Самодельный мини двигатель внутреннего сгорания. Мини-двигатель внутреннего сгорания – так ли он функционален? Какие достоинства и недостатки имеют реально работающие магнитные двигатели

Очень простой ДВС
Основная задача – попытка предложить конструкцию ДВС максимально простую со всех точек зрения.
Основные критерии:
· В двигателе нет никаких ноу хау от которых было бы неизвестно или даже которые где-то не применялись бы
· Количество отдельных деталей должно быть минимально
· Сами детали максимально просты
· Нет деталей которые сильно отличаются по сложности от других (исключение КШМ-его принимаем как классический)
Исходя из этих критериев, задаем общий облик:
1. Как наиболее эффективный выбираем четырехтактный ДВС
2. Число цилиндров 1 или 2

На рисунке 1 показаны основные детали предполагаемого ДВС. КШМ классический, на рисунке его нет. Плита (поз 1) является основой обеспечивающей жесткость между двумя отдельными цилиндрами (поз 4, 5) и тремя корпусами коренных подшипников (поз 8-9). Цилиндры к плите крепятся шпильками с прижимными планками через бурт, либо вворачиваются в посадочные отверстия на резьбе.

Рисунок 2: болты крепления коренных подшипников (поз. 10) запрессовываются в отверстия плиты, от проворачивания фиксируются «лыской» на головке болта и «тупика» на плите.
Затем в отверстия плиты запрессовываются центрующие втулки (поз. 12). А на них запрессовываются верхние корпуса коренных подшипников (поз.8) Укладывается каленвал и устанавливаются нижние крышки коренных подшипников (поз. 9) фиксируя их гайками (рис.1, поз. 11)
Поршни с шатунами устанавливаются в цилиндры и монтируются шатунные вкладыши и крышки. Завинчиваются в цилиндры головки, ориентируя их газовыми каналами с помощью регулировочных колец (рис.3, поз. 1)
Увеличенная длинна передней части плиты (рис.1, размер Б) необходима для монтажа шестерни привода масляного насоса на каленвале. Монтируется сам масляный насос на кронштейн, закрепленный на корпусе переднего коренного подшипника (на рисунку не показано) монтируется масляная система – набор стальных трубок. Далее монтируются передняя и задние крышки ДВС (рис.1, поз2-3) с сальниками. С низу ДВС закрывает поддон (рис.1, поз. 13)
Механизмы ДВС
1 КШМ классический – Квал-Шатун-Поршень.
2 ГРМ количество клапанов один .
Первый в мире ДВС имел 1 выпускной клапан нижнего расположения и автоматический впускной, находящийся в камере сгорания. Предлагается следующая схема ГРМ: с одним главным клапаном (перекрывает газовый канал цилиндра) и атмосферный клапан (управляет потоками газов перед главным клапаном).
Рисунок 3:
1 Головка
2 Цилиндры
3 Главный клапан
4 Якорь
5,6 нижний и верхний электромагнит
7 Корпус атмосферного клапана
8 Заслонка атмосферного клапана
9 Атмосферный клапан
10 Съемная рубашка охлаждения
11 Регулировочное кольцо

Предлагается электромагнитная схема управления главным клапаном для управления заслонкой атмосферного клапана также предлагается электромагнитный привод. Можно применить и «классический» механический привод с распредвалом, толкателями и т. д., но это усложнит конструкцию.
В схеме 2 необычных решения, заставляющих сомневаться в ее работоспособности:
А) Один клапан главный и общий атмосферный на 2 цилиндра.
В) Электромагнитный привод клапанов
Попробуем теоретически обосновать работоспособность этой схемы:
A. Рассмотрим взаимную работу главных и атмосферного клапанов (рис.4).

Из рис. 3 и рис. 4 следует: 1) переключение клапанов происходит 1 раз за 1 оборот К-вала, требование к быстроте закрытия и открытия не очень жесткие
2) поршень не должен «догонять» открытый главный клапан
3) так как главный клапан 1, его диаметр можно сделать достаточно большим, увеличивая сечение седло-клапан
4) главный клапан омывается поочередно горячими и холодными газами. Что снижает его термонапряженность, улучшает испарение топлива, хотя несколько снижает плотность свежего заряда
5) есть возможность сделать газовый канал главного клапана в головке минимально коротким, уменьшая передачу тепла отработанных газов в тело головки
6) требование к герметичности заслонки атмосферного клапана не очень высокие и незначительный переток газа через зазоры не сильно отразится на работе ДВС.
B. Электромагнитный привод клапанов. Главное – обеспечить быстродействие клапанов и герметичность главного.
Быстродействия можно добиться за счет: 1) минимальный вес подвижных деталей
2) Отсутствие «мощных» пружин, устраняет их резонанс. Хотя возможно и целесообразно добавить в систему «мягкую» пружину, работающую на открытие главного клапана.
3) Создание мощной магнитной силы
4) Герметичность: вообще-то достигается не усилием прижатия. А точностью подгонки сопрягаемых поверхностей. Усилие нужно для быстродействия. При притирке клапана, он даже под своим весом уже должен быть герметичен (проверка керосином), т. е. мощная магнитная сила закрытия нужна для быстродействия и удержания клапана в начале такта сжатия. По мере роста давления в цилиндре, напряжение с катушки магнита вообще можно снять, а клапан будет удерживаться высоким давлением в цилиндре.

Имея такую конструкцию ГРМ, где общий клапан открыт при тактах выпуск-впуск напрашивается еще один способ продувки цилиндра с использованием газодинамических процессов во впускном и выпускном тракте (рис. 6):

1) впускная труба, 2) канал главного клапана, 3) ресивер, 4) выпускная труба, 5) глушитель
Особенность в том, что нет механических клапанов, что делает систему максимально простой. Но требует сложного расчета. Чтобы обеспечить следующие процессы:
1) так как впускная система соединены между собой через канал главного клапана непосредственно. На такте выпуска поток отработанных газов должен полностью уходить в ресивер и выпускную трубу не попадая во впускную. Для этого выходное отверстия впускной трубы должно быть направлено в направлении потока отработанных газов, чтобы добиться эффекта эжекции
2) выпускной тракт необходимо рассчитать так, чтобы пока поршень находится вблизи ВМТ волна отработанных газов уходила из ресивера, создавая в нем разряжение, которое заполняло бы свежим воздухом из впускной трубы, объем воздуха должен быть достаточным для дальнейшего заполнения цилиндра, и отработанные газы минимально попадали бы в цилиндр
Система питания
Система питания может быть дизельной и на бензине. На бензине – инжекторная – впрыск через форсунку перед клапаном. Топливо должно впрыскиваться в самый первый момент спуска, после переключения заслонки атмосферного клапана на подачу свежего заряда, чтобы топливо не попадало в выпускную систему.
Предлагается еще один способ подачи топлива – через отверстие в седле клапана непосредственно в сечение «седло-клапан» (рис.5)


Элементы системы:
1) Эл. магнитный клапан, 2) запорная игла с сердечником, 3) пружина, 4) воздушный штуцер, 5) катушка клапана, 6) топливный штуцер
А) Топливный жиклер Б) эмульсионная камера, В) кольцевой канал в седле, Ц) воздушный жиклер, Д) отверстия подачи топливной эмульсии
Система является как бы гибридной, от инжектора имеется электромагнитный клапан, дозировано подающий топливо на каждый цикл в самом начале такта впуска. От карбюратора есть эмульсионная камера Б, откуда эмульсия через кольцевой канал В и отверстие подачи Д за счет разряжения на такте впуска засасывается в цилиндр, причем в самом начале впуска. Далее камера и каналы просто продуваются воздухом из воздушного жиклера, унося в цилиндр оставшиеся пары топлива.
На такте «выпуск» отработанные газы имея небольшое давление могут попасть в каналы и смесительную камеру и далее в воздушный штуцер, но их количество не значительно и не должно повлиять на работу системы.
Особенность: электромагнитный клапан всеже не форсунка, где топливо подается под достаточно высоким давлением от электронасоса. Здесь жиклер большого диаметра и подача топлива под небольшим давлением, которое можно получить от верхнего расположения топливного бака и, возможно, создания избыточного давления (подпора газом) в самом баке.
Также система хорошо подойдет для питания сжиженным газом использую газобаллонное оборудование.

Можно, конечно купить красивые заводские модели двигателей Стирлинга, как например, в этом китайском интернет-магазине. Однако, иногда хочется творить самому и сделать вещь, пусть даже из подручных средств. На нашем сайте уже есть несколько вариантов изготовления данных моторов, а в этой публикации ознакомьтесь с совсем простым вариантом изготовления в домашних условиях.

Для его изготовления вам понадобятся подручные материалы: банка из под консервов, небольшой кусок поролона, CD-диск, два болтика и скрепки.

Поролон – одни из самых распространенных материалов, которые используются при изготовлении моторов Стирлинга. Из него делается вытеснитель двигателя. Из куска нашего поролона вырезаем круг, диаметр его делаем на два миллиметров меньше внутреннего диаметра банки, а высоту немного больше ее половины.

В центре крышки просверливаем отверстие, в которое вставим потом шатун. Для ровного хода шатуна делаем из скрепки спиральку и припаиваем ее к крышке.

Поролоновый круг из поролона пронизываем посередине винтиком и застопориваем его шайбой сверху и снизу шайбой и гайкой. После этого присоединяем путем пайки отрезок скрепки, предварительно распрямив ее.

Теперь втыкаем вытеснитель в сделанное заранее отверстие в крышке и герметично пайкой соединяем крышку и банку. На конце скрепки делаем небольшую петельку, а в крышке просверливаем еще одно отверстие, но чуть-чуть больше, чем первое.

Из жести делаем цилиндр, используя пайку.

Присоединяем с помощью паяльника готовый цилиндр к банке, так, чтобы не осталось щелей в месте пайки.

Из скрепки изготавливаем коленвал. Разнос колен нужно сделать в 90 градусов. Колено, которое будет над цилиндром по высоте на 1-2 мм больше другого.

Из скрепок изготавливаем стойки под вал. Делаем мембрану. Для этого на цилиндр надеваем полиэтиленовую пленку, немного продавливаем ее внутрь и закрепляем на цилиндре ниткой.

Шатун который нужно будет приделать к мембране, изготавливаем из скрепки и вставляем его в обрезок резины. По длине шатун нужно сделать таким, чтобы в нижней мертвой точке вала мембрана была втянута внутрь цилиндра, а в высшей – напротив – вытянута. Второй шатун настраиваем так же.

Шатун с резиной приклеиваем к мембране, а другой присоединяем к вытеснителю.

Присоединяем паяльником ножки из скрепок к банке и на кривошип пристраиваем маховик. Например, можно использовать СД-диск.

Двигатель Стирлинга в домашних условиях сделан. Теперь осталось под банку подвести тепло – зажечь свечку. А через несколько секунд дать толчок маховику.

Как сделать простой двигатель Стирлинга (с фотографиями и видео)

www.newphysicist.com

Давайте сделаем двигатель Стирлинга.

Мотор Стирлинга – это тепловой двигатель, который работает за счет циклического сжатия и расширения воздуха или другого газа (рабочего тела) при различных температурах, так что происходит чистое преобразование тепловой энергии в механическую работу. Более конкретно, двигатель Стирлинга представляет собой двигатель с рекуперативным тепловым двигателем с замкнутым циклом с постоянно газообразным рабочим телом.

Двигатели Стирлинга имеют более высокий КПД по сравнению с паровыми двигателями и могут достигать 50% эффективности. Они также способны бесшумно работать и могут использовать практически любой источник тепла. Источник тепловой энергии генерируется вне двигателя Стирлинга, а не путем внутреннего сгорания, как в случае двигателей с циклом Отто или дизельным циклом.

Двигатели Стирлинга совместимы с альтернативными и возобновляемыми источниками энергии, поскольку они могут становиться все более значительными по мере роста цен на традиционные виды топлива, а также в свете таких проблем, как истощение запасов нефти и изменение климата.


В этом проекте мы дадим вам простые инструкции по созданию очень простого двигателя DIY Стирлинга с использованием пробирки и шприца .

Как сделать простой движок Стирлинга – Видео

Компоненты и шаги, чтобы сделать моторчик Стирлинга

1. Кусок лиственных пород или фанеры

Это основа для вашего двигателя. Таким образом, он должен быть достаточно жестким, чтобы справляться с движениями двигателя. Затем сделайте три маленьких отверстия, как показано на рисунке. Вы также можете использовать фанеру, дерево и т.д.

2. Мраморные или стеклянные шарики

В двигателе Стирлинга эти шарики выполняют важную функцию. В этом проекте мрамор действует как вытеснитель горячего воздуха от теплой стороны пробирки к холодной стороне. Когда мрамор вытесняет горячий воздух, он остывает.

3. Палки и винты

Шпильки и винты используются для удержания пробирки в удобном положении для свободного перемещения в любом направлении без каких-либо перерывов.



4. Резиновые кусочки

Купите ластик и нарежьте его на следующие формы. Он используется для того, чтобы надежно удерживать пробирку и поддерживать ее герметичность. Не должно быть утечек в ротовой части пробирки. Если это так, проект не будет успешным.




5. Шприц

Шприц является одной из самых важных и движущихся частей в простом двигателе Стирлинга. Добавьте немного смазки внутрь шприца, чтобы поршень мог свободно перемещаться внутри цилиндра. Когда воздух расширяется внутри пробирки, он толкает поршень вниз. В результате цилиндр шприца перемещается вверх. В то же время мрамор катится к горячей стороне пробирки и вытесняет горячий воздух и заставляет его остывать (уменьшать объем).

6. Пробирка Пробирка является наиболее важным и рабочим компонентом простого двигателя Стирлинга. Пробирка изготовлена ​​из стекла определенного типа (например, из боросиликатного стекла), обладающего высокой термостойкостью. Так что его можно нагревать до высоких температур.


Как работает двигатель Стирлинга?

Некоторые люди говорят, что двигатели Стирлинга просты. Если это правда, то так же, как и великие уравнения физики (например, E = mc2), они просты: на поверхности они просты, но богаче, сложнее и потенциально очень запутаны, пока вы их не осознаете. Я думаю, что безопаснее думать о двигателях Стирлинга как о сложных: многие очень плохие видео на YouTube показывают, как легко «объяснить» их очень неполным и неудовлетворительным образом.

На мой взгляд, вы не можете понять двигатель Стирлинга, просто создав его или наблюдая за тем, как он работает извне: вам нужно серьезно подумать о цикле шагов, через которые он проходит, что происходит с газом внутри, и как это отличается из того, что происходит в обычном паровом двигателе.

Все, что требуется для работы двигателя, – это наличие разницы температур между горячей и холодной частями газовой камеры. Были построены модели, которые могут работать только с разницей температуры 4 ° C, хотя заводские двигатели, вероятно, будут работать с разницей в несколько сотен градусов. Эти двигатели могут стать наиболее эффективной формой двигателя внутреннего сгорания.

Двигатели Стирлинга и концентрированная солнечная энергия

Двигатели Стирлинга обеспечивают аккуратный метод преобразования тепловой энергии в движение, которое может привести в движение генератор. Наиболее распространенная схема состоит в том, чтобы двигатель был в центре параболического зеркала. Зеркало будет установлено на устройство слежения, чтобы солнечные лучи фокусировались на двигателе.

* Двигатель Стирлинга как приемник

Возможно, вы играли с выпуклыми линзами в школьные годы. Сосредоточение солнечной энергии для сжигания листа бумаги или спички, я прав? Новые технологии развиваются день ото дня. Концентрированная солнечная тепловая энергия приобретает все большее внимание в эти дни.

Выше приведен короткий видеофильм о простом двигателе с пробиркой, использующим стеклянные шарики в качестве вытеснителя и стеклянный шприц в качестве силового поршня.

Этот простой двигатель Стирлинга был построен из материалов, которые доступны в большинстве школьных научных лабораторий и может быть использован для демонстрации простого теплового двигателя.

Диаграмма давление-объем за цикл

Процесс 1 → 2 Расширение рабочего газа на горячем конце пробирки, тепло передается газу, и газ расширяется, увеличивая объем и толкая поршень шприца вверх.

Процесс 2 → 3 По мере движения мрамора к горячему концу пробирки газ вытесняется из горячего конца пробирки на холодный конец, а по мере движения газа он отдает тепло стенке пробирки.

Процесс 3 → 4 Из рабочего газа отводится тепло, и объем уменьшается, поршень шприца движется вниз.

Процесс 4 → 1 Завершает цикл. Рабочий газ движется от холодного конца пробирки к горячему концу, поскольку мраморные шары вытесняют ее, получая тепло от стенки пробирки, когда она движется, тем самым увеличивая давление газа.

Самодельный двигатель можно изготовить несколькими способами. Обзор начнем с биполярного или шагового варианта, который представляет собой электрический мотор с двойным полюсом без щеток. Он имеет питание постоянного тока, разделяет полный оборот на равные доли. Для функционирования данного прибора потребуется специальный контроллер. Кроме того, в конструкцию приспособления входит обмотка, магнитные элементы, передатчики, сигнализаторы и узел управления с панелью приборов. Основное предназначение агрегата - обустройство фрезеровочных и шлифовальных станков, а также обеспечение работы различных бытовых, производственных и транспортных механизмов.

Типы моторов

Самодельный двигатель может иметь несколько конфигураций. Среди них:

  • Варианты с магнитом постоянного действия.
  • Комбинированная синхронная модель.
  • Переменный двигатель.

Привод с постоянным магнитом оборудуется основным элементом в роторной части. Функционирование таких приборов основано на принципе притяжения или отталкивания между статором и ротором приспособления. Такой шаговый электродвигатель оснащен роторной частью из железа. Принцип его работы заключается на фундаментальной основе, согласно которой, предельно допустимое отталкивание производится с минимальным зазором. Это способствует притяжению точек ротора к полюсам статора. Комбинированные устройства сочетают в себе оба параметра.

Еще один вариант - это двухфазные моторы шагового типа. Прибор представляет собой простую конструкцию, может иметь два типа обмотки, легко устанавливается в необходимом месте.

Монополярные модификации

Самодельный двигатель этого типа состоит из единой обмотки и центрального магнитного крана, влияющего на все фазы. Каждый отсек обмотки активируется для обеспечения определенного магнитного поля. Так как в подобной схеме полюс в состоянии функционировать без дополнительного переключения, коммутация пути и направления тока имеет элементарное устройство. Для стандартного мотора со средней мощностью хватает одного транзистора, предусмотренного в оснащении каждой обмотки. Типичная схема двухфазного двигателя предполагает шесть проводов на выходном сигнале и три аналогичных элемента на фазе.

Микроконтроллер агрегата может использоваться для активизации транзистора в автоматически определенной последовательности. При этом обмотки подключаются посредством соединения выходных проводов и постоянного магнита. При взаимодействии клемм катушки вал блокируется для проворачивания. Показатель сопротивления между общим проводом и торцовой частью катушки пропорционален аналогичному аспекту между торцами проводки. В связи с этим длина общего провода в два раза больше, чем соединительная половина катушки.

Биполярные варианты

Самодельный шаговый двигатель этого типа оборудован одной обмоткой фазы. Поступление тока в нее осуществляется переломным способом при помощи магнитного полюса, что обуславливает усложнение схемы. Она обычно агрегирует с соединяющим мостом. Имеется пара дополнительных проводов, которые не являются общими. При смешивании сигнала такого мотора на повышенных частотах эффективность трения системы снижается.

Создаются также трехфазные аналоги, имеющие узкую специализацию. Они применяются в конструкции станков с ЧПУ, а также в некоторых автомобильных бортовых компьютерах и принтерах.

Устройство и принцип работы

При передаче напряжения клеммам щетки двигателя приводятся в непрерывное вращение. Установка на холостом ходу уникальна, поскольку преобразовывает входящие импульсы в заранее определенную позицию имеющегося ведущего вала.

Любой импульсный сигнал воздействует на вал под конкретным углом. Такой редуктор максимально эффективен, если ряд магнитных зубцов размещен вокруг центрального зубчатого железного стержня или его аналога. Электрические магниты активируются от наружной контрольной цепи, состоящей из микрорегулятора. Для начала поворота вала двигателя один активный электромагнит притягивает к своей поверхности зубчики колеса. При их выравнивании по отношению к ведущему элементу они немного перемещаются к очередной магнитной детали.

В шаговом электродвигателе первый магнит должен включаться, а следующий элемент - деактивироваться. В результате шестерня начнет вращение, постепенно выравниваясь с предыдущим колесиком. Процесс повторяется поочередно требуемое число раз. Такие обороты и получили название «постоянный шаг». Скорость вращения мотора можно определить путем подсчета количества шагов для полного оборота агрегата.

Подключение

Подсоединение мини-двигателя, сделанного своими руками, осуществляется по определенной схеме. Основное внимание обращается на количество проводов привода, а также предназначение прибора. Моторы шагового типа могут оснащаться 4, 5, 6 или 8 проводами. Модификация с четырьмя элементами проводки может эксплуатироваться исключительно с биполярным приспособлением. Любая фазная обмотка имеет два провода. Для определения необходимой длины подключения в пошаговом режиме рекомендовано использовать обычный метр, позволяющий достаточно точно установить необходимый параметр.

На мощном шестипроводном двигателе предусмотрена пара проводов для каждой обмотки и центрирующий кран, который может подключаться к моно или биполярному устройству. Для агрегации с одиночным приспособлением используются все шесть проводов, а для парного аналога достаточно будет одного конца провода и центрального крана каждой обмотки.

своими руками?

Для создания элементарного мотора потребуется кусок магнита, сверло, фторопласт, проволока из меди, микрочип, провод. Вместо магнита можно использовать ненужный виброзвонок сотового телефона.

В качестве детали вращения используется сверло, поскольку инструмент оптимально подходит по техническим параметрам. Если внутренний радиус магнита не соответствует аналогичному аспекту вала, можно использовать медную проволоку, намотав ее таким образом, чтобы убрать люфт вала. Такая операция дает возможность увеличить диаметр вала в точке соединения с ротором.

В дальнейшем создании самодельного двигателя потребуется сделать втулки из фторопласта. Для этого возьмите подготовленный лист и проделайте отверстие диаметром 3 мм. Затем сконструируйте трубку-втулку. Вал необходимо отшлифовать до диаметра, обеспечивающего свободное перемещение. Это позволит избежать излишнего трения.

Финальная стадия

Далее производится намотка катушек. Каркас требуемого размера зажимается в тисах. Чтобы намотать 60 витков, понадобится 0,9 метра провода. После проведения процедуры катушка обрабатывается клеевым составом. Лучше всего эту деликатную процедуру проводить с микроскопом или увеличительным стеклом. После каждой двойной обмотки каплю клея внедряют между втулкой и проволокой. Один край каждой обмотки спаивается между собой, что даст возможность получить единый узел с парой выходов, которые паяются к микрочипу.

Параметры технического плана

Мини-двигатель, сделанный своими руками, в зависимости от конструкционных особенностей, может иметь различные характеристики. Ниже приведены параметры самых популярных шаговых модификаций:

  1. ШД-1 - обладает шагом 15 градусов, имеет 4 фазы и крутящий момент 40 Нт.
  2. ДШ-0,04 А - шаг составляет 22,5 градуса, количество фаз - 4, оборотистость - 100 Нт.
  3. ДШИ-200 - 1,8 градуса; 4 фазы; 0,25 Нт крутящего момента.
  4. ДШ-6 - 18/4/2300 (значения указаны по аналогии с предыдущими параметрами).

Зная, как сделать двигатель в домашних условиях, необходимо помнить о том, что скорость крутящего показателя шагового мотора будет трансформироваться прямо пропорционально аналогичному параметру тока. Понижение линейного момента на высоких скоростях напрямую зависит от схемы привода и индуктивности обмоток. Двигатели со степенью защиты IP 65 рассчитаны на суровые условия работы. По сравнению с серверами, шаговые модели работают намного дольше и продуктивнее, не требуют частого ремонта. Однако у серводвигателей немного другая направленность, поэтому сравнение этих типов не имеет особого смысла.

Делаем самодельный ДВС

Мотор своими руками также можно сделать на жидком топливе. При этом не потребуется сложное оборудование и профессиональный инструментарий. Необходима которую можно взять из тракторного или автомобильного топливного насоса. Цилиндр плунжерной втулки создается путем обрезки утолщенного элемента шлефа. Затем следует проделать отверстия для выхлопного и перепускного окна, припаять пару гаек в верхней части, предназначенных для свечей зажигания. Тип элементов - М-6. Поршень вырезается из плунжера.

Самодельный дизель-двигатель потребует установки картера. Он делается из жести с припаянными подшипниками. Дополнительную прочность позволит создать ткань, покрытая эпоксидной смолой, которой покрывается элемент.

Коленчатый вал собирается из утолщенной шайбы с парой отверстий. В одно из них необходимо запрессовать вал, а второе крайнее гнездо служит для монтажа шпильки с шатуном. Операция также производится методом прессовки.

Завершающие работы по сборке самодельного дизельного мотора

Ниже приведен порядок сборки катушки зажигания:

  • Используется деталь от авто или мотоцикла.
  • Устанавливается подходящая свеча.
  • Монтируются изоляторы, фиксируемые при помощи «эпоксидки».

Альтернативой мотору с системой ДВС может служить бесконтактный мотор замкнутого типа, устройство и принцип работы которого представляют систему обратного обмена газов. Он устроен из двухсекционной камеры, поршня, коленвала, передаточной коробки, системы зажигания. Зная, как сделать двигатель своими руками, вы можете существенно сэкономить и получить в хозяйстве нужную и полезную вещь.

Паровой двигатель

Сложность изготовления: ★★★★☆

Время изготовления: Один день

Подручные материалы: ████████░░ 80%


В этой статье я расскажу вам о том, как сделать паровой двигатель своими руками. Двигатель будет небольшой, однопоршневой с золотником. Мощности вполне хватит, чтобы вращать ротор небольшого генератора и использовать этот двигатель в качестве автономного источника электричества в походах.


  • Телескопическая антенна (можно снять со старого телевизора или радиоприёмника), диаметр самой толстой трубки должен составлять не менее 8 мм
  • Маленькая трубка для поршневой пары (магазин сантехники).
  • Медная проволока с диаметром около 1,5 мм (можно найти в катушке трансформатора или радиомагазине).
  • Болты, гайки, шурупы
  • Свинец (в рыболовном магазине или найти в старом автомобильном аккумуляторе). Он нужен, чтобы отлить маховик в форме. Я нашёл готовый маховик, но вам этот пункт может пригодиться.
  • Деревянные бруски.
  • Спицы для велосипедных колёс
  • Подставка (в моём случае из листа текстолита толщиной 5 мм, но подойдёт и фанера).
  • Деревянные бруски (куски досок)
  • Банка из под оливок
  • Трубка
  • Суперклей, холодная сварка, эпоксидная смола (стройрынок).
  • Наждак
  • Дрель
  • Паяльник
  • Ножовка

    Как сделать паровой двигатель


    Схема двигателя


    Цилиндр и золотниковая трубка.

    Отрезаем от антенны 3 куска:
    ? Первый кусок 38 мм длиной и 8 мм диаметром (сам цилиндр).
    ? Второй кусок длиной 30 мм и 4 мм диаметром.
    ? Третий длиной 6 мм и 4 мм диаметром.


    Возьмём трубку №2 и сделаем в ней отверстие диаметром 4 мм посередине. Возьмем трубку №3 и приклеим перпендикулярно трубке №2, после высыхания суперклея, замажем все холодной сваркой (например POXIPOL).


    Крепим круглую железную шайбу с отверстием посредине к куску №3 (диаметр - чуть больше трубки №1), после высыхания укрепляем холодной сваркой.

    Дополнительно покрываем все швы эпоксидной смолой для лучшей герметичности.

    Как сделать поршень с шатуном

    Берём болт (1) диаметром 7 мм и зажимаем его в тисках. Начинаем наматывать на него медную проволоку (2) примерно на 6 витков. Каждый виток промазываем суперклеем. Лишние концы болта спиливаем.


    Проволоку покрываем эпоксидкой. После высыхания, подгоняем поршень шкуркой под цилиндр так, чтобы он свободно там двигался, не пропуская воздух.


    Из листа алюминия делаем полоску длиной 4 мм и длиной 19 мм. Придаём ей форму буквы П (3).


    Сверлим на обоих концах отверстия (4) 2 мм диаметром, чтобы можно было засунуть кусочек спицы. Стороны П-образной детали должны быть 7х5х7 мм. Клеим её к поршню стороной, которая 5 мм.



    Шатун (5) делаем из велосипедной спицы. К обоим концам спицы приклеиваем на два маленьких кусочка трубок (6) от антенны диаметром и длиной по 3 мм. Расстояние между центрами шатуна составляет 50 мм. Далее шатун одним концом вставляем в П-образную деталь и шарнирно фиксируем спицей.

    Спицу с двух концов подклеиваем, чтобы не выпала.


    Шатун треугольника

    Шатун треугольника делается похожим способом, только с одной стороны будет кусок спицы, а с другой трубка. Длина шатуна 75 мм.


    Треугольник и золотник


    Из листа металла вырезаем треугольник и сверлим сверлим в нем 3 отверстия.
    Золотник. Длина поршня золотника составляет 3,5 мм, и он должен свободно перемещаться по трубке золотника. Длина штока зависит от размеров вашего маховика.



    Кривошип поршневой тяги должен быть 8 мм, а кривошип золотника - 4 мм.
  • Паровой котёл


    Паровым котлом будет служить банка из под оливок с запаянной крышкой. Также я впаял гайку, чтобы через неё можно было заливать воду и герметично закручивать болтом. Также припаял трубку к крышке.
    Вот фото:


    Фото двигателя в сборе


    Собираем двигатель на деревянной платформе, размещая каждый элемент на подпорке





    Видео работы парового двигателя



  • Версия 2.0


    Косметическая доработка двигателя. Бак теперь имеет свою собственную деревянную площадку и блюдце для таблетки сухого горючего. Все детали покрашены в красивые цвета. Кстати в качестве источника тепла лучше всего использовать самодельную

Инструкция

Снимите двигатель с автомобиля. Для этого: слейте масло из картера и охлаждающую жидкость из системы охлаждения, снимите АКБ. Затем открутите 4 болта ключом «на 13» и снимите капот, чтобы в дальнейшем было легче проводить остальные манипуляции. Снимите воздушный фильтр. Открутив четыре болта ключом «на 13», снимите .

Демонтируйте глушитель, начиная с его задней части. Ключом «на 13» открутите четыре гайки, которые крепят «штаны» к выпускному коллектору. Открутите ключом «на 13» заднюю часть карданного вала, который крепится к редуктору заднего моста. Снимите подвесной подшипник, вытащите кардан из КПП. Открутите 4 болта ключом «на 17», которые крепят коробку к двигателю, 3 болта «на 13» а также две гайки «на 13» с заднего держателя КПП. Снимите коробку.

Демонтируйте с двигателя все навесное оборудование: , бензонасос, распределитель зажигания. Открутите на передней балке. Снимите . Торцевой головкой открутите болты головки цилиндров, отметьте каждый к своему мету, чтобы не ошибиться при сборке. Снимите ГБЦ. Вытащите двигатель с помощью лебедки или вручную. Положите его на ровную и чистую поверхность.

Снимите поддон картера, маслонасос. Открутите торцевой головкой «на 14» гайки шатунных болтов, снимите крышки и осторожно через цилиндры выймите поршни с шатунами. Пометьте поршни, шатуны и крышки, чтобы не перепутать при сборке. Зафиксируйте маховик и снимите его с коленвала. Отверните болты крышек коренных подшипников и снимите их вместе с нижними вкладышами; снимите коленвал.

Выпрессуйте поршневые пальцы. Осмотрите поршни, если на них имеется дефект, то замените. Отдайте блок цилиндров на расточку под новый размер поршней. Промерьте коленвал, в случае дефекта или отдайте его на расточку под ремонтный размер, или на наплавку, или замените на новый. Соответственно размерам шеек коленчатого вала подберите размер его . Осмотрите и промерьте шатуны, в случае дефекта – замените. Осмотрите сопряжение ГБЦ с блоком цилиндров. В случае зазора – отшлифуйте. Осмотрите клапана, дефектные – замените, возьмите алмазную смазку и притрите седла .

Запрессуйте поршневые пальцы в поршень и шатуны. Замените маслоотражательные и компрессионные кольца. Вставьте поршни с помощью оправки в блок цилиндров. Вложите вкладыши коленвала в шатуны, поставьте коленвал. Вложите вкладыши в шатунные крышки и прикрутите к шатунам динамометрическим ключом с требуемым усилием. Поставьте масляный насос, поддон.

Установите двигатель на автомобиль. Прикрутите головку блока цилиндров динамометрическим ключом с требуемым усилием. Отрегулируйте клапана щупом. Поставьте клапанную крышку. Прикрутите коробку, глушитель, навесное оборудование. Отрегулируйте момент зажигания. Залейте минеральное масло и пройдите обкатку. Не перегружайте двигатель в первое время. Старайтесь удерживать обороты двигателя в пределах 2500 об/мин.

В повседневной деятельности человеку чаще всего приходится сталкиваться с двигателями внутреннего сгорания. Бензиновые и дизельные моторы получили широкое распространение в автомобилестроении. Но существует также особый класс энергетических установок, имеющих общее название двигателей внешнего сгорания.

Двигатели внешнего сгорания

В двигателях внешнего сгорания процесс сжигания топлива и источник теплового воздействия отделены от рабочей установки. К данной категории обычно относят паровые и газовые турбины, а также двигатели Стирлинга. Первые прототипы подобных установок были сконструированы более двух веков назад и применялись на протяжении почти всего XIX столетия.

Когда для бурно развивающейся промышленности понадобились мощные и экономичные энергетические установки, конструкторы придумали замену взрывоопасным паровым двигателям, где рабочим телом был находящийся под большим давлением пар. Так появились двигатели внешнего сгорания, получившие распространение уже в начале XIX столетия. Только через несколько десятков лет им на смену пришли двигатели внутреннего сгорания. Стоили они существенно дешевле, что и их широкое распространение.

Но сегодня конструкторы все пристальнее присматриваются к вышедшим из широкого употребления двигателям внешнего сгорания. Это объясняется их преимуществами. Главное достоинство состоит в том, что такие установки не нуждаются в хорошо очищенном и дорогом топливе.

Двигатели внешнего сгорания неприхотливы, хотя до сих пор их постройка и обслуживание обходятся достаточно дорого.

Двигатель Стирлинга

Один из самых известных представителей семейства двигателей внешнего сгорания – машина Стирлинга. Она была придумана в 1816 году, неоднократно совершенствовалась, но впоследствии на долгое время была незаслуженно забыта. Теперь же двигатель Стирлинга получил второе рождение. Его с успехом используют даже при освоении космического пространства.

Работа машины Стирлинга основана на замкнутом термодинамическом цикле. Периодические процессы сжатия и расширения здесь идут при разных температурах. Управление рабочим потоком происходит посредством изменения его объема.

Двигатель Стирлинга может работать в качестве теплового насоса, генератора давления, устройства для охлаждения.

В данном двигателе при низкой температуре идет сжатие газа, а при высокой – его расширение. Периодическое изменение параметров происходит за счет использования особого поршня, имеющего функцию вытеснителя. Тепло к рабочему телу при этом подводится с внешней стороны, через стенку цилиндра. Эта особенность и дает право