивном применении. Конструкторы всегда сталкиваются с проблемой использования специальных поршней , когда повышается мощность. Поршень можно считать одной из самых сложных моторных деталей из-за множества выполняемых функций и достаточно противоречивых свойств. Это в высшей степени подтверждает тот факт, что очень мало автостроителей изготавливают поршни для своих моторов, используя лишь свои силы.

В большинстве случаев они прибегают к услугам специализирующихся на этом деле фирм. О поршнях ходит огромное количество тайн и догадок, которые создаёт разнообразие размеров и форм этой детали. В соответствующем разделе нашего сайта вы сможете найти статью . Изготовить поршень в стандартных условиях машиностроения в тюнинговых компаниях технически сложно, практически невозможно, поэтому большинство компаний этим делом отказывается заниматься. К тому же, производство таких сложных деталей поштучно может быть обременительно с точки зрения финансов. Интуитивно тюнеры понимают, что улучшенные двигатели должны иметь улучшенные поршни.

Устройство поршней

Давайте рассмотрим подробнее, какие к поршням обычно предъявляются требования, и как вообще они устроены.

  • Поршень, во-первых, перемещается в цилиндре, что позволяет совершать механическую работу путём расширения продуктов горения топлива, то есть, сжатых газов

Из этого можно сделать вывод, что он должен сопротивляться давлению газов, обладать термостойкостью и уплотнять канал цилиндра.

  • Во-вторых, поршень должен соответствовать требованиям пары трения, чтобы механические потери и износ стали минимальными.
  • В-третьих, он должен выдерживать реакцию шатуна и механическое воздействие со стороны камеры сгорания.
  • В-четвёртых, поршень должен минимально нагружать инерционными силами криво-шатунный механизм, совершая с высокой скоростью возвратно-подступательные движения.

Получается, что все проблемы, связанные с этой значимой частью двигателя, разделить можно на две категории:

  1. Это механические процессы
  2. Тепловые процессы, причём первая намного обширнее второй. Категории имеют достаточно тесную взаимосвязь. Давайте более подробно рассмотрим первую.

Как известно, топливо сгорает в непоршневом пространстве, и при этом выделяет очень большое количество тепла при каждом цикле работы двигателя. Температура уже сгоревших газов в среднем равна 2000 градусов. Часть энергии перейдёт движущимся частям мотора, а остальная станет нагревать двигатель. Энергия, которая останется в итоге, улетит в трубу вместе с обработанными газами. По законам физики два тела могут передавать друг другу тепло до того момента, пока их температуры полностью не сравняются. Соответственно, если поршень периодически не охлаждать, спустя некоторое время он просто-напросто расплавится. Это очень значимый момент для понимания принципов работы всей поршневой группы.

Особенно это важно тогда, когда мотор форсируется. При увеличении мощности мотора автоматически увеличивается количество генерируемого в камере сгорания тепла за одну временную единицу. Конечно, мы видим очень даже нечасто поршни в расплавленном, однако в любой их проблеме обязательно есть упоминается температура, точно также как скорость присутствует в любом ДТП. Конечно, вина здесь лежит на водителе, однако никто бы не пострадал, если бы автомобиль стоял на месте. Дело в том, что высокие температуры ухудшают характеристики всех материалов. Нагрузка в 100 градусов вызовет упругую деформацию, в 300 градусов - деформирует изделие полностью, а в 450 градусов деформирует её. По этой причине нужно либо применять материалы, которые могут выдержать серьёзные нагрузки от высоких температур, либо принимать меры, предотвращающие рост температуры поршня. Обычно делается и то, и другое. Тем не менее, конструкция поршня должна быть такой, чтобы в необходимых местах было определённое количество металла, который способен противостоять разрушению.

Курс общей физики подтверждает тот факт, что тепловой поток направлен к менее нагретым телам от более нагретых. Таким образом, у нас есть возможность увидеть, как температуры распределяются по поршню во время его работы, и определить значимые конструктивные моменты, которые влияют на его температуру, другими словами, понять, каким образом происходит охлаждение. Мы знаем, что больше всех деталей нагревается рабочее тело, то есть, газы в камере сгорания. Совершенно ясно, что в конце концов тепло окажется передано воздуху, который окружает автомобиль - самому холодному, но при определённых обстоятельствах бесконечно теплоёмкому. Омывая корпус двигателя и радиатор, воздух студит блок цилиндров, охлаждающую жидкость и корпус головки. Нам остаётся только найти мостик, по которому поршень отдаёт своё тепло в антифриз и блок . Для этого существую четыре пути. По своему вкладу они абсолютно разные, однако нужно упомянуть о каждом из них, так как они имеют меньшее или большее значение в зависимости от конструкции двигателя.

Первый путь

Это поршневые кольца, он обеспечивает наибольший поток. Так как первое кольцо расположено ближе к днищу, именно оно играет главную роль. Эта самый короткий путь к охлаждающей жидкости через стенку цилиндра. Одновременно кольца прижаты к стенкам цилиндра и к поршневым канавкам. Они обеспечивают более половины всего теплового потока.

Второй путь

Не так очевиден, однако недооценить его трудно. Второй жидкостью для охлаждения двигателя является масло. Несмотря на свою слабую циркуляцию и относительно небольшой объём, масляный туман имеет доступ к самым нагретым частям мотора. Он от самых горячих точек уносит с собой значительную часть тепла, и отдаёт его в поддон картера. В данном разделе нашего сайта вы сможете найти статью про . При применении масляных форсунок, которые направляют струю на внутреннюю поверхность днища поршня, в теплообмене доля масла нередко достигает 30 - 40 процентов. Разумеется, что если мы нагружаем масло больше степени функции теплоносителя, его необходимо будет остудить. Перегретое масло не только потеряет свои свойства, но так же ещё может привести к неисправности подшипников. И чем выше будет температура масло, тем меньше оно сможет перенести через себя тепла.

Третий путь

Через большие бобышки в палец, потом в шатун, и уже затем в масло. Этот способ не так интересен, ведь на пути имеются значительные тепловые сопротивления в виде стальных деталей и зазоров, которые обладают невысоким коэффициентом сопротивления и значительной протяжённостью.

Четвёртый путь

Не связан с охлаждающей жидкостью или маслом. Часть тепла забирает поступившая в цилиндр после такта впуска свежая топливовоздушная смесь. Количество тепла, которое заберёт эта смесь, зависит от степени открытия дросселя и режима работы. Следует отметить, что тепло, которое образуется при сгорании, также пропорционально заряду. Можно сказать, что данный путь охлаждения отличается скоротечностью, обладает импульсным характером, высокоэффективен, пропорционален последующему нагреванию, благодаря тому факту, что тепло отбирается с той же стороны, с которой нагревается поршень.

Также следует рассказать про стандартный приём, который применяется при настройке моторов спортивного типа. Дело в том, что теплоёмкость смеси в значительной степени определяется её составом. Нередко для нормализации работы мотора нужно совсем немного, на 5 - 10 градусов, снизить внутреннюю температуру. Достигается это при помощи лёгкого забогащения смеси. Причём, данный факт никаким образом не влияет на процесс горения, а температура понижается. Порог детонации отодвигается, калильное зажигание исчезает. В данном случае будет лучше немного богаче, чем немного беднее. Моторы, которые работают на метаноле намного меньше предъявляют требований к системе охлаждения из-за теплоты преобразования, которая в 3 раза больше, чем у бензина.

Следует уделить пристальное внимание процессу передачи тепла по поршневым кольцам по причине его большей значимости. Совершенно ясно, что если перекрыть этот путь по каким либо причинам, длительных форсированных режимов двигатель уже не выдержит. Температура станет очень высокой, поршень начнёт плавиться, а двигатель разрушится. Теперь давайте вспомним о такой характеристики, как процессия, которая, казалось бы, никак не влияет на теплообмен. Если человек сталкивался с подержанным автомобилем, он должен чётко представлять себе, что это такое. Это очень значимый параметр, о котором желает знать любой автовладелец, который заботится о состоянии двигателя своего автомобиля. Компрессия косвенно указывает на степень плотности поршневой группы. Это очень важный параметр, если рассматривать его с точки зрения теплопередачи.

Давайте представим ситуацию, что кольцо к стенке цилиндра не прилегает по всей своей длине. В этом случае сгоревшие газы создадут барьер, который будет мешать передаче тепла через кольцо в стенку цилиндра, начиная от поршня, когда будут прорываться в щель. Это равносильно тому, что вы закроете часть радиатора автомобиля, чтобы у него не было возможности охладиться воздухом.

Если у кольца нет тесного контакта с канавкой, мы будем наблюдать ещё более страшную картину. В тех местах, где у газов есть возможность протекать через канавку мимо кольца, участок поршня просто лишается возможности охлаждаться, попадая в своеобразный тепловой мешок. В результате получаем выкрашивание и прогар части огневого пояса, которая прилегает к месту утечки. Именно по этой причине так много внимания уделяется износу канавки и геометрии цилиндра кольца. И главная причина вовсе не ухудшение энергетики. Ведь небольшое количество газов, которые прорываются в картер, не несёт в себе достаточной энергии, чтобы оказать влияние на потерю давления в такте рабочего хода и, соответственно, на потерю двигателем момента. Тем более, если речь идёт о высокооборотном моторе. Намного больше вреда двигателю наносит небольшая плотность в смысле потери надёжности и жёсткости и локальных тепловых перегрузок. Именно по этой причине очень быстро ломаются восстановленные методом перегильзовки блока или замены колец поршни, которые уже вышли из строя. Именно поэтому в первую очередь у спортивных моторов разрушается цилиндр, который имеет меньшую компрессию.

Здесь, видимо, следует коснуться вопроса, обязательно обсуждаемого при изготовлении специальных поршней для тюнинговых или спортивных приложений. Сколько именно у нового поршня будет колец? Какой толщины будут эти кольца? С точки зрения механики лучше, когда колец немного. Чем уже они будут, тем меньше будет потерь в поршневой группе. Однако при уменьшении толщины и высоты колец, будут ухудшаться условия охлаждения поршня, и увеличиваться тепловое сопротивление. Поэтому при выборе конструкции всегда приходится идти на компромисс. Жёсткость рамок увеличивается с быстроходностью мотора. В данном разделе нашего сайта вы сможете найти статью про . Скоротечность процессов снижает требования к уплотнению. Механические потери растут вместе со скоростью, и их нужно уменьшать, иначе всё, что преобразовалось ранее в механическую мощность, просто не достигнет колёс. Между тем, количество вырабатываемого тепла становится больше, поэтому охлаждающий мостик должен быть расширен. Из этого получаем, что кольца должны быть как узкими, так и широкими. Для быстроходности их нужно два, а для эффективности охлаждения поршня - три. Найти оптимальное решение этой задачи должен конструктор. Результаты его работы покажет сбалансированность двигателя.

На сегодняшний день инженеры, которые работают в крупных научных центрах и производственных компаниях, имеют огромный эмпирический материал, на основе которого создают расчётные методы, позволяющие предсказать поле характеристик и температур конкретного изделия с очень большой точностью. Это доступно очень и очень немногим тюнинговым компаниям. В этой статье специально не упоминаются многие значения конкретных величин, которые бы побудили бы некоторых читателей взять в руки калькуляторы. Делать же тепловые расчёты на пальцах совсем не перспективное и абсолютно никому не нужное занятие. Эта статья раскрывает ту сторону происходящих в двигателе процессов, которая очень редко рассматривается, но всегда подразумевается. Я лишь хотел раскрыть необходимость и важность влияния тепла на общую эффективность работы двигателя. Что касается механической части этого вопроса, то о нём мы подробно поговорим в следующий раз.

В цилиндро-поршневой группе (ЦПГ) происходит один из основных процессов, благодаря чему двигатель внутреннего сгорания функционирует: выделение энергии в результате сжигания топливовоздушной смеси, которая впоследствии преобразуется в механическое действие – вращение коленвала. Основной рабочий компонент ЦПГ — поршень. Благодаря ему создаются необходимые для сгорания смеси условия. Поршень — первый компонент, участвующий в преобразовании получаемой энергии.

Поршень двигателя имеет цилиндрическую форму. Располагается он в гильзе цилиндра двигателя, это подвижный элемент – в процессе работы он совершает возвратно-поступательные движения и выполняет две функции.

  1. При поступательном движении поршень уменьшает объем камеры сгорания, сжимая топливную смесь, что необходимо для процесса сгорания (в дизельных моторах воспламенение смеси и вовсе происходит от ее сильного сжатия).
  2. После воспламенения топливовоздушной смеси в камере сгорания резко возрастает давление. Стремясь увеличить объем, оно выталкивает поршень обратно, и он совершает возвратное движение, передающееся через шатун коленвалу.

Что такое поршень двигателя внутреннего сгорания автомобиля?

Устройство детали включает в себя три составляющие:

  1. Днище.
  2. Уплотняющая часть.
  3. Юбка.

Указанные составляющие имеются как в цельнолитых поршнях (самый распространенный вариант), так и в составных деталях.

Днище

Днище — основная рабочая поверхность, поскольку она, стенки гильзы и головка блока формируют камеру сгорания, в которой и происходит сжигание топливной смеси.

Главный параметр днища — форма, которая зависит от типа двигателя внутреннего сгорания (ДВС) и его конструктивных особенностей.

В двухтактных двигателях применяются поршни, у которых днище сферической формы – выступ днища, это повышает эффективность наполнения камеры сгорания смесью и отвод отработанных газов.

В четырехтактных бензиновых моторах днище плоское или вогнутое. Дополнительно на поверхности проделываются технические углубления – выемки под клапанные тарелки (устраняют вероятность столкновения поршня с клапаном), углубления для улучшения смесеобразования.

В дизельных моторах углубления в днище наиболее габаритны и имеют разную форму. Такие выемки называются поршневой камерой сгорания и предназначены они для создания завихрений при подаче воздуха и топлива в цилиндр, чтобы обеспечить лучшее смешивание.

Уплотняющая часть предназначена для установки специальных колец (компрессионных и маслосъемных), задача которых — устранять зазор между поршнем и стенкой гильзы, препятствуя прорыву рабочих газов в подпоршневое пространство и смазки – в камеру сгорания (эти факторы снижают КПД мотора). Это обеспечивает отвод тепла от поршня к гильзе.

Уплотняющая часть

Уплотняющая часть включает в себя проточки в цилиндрической поверхности поршня — канавки, расположенные за днищем, и перемычки между канавками. В двухтактных двигателях в проточки дополнительно помещены специальные вставки, в которые упираются замки колец. Эти вставки необходимы для исключения вероятности проворачивания колец и попадания их замков во впускные и выпускные окна, что может стать причиной их разрушения.


Перемычка от кромки днища и до первого кольца именуется жаровым поясом. Этот пояс воспринимает на себя наибольшее температурное воздействие, поэтому высота его подбирается, исходя из рабочих условий, создаваемых внутри камеры сгорания, и материала изготовления поршня.

Число канавок, проделанных на уплотняющей части, соответствует количеству поршневых колец (а их может использоваться 2 — 6). Наиболее же распространена конструкция с тремя кольцами — двумя компрессионными и одним маслосъемным.

В канавке под маслосъемное кольцо проделываются отверстия для стека масла, которое снимается кольцом со стенки гильзы.

Вместе с днищем уплотнительная часть формирует головку поршня.

Вас также заинтересует:

Юбка

Юбка выполняет роль направляющей для поршня, не давая ему изменить положение относительно цилиндра и обеспечивая только возвратно-поступательное движение детали. Благодаря этой составляющей осуществляется подвижное соединение поршня с шатуном.

Для соединения в юбке проделаны отверстия для установки поршневого пальца. Чтобы повысить прочность в месте контакта пальца, с внутренней стороны юбки изготовлены специальные массивные наплывы, именуемые бобышками.

Для фиксации пальца в поршне в установочных отверстиях под него предусмотрены проточки для стопорных колец.

Типы поршней

В двигателях внутреннего сгорания применяется два типа поршней, различающихся по конструктивному устройству – цельные и составные.

Цельные детали изготавливаются путем литья с последующей механической обработкой. В процессе литья из металла создается заготовка, которой придается общая форма детали. Далее на металлообрабатывающих станках в полученной заготовке обрабатываются рабочие поверхности, нарезаются канавки под кольца, проделываются технологические отверстия и углубления.

В составных элементах головка и юбка разделены, и в единую конструкцию они собираются в процессе установки на двигатель. Причем сборка в одну деталь осуществляется при соединении поршня с шатуном. Для этого, помимо отверстий под палец в юбке, на головке имеются специальные проушины.

Достоинство составных поршней — возможность комбинирования материалов изготовления, что повышает эксплуатационные качества детали.

Материалы изготовления

В качестве материала изготовления для цельнолитых поршней используются алюминиевые сплавы. Детали из таких сплавов характеризуются малым весом и хорошей теплопроводностью. Но при этом алюминий не является высокопрочным и жаростойким материалом, что ограничивает использование поршней из него.

Литые поршни изготавливаются и из чугуна. Этот материал прочный и устойчивый к высоким температурам. Недостатком их является значительная масса и слабая теплопроводность, что приводит к сильному нагреву поршней в процессе работы двигателя. Из-за этого их не используют на бензиновых моторах, поскольку высокая температура становится причиной возникновения калильного зажигания (топливовоздушная смесь воспламеняется от контакта с разогретыми поверхностями, а не от искры свечи зажигания).

Конструкция составных поршней позволяет комбинировать между собой указанные материалы. В таких элементах юбка изготавливается из алюминиевых сплавов, что обеспечивает хорошую теплопроводность, а головка – из жаропрочной стали или чугуна.

Но и у элементов составного типа есть недостатки, среди которых:

  • возможность использования только в дизельных двигателях;
  • больший вес по сравнению с литыми алюминиевыми;
  • необходимость использования поршневых колец из жаростойких материалов;
  • более высокая цена;

Из-за этих особенностей сфера использования составных поршней ограничена, их применяют только на крупноразмерных дизельных двигателях.

Видео: Принцип работы поршня двигателя. Устройство

Не буду растягивать вступление, кратко расскажу, о чем будет этот большой пост. И так речь идет о типах поршней, четырех тактные бензиновые, дизельные и двух тактные, Основная задача всех рассмотренных типов поршней , это контролировать тепловое расширение и противостоять определенной нагрузке, ниже разберемся как это решается.

Поршни для четырехтактных бензиновых двигателей

В современных бензиновых двигателях используют поршни с симметричной или асимметричной юбкой
с различной толщиной днища и юбки поршня.

Поршни управляемого расширения

Поршни с кольцевой вставкой, которая управляет тепловым расширением.
Вставки выполнены из серого чугуна. Главная цель этого кольца уменьшить тепловое расширение алюминиевого сплава поршня, так как чугун имеет относительно небольшое расширение и малую теплопроводность, вставка тем самым сдерживает металл сохраняя форму. Производство таких поршней более затратное, соответственно и выше цена готового продукта. Основной недостаток, это невозможность изготовления кованного поршня, так необходимого для турбированых двигателей, большая масса поршня. Такой тип поршней больше уходит в далекое прошлое.

Авто термические поршни

Авто термические поршни, имеют разделение(пропил) между кольцевым поясом и юбкой в канавке маслосъемного кольца, юбка держится в районе бобышек. Это позволяет снизить теплопередачу от кольцевого пояса поршня к его юбке, тем самым достигается более стабильная форма юбки. Стальная вставка в районе бобышек, контролирует тепловое расширение и увеличивает прочность. Такие поршни не способны выдерживать огромные нагрузки из-за «пропила», в работе отличаются низким шумом и относятся к более современным типам.

Поршни Autothermatik

Действуют по такому же принципу, как и авто
термические поршни, но не имеют пропила в маслосъемной канавке. Так же имеют стальные пластины в районе бобышек. Более прочные из-за целостности кольцевого пояса и юбки, лучше выдерживают боковые нагрузки по сравнению с первым вариантом. Применяются как в бензиновых, так и частично в дизельных двигателях.

Чем- то похожи на авто термические, но вместо пропила в юбке имеют стальную вставку по всему диаметру. Таким образом ограничивая температурный переход от кольцевого пояса к юбке и контролирую форму по всей окружности.

Этот тип поршней имеет большой холодильник и узкую часто овальную форму юбки. Поршень спроектирован так что при тепловом расширении он меняет свою форму из овальной в правильную круглую.

В дополнение к такому типу поршней еще есть вариант со скошенной юбкой к вершине поршня. имеет более широкую часть юбки снизу сужаясь к кольцевому поясу.

У поршней для двигателей с очень высокой выходной мощностью (больше, чем 100 кВт/л) может быть выполнен охлаждающий канал.

Самый большой потенциал для того, чтобы уменьшить поршневую массу в четырехтактных бензиновых двигателях несут в себе поршни EVOTEC®, в котором прежде всего стоит отметить трапециевидные поддержки бобышек, что позволяет расположить палец особенно глубоко, близко к днищу, сократив всю длину и массу поршня. В посте Масса поршня мы уже говорили о достоинстве такого расположения пальца. Такое расположение стенок юбки позволяет очень хорошо усилить верхнюю часть бобышек имея небольшую толщину перегородок и облегчить нижнюю выполнив поршень асимметричной формы. Юбка достаточно узкая и на краях имеет прочные перегородки, переходящие к бобышкам, это тоже является большим плюсом. Такая компоновка поршня очень хорошо препятствует боковым нагрузкам, мала вероятность деформации юбки, при этом толщина юбки намного меньше чем в обычном поршне, что тоже сокращает общий вес. На всем фоне отмеченных выше достоинств поршень значительно похудел, это позволяет сделать бобышки тоньше, так как инерционная нагрузка на нижние стенки бобышек стала меньше.

Кованные алюминиевые поршни

В двигателях с очень большими удельными нагрузками - такими как турбонадув или впрыск закиси азота используют кованные поршни . Преимуществом несомненно является прочность кованного алюминиевого сплава. Выдерживают более высокую температуру и лучше противостоят детонации. Из недостатков отмечается более высокая цена, невозможность применения некоторых технологий, например, некоторые из тех что описаны выше из-за технологического процесса изготовления.

Кованный поршень для Формулы 1

В следующем посте поговорим о поршнях для двухтактных и дизельных двигателей, где нагрузки и температуры еще больше.