Самые современные и перспективные аккумуляторы. Новости из мира разработки аккумуляторных батарей

А сегодня расскажем о воображаемых — с гигантской удельной ёмкостью и мгновенной зарядкой. Новости о подобных разработках появляются с завидной регулярностью, но будущее пока не наступило, и мы всё ещё пользуемся появившимися в начале позапрошлого десятилетия литий-ионными аккумуляторами, либо их чуть более совершенными литий-полимерными аналогами. Так в чём же дело, в технологических трудностях, неправильной интерпретации слов учёных или чём-то другом? Попробуем разобраться.

В погоне за скоростью зарядки

Один из параметров аккумуляторов, который учёные и крупные компании постоянно стараются улучшить — скорость зарядки. Однако бесконечно увеличивать её не получится даже не в силу химических законов протекающих в аккумуляторах реакций (тем более, что разработчики алюминий-ионных батарей уже заявили, что такой тип аккумуляторов может быть полностью заряжен всего за секунду), а из-за физических ограничений. Пусть у нас есть смартфон с батареей ёмкостью 3000 мАч и поддержкой быстрой зарядки. Полностью зарядить такой гаджет можно в течение часа силой тока в среднем 3 А (в среднем потому, что напряжение при заряде изменяется). Однако если мы хотим получить полный заряд всего за одну минуту, потребуется сила тока уже в 180 А без учёта различных потерь. Для заряда устройства таким током потребуется провод диаметром около 9 мм — в два раза толще самого смартфона. Да и силу тока 180 А при напряжении около 5 В обычное зарядное устройство выдать не сможет: владельцам смартфонов понадобится импульсный преобразователь тока вроде того, что изображён на фотографии ниже.

Альтернатива увеличению силы тока — увеличение напряжения. Но оно, как правило, фиксированное, и для литий-ионный батарей составляет 3,7 В. Конечно, его можно превышать — зарядка по технологии Quick Charge 3.0 идёт с напряжением до 20 В, но попытка зарядить батарею напряжением около 220 В ни к чему хорошему не приведёт, и решить эту проблему в ближайшее время не представляется возможным. Современные элементы питания просто не могут использовать такое напряжение.

Вечные аккумуляторы

Разумеется, речь сейчас пойдёт не о «вечном двигателе», а об аккумуляторах с долгим сроком службы. Современные литий-ионные батареи для смартфонов способны выдержать максимум пару лет активного использования устройств, после чего их ёмкость неуклонно падает. Владельцам смартфонов со съёмными аккумуляторами повезло немного больше, чем другим, но и в этом случае стоит убедиться, что аккумулятор был произведён недавно: литий-ионные батарей деградируют даже тогда, когда не используются.

Своё решение этой проблемы предложили учёные Стэнфордского университета: покрыть электроды существующих типов литий-ионных аккумуляторов полимерным материалом с добавлением наночастиц графита. По задумке учёных, это позволит защитить электроды, которые неизбежно покрываются микротрещинами в процессе эксплуатации, а те же микротрещины в полимерном материале будут затягиваться самостоятельно. Принцип действия такого материала похож на технологию, применённую в смартфоне LG G Flex с самовосстанавливающейся задней крышкой.

Переход в третье измерение

В 2013 году появилось сообщение о разработке исследователями университета штата Иллинойс нового типа литий-ионных аккумуляторов. Учёные заявили, что удельная мощность таких элементов питания составит до 1000 мВт/(см*мм), в то время как удельная мощность обычных литий-ионных батарей колеблется между 10-100 мВт/(см*мм). Были использованы именно такие единицы измерения, поскольку речь идёт о достаточно небольших структурах толщиной в десятки нанометров.

Вместо плоских анода и катода, применяемых в традиционных Li-Ion батарей, учёные предложили использовать объёмные структуры: кристаллическую решётку из сульфида никеля на пористом никеле в качестве анода и литий-диоксид марганца на пористом никеле в качестве катода.

Несмотря на все сомнения, вызванные отсутствием в первых пресс-релизах точных параметров новых аккумуляторов, а также не представленные до сих пор прототипы, новый тип батарей всё же реален. Подтверждением тому служат несколько научных статей на эту тему, опубликованных за последние два года. Тем не менее, если такие батареи и станут доступны для конечных потребителей, произойдёт это очень нескоро.

Зарядка через экран

Учёные и инженеры пытаются продлить жизнь наших гаджетов не только поиском новых типов аккумуляторов или увеличением их энергоэффективности, но и довольно необычными способами. Исследователи университета штата Мичиган предложили встроить прозрачные солнечные панели прямо в экран. Поскольку принцип работы таких панелей основан на поглощении ими солнечного излучения, чтобы сделать их прозрачными, учёным пришлось пойти на хитрость: материал панелей нового типа поглощает только невидимое излучение (инфракрасное и ультрафиолетовое), после чего фотоны, отражаясь от широких граней стекла, поглощаются узкими полосками солнечных панелей традиционного типа, находящихся по его краям.

Главным препятствием для внедрения такой технологии является низкий КПД таких панелей — всего 1% против 25% традиционных солнечных панелей. Сейчас учёные ищут способы увеличить КПД хотя бы до 5%, но быстрого решения этой проблемы вряд ли стоит ожидать. К слову, похожую технологию недавно запатентовала компания Apple, но пока неизвестно, где именно в своих устройствах производитель расположит солнечные панели.

До этого мы под словами «батарея» и «аккумулятор» мы подразумевали перезаряжаемый элемент питания, но некоторые исследователи считают, что в гаджетах вполне можно использовать одноразовые источники напряжения. В качестве батареек, которые могли бы работать без подзарядки или другого обслуживания несколько лет (а то и несколько десятков лет) учёные университета штата Миссури предложили использовать РИТЭГ — радиоизотопные термоэлектрические генераторы. Принцип действия РИТЭГ основан на преобразовании выделяющегося в процессе радиораспада тепла в электричество. Многим такие установки известны по использованию в космосе и труднодоступных местах на Земле, но в США миниатюрные радиоизотопные батарейки также применялись в кардиостимуляторах.

Работа над улучшенным типом таких батарей ведётся с 2009 года и даже были показаны прототипы таких элементов питания. Но увидеть радиоизотопные батарейки в смартфонах в ближайшей перспективе мы не сможем: они дороги в производстве, и, к тому же, многие страны имеют строгие ограничения на производство и оборот радиоактивных материалов.

В качестве одноразовых батареек также можно использовать и водородные элементы, но их в смартфонах использовать не получится. Водородные батареи расходуются довольно быстро: хотя ваш гаджет и будет работать от одного картриджа дольше, чем от одного заряда обычной батареи, их придётся периодически менять. Впрочем, это не мешает использовать водородные батареи в электромобилях и даже внешних аккумуляторах: пока это не массовые устройства, но уже и не прототипы. Да и компания Apple, по слухам, уже разрабатывает систему дозаправки картриджей водородом без их замены для использования в будущих iPhone.

Идея о том, что на основе графена можно создать аккумулятор с высокой удельной ёмкостью, была выдвинута ещё в 2012 году. И вот, в начале этого года в Испании было объявлено о начале строительства компанией Graphenano завода по производству графен-полимерых аккумуляторов для электромобилей. Новый тип батарей почти в четыре раза дешевле в производстве, чем традиционные литий-полимерные аккумуляторы, имеет удельную ёмкость 600 Втч/кг, а зарядить такую батарею на 50 кВтч можно будет всего за 8 минут. Правда, как мы говорили в самом начале, для этого потребуется мощность около 1 МВт, поэтому подобный показатель достижим лишь в теории. Когда именно завод начнёт выпускать первые графен-полимерные батареи не сообщается, но вполне возможно, что среди покупателей его продукции будет Volkswagen. Концерн уже заявил о планах выпуска электромобилей с пробегом до 700 километров от одного заряда аккумуляторов к 2018 году.

Что касается мобильных устройств, то пока применению в них графен-полимерных аккумуляторов мешают большие габариты таких батарей. Будем надеяться, что исследования в этой области продолжатся, ведь графен-полимерные аккумуляторы — один из наиболее перспективных типов аккумуляторов, которые могут появиться уже в ближайшие годы.

Так всё же, почему, несмотря на весь оптимизм учёных и регулярно появляющиеся новости о прорывах в области сохранения электроэнергии, мы сейчас наблюдаем застой? В первую очередь, дело в наших завышенных ожиданиях, которые только подогреваются журналистами. Мы хотим верить, что вот-вот и произойдёт революция в мире аккумуляторов, и мы получим батарейку с зарядкой менее, чем за минуту, и практически неограниченным сроком службы, от которой современный смартфон с восьмиядерным процессором будет работать минимум неделю. Но таких прорывов, увы, не бывает. Вводу в массовое производство любой новой технологии предшествуют долгие годы научных исследований, испытаний образцов, разработка новых материалов и технологических процессов и другая работа, занимающая достаточно много времени. В конце концов, тем же литий-ионным аккумуляторам понадобилось около пяти лет, чтобы из инженерных образцов превратиться в готовые устройства, которые можно использовать в телефонах.

Поэтому, нам остаётся только запасаться терпением и не воспринимать новости о новых элементах питания близко к сердцу. По крайней мере, пока не появятся новости об их запуске в массовое производство, когда не останется никаких сомнений о жизнеспособности новой технологии.

Электрокары должны решить немало проблем окружающей среды. Если их заряжать током из возобновляемых источников, то они окажутся практически безвредны для атмосферы. Конечно, если не учитывать их технологически сложного производства. И ехать на электрической тяге без привычного гудения двигателя - просто приятнее. Морокой до сих пор остаются постоянные хлопоты из-за состояния заряда аккумулятора. Ведь если он опустится до нуля и рядом не будет ни одной зарядной станции, то проблем не оберешься.

Есть шесть решающих факторов успешности электрокаров, которые запитаны от аккумуляторных батарей. Прежде всего, речь идет о емкости - то есть сколько электроэнергии может хранить аккумулятор, количество циклического использования батареи - то есть «заряд-разряд», которые аккумулятор выдерживает, прежде чем выйти из строя, и время подпитки - то есть сколько водителю придется ждать, заряжая автомобиль, чтобы ехать дальше.

Не менее важна и надежность самого аккумулятора. Скажем, сможет ли он выдержать поездку в высокогорье или путешествие жаркой летней порой. Конечно, решая, стоит ли покупать электрокар, следует учитывать и такой фактор, как количество станций подзарядки и цену аккумуляторов.

Как далеко уедешь на батареях?

Легковые электрокары, представленные на рынке сегодня, на одном заряде преодолевают дистанции от 150 до более 200 километров. В принципе, эти расстояния можно увеличить, если удвоить или утроить количество аккумуляторов. Но, во-первых, сейчас это было бы настолько дорого, что покупка электромобиля оказалась бы непосильной, а во-вторых, сами электромобили стали бы гораздо тяжелее, поэтому их надо было бы конструировать, рассчитывая на большие нагрузки. А это противоречит цели, которые преследуют компании-производители электрокаров, а именно - легкость конструкции.

К примеру, Daimler недавно представил грузовик на электроприводе, который может преодолевать на одной подзарядке до 200 километров. Однако сам аккумулятор весит не менее двух тонн. Зато двигатель значительно легче, чем у грузовика на дизеле.

Какие аккумуляторы доминируют на рынке?

Современные аккумуляторы, безразлично, идет ли речь о мобильные телефоны, ноутбуки или электрокары, это - почти исключительно варианты так называемых литий-ионных аккумуляторов. Речь идет о разновидности типов аккумуляторов, где щелочной металл литий встречается как в положительных и отрицательных электродах, так и в жидкости - так называемом электролите. Как правило, отрицательный электрод состоит из графита. В зависимости от того, какие еще материалы применяются в положительном электроде, различают, например, литий-кобальтовые (LiCoO2), литий-титановые (Li4Ti5O12) и литий-железо-фосфатные аккумуляторы (LiFePO4).

Особую роль играют литий-полимерные аккумуляторы. Здесь электролитом выступает гелеобразная пластмасса. На сегодня эти аккумуляторы - самые мощные из тех, что найдешь на рынке, они достигают емкости энергии до 260 ватт-часов на килограмм. Остальные литиево-ионные аккумуляторы способны максимум на 140 до 210 ватт-часов на килограмм.

А если сравнить типы батарей?

Литий-ионные батареи очень дорогие, прежде всего, из-за высокой рыночной стоимости лития. Однако есть немало преимуществ по сравнению с теми типами сделанных из свинца и никеля аккумуляторов, которые применялись ранее.

Кроме того, литий-ионные аккумуляторы достаточно быстро заряжаются. Это означает, что с обычным током от электросети электрокар можно подзарядить за два - три часа. А на станциях специальной быстрой подзарядки на это может уйти один час.

Старые типы аккумуляторов не имеют таких преимуществ и энергии они могут аккумулировать значительно меньше. Аккумуляторы на никелевой основе имеют емкость энергии от 40 до 60 ватт-часов на килограмм. Еще хуже свойства в свинцовых аккумуляторах - емкость энергии в них около 30 ватт-часов на килограмм. Однако они - значительно дешевле и без проблем выдерживают много лет эксплуатации.

На сколько хватает современных аккумуляторов?

Многие помнят так называемый эффект памяти аккумуляторной батареи в старых аккумуляторах. Больше всего он проявлялся в никелевых аккумуляторах. Тогда, если кто-то думал зарядить аккумулятор шуруповерта или ноутбука, хотя батарея была чуть ли не наполовину заряжена, способность накапливать электрическую энергию удивительно сильно сокращалась. Поэтому перед каждым процессом зарядки следовало полностью расходовать энергию. Для электромобилей это было бы катастрофой, ведь их надо подзарядить именно тогда, когда они находятся на подходящем расстоянии от зарядной установки, а не тогда, когда у аккумулятора кончился заряд.

Зато литий-ионные аккумуляторы не имеют такого «эффекта памяти». Производители обещают до 10 000 циклов «заряд-разряд» и 20 лет бесперебойной работы. В то же время нередко опыт потребителей свидетельствует о другом - аккумуляторы ноутбуков «умирают» уже после нескольких лет работы. Кроме того, нанести непоправимый вред аккумуляторам могут внешние факторы - например, экстремальные температуры или допущенный по недосмотру полный разряд аккумулятора или его перезаряд. Очень важной в современных аккумуляторных батареях является бесперебойная работа электроники, контролирующей процесс подпитки.

Суперакумуляторы - лишь пустой звук?

Эксперты из исследовательского центра Jülich работают над разработкой кремний-воздушных аккумуляторов. Идея воздушных аккумуляторов - не такая уж и новая. Так, ранее пробовали разработать литий-воздушные аккумуляторы, в которых положительный электрод состоял бы из нанокристаллической решетки углерода. При этом сам электрод не участвует в электрохимическом процессе, а выступает лишь как проводник, на поверхности которого восстанавливается кислород.

По такому же принципу действуют и кремниево-воздушные аккумуляторы. Впрочем, они имеют преимущество, как состоящие из очень дешевого кремния, который встречается практически в неограниченном количестве в природе в виде песка. Кроме того, кремний активно используют в полупроводниковой технологии.

В дополнение к потенциально низкой себестоимости производства, технические характеристики воздушных аккумуляторов тоже, на первый взгляд, достаточно привлекательны. Ведь они могут достичь такой емкости энергии, которая превышает сегодняшние показатели втрое, а то и в десять раз.

Однако до выхода на рынок этим разработкам еще далеко. Самой большой проблемой является неудовлетворительно короткая «продолжительность жизни» воздушных аккумуляторов. Она значительно ниже 1000 циклов «заряд-разряд». Определенную надежду подает эксперимент исследователей центра Jülich. Им удалось выяснить, что продолжительность эксплуатации таких аккумуляторов можно значительно повысить, если регулярно наполнять электролит в этих аккумуляторных батареях. Но даже и при таких технических решениях эти аккумуляторы не достигнут и доли той продолжительности эксплуатации, которую имеют сегодняшние литий-ионные аккумуляторные батареи.

С развитием технологий устройства делают более компактными, функциональными и мобильными. Заслуга такого совершенства аккумуляторные батареи , которые питают устройство. За все время изобретено много разных видов аккумуляторов, которые имеют свои преимущества и недостатки.

Казалось бы, перспективная десяток лет назад технология литий ионных батарей, уже не отвечает требованиям современного прогресса для мобильных устройств. Они недостаточно мощны и быстро стареют при частом использовании или долгом хранении. С тех пор выведены подвиды литиевых батарей, такие как литий-железо-фосфатные, литий-полимерные и другие.

Но наука не стоит на месте и ищет новые способы еще более лучшего сохранения электроэнергии. Так, например, изобретают другие типы батарей.

Литий-серные батареи (Li-S)

Литий серная технология позволяет получать батареи и энергоемкостью которая в два раза превышает за их родителей литий ионных. Без существенной потери в емкости такой тип батарей можно перезарядить до 1500 раз. Преимущество батареи скрывается в технологии изготовления и компоновки, где используется жидки катод с содержанием серы, при этом он отделен специальной мембраной от анода.

Литий серные батареи можно использовать в достаточно широком диапазоне температур, а себестоимость их производства достаточно низка. Для массового применения надо устранить недостаток производства, а именно утилизация серы, которая вредна для экологии.

Магниево-серные батареи (Mg/S)

До последнего времени нельзя было объединить использования серы и магния в одной ячейке, но не так давно ученые смогли это сделать. Для их работы нужно было изобрести электролит, который бы работал с обоими элементами.

Благодаря изобретению нового электролита за счет образования кристаллических частит, которые стабилизируют его. Увы, но опытный образец на данный момент не долговечен, и в серию такое батареи скорей всего не пойдут.

Фторид-ионные батареи

Для переноса зарядов между катодом и анодом в таких батареях используется анионы фтора. Этот тип аккумуляторов имеет емкость которые в десятки раз превышает за обычные литий ионные батареи, а также может похвастаться меньшей пожароопасностью. В основе электролита лежит лантане бария.

Казалось бы, перспективное направление развитие батарей, но и оно не лишено недостатков очень серьезная преграда для массового использования - это работа аккумулятора только при очень высоких температурах.

Литий-воздушные батареи (Li-O2)

Вместе с техническими достижениями человечество уже задумывается о нашей экологии и ищет все более и более чистые источники энергии. В литий воздушных аккумуляторах вместо оксидов металла в электролите применяется углерод, который вступая в реакцию с воздухом создает электрический ток.

Плотность энергии составляет до 10 кВтч/кг, что позволяет их использовать в электромобилях и мобильных устройствах. Ожидает скорое появления для конечного потребителя.

Литий-нанофосфатные батареи

Этот тип батарей является следующим поколение литий ионных батарей, среди преимуществ который является высокая скорость заряда и возможностью высокой отдачи тока. Для полного заряда, например, требуется коло 15 минут.

Новая технология использования особых нано частиц, способных обеспечивать более быстрый поток ионов позволяют увеличить количество циклов заряда – разряда в 10 раз! Само собой, они имеют слабый саморазряд и отсутствует эффект памяти. Увы, но, широкому распространению мешает большой вес аккумуляторов и необходимость в специальной зарядке.

Как вывод, можно сказать одно. Мы скоро будем наблюдать повсеместное использование электромобилей и гаджетов, которые смогут работать очень большое время без подзарядки.

Электро новости:

Автоконцерн BMW представил свой вариант электровелосипеда. Электрический велосипед BMW оснащен электромотором (250 Вт) Разгон до скорости до 25 км/ч.

Берем сотню за 2,8 секунды на электроавтомобиле? По слухам, обновление P85D позволяет сократить время разгона с 0 до 100 километров в час с 3,2 до 2,8 секунды.

Испанские инженеры разработали аккумулятор на котором можно проехать больше 1000 км! Она дешевле на 77% и заряжается всего за 8 минут

В начале 90-х годов произошел серьезный шаг в технологии разработки аккумуляторов — изобретение литий-ионных накопителей энергии. Это позволило нам увидеть смартфоны и даже электромобили в том виде, в каком они существуют сейчас, но с тех пор не было изобретено ничего серьезного в этой области, в электронике до сих пор используется именно этот тип.

В свое время, Li-ion батареи с увеличенной емкостью и отсутствием «эффекта памяти» действительно были прорывом в технологии, но сейчас они уже не справляются с возросшей нагрузкой. Появляется все больше смартфонов с новыми, полезными функциями, которые в итоге увеличивают нагрузку на аккумулятор. При этом, электромобили с такими аккумуляторами все еще слишком дороги и малоэффективны.

Для того, чтобы смартфоны работали продолжительное время и оставались небольшого размера, нужны новые аккумуляторы.

Аккумуляторы с жидкостными электродами

Одна из интересных попыток решить проблемы традиционных аккумуляторов — разработка «проточных» аккумуляторов с жидким электролитом. Принцип работы таких аккумуляторов основан на взаимодействии двух заряженных жидкостей, прогоняемых насосами через ячейку, где вырабатывается электрический ток. Жидкости в этой ячейке не смешиваются, а разделяются мембраной, через которую проходят заряженные частицы, все как в обычном аккумуляторе.

Аккумулятор можно как заряжать обычным способом, так и заливать новый, заряженный электролит, в этом случае процедура займет всего пару минут, все равно что залить бензин в бензобак. Этот способ прежде всего подходит для автомобиля, но пригодится и для электроники.

Натриевые аккумуляторы

Основные недостатки литий-ионных аккумуляторов — дороговизна материалов, относительно небольшое количество циклов разрядки-зарядки и пожароопасность. Поэтому уже долгое время ученые пытаются усовершенствовать эту технологию.

В Германии сейчас ведутся работы над натриевыми аккумуляторами , которые должны стать более долговечными, дешевыми и емкими. Электроды нового аккумулятора будут собраны из разных слоев, что позволяет быстро заряжать аккумулятор. В настоящее время идет поиск более надежной конструкции электрода, после чего можно будет сделать вывод, пойдет эта технология в производство, либо какая-то другая разработка окажется лучше.

Литий-серные аккумуляторы

Еще одна новая разработка — литий-серные аккумуляторы. В этих батареях планируется использовать катод из серы, что будет означать существенное удешевление батареи. Эти аккумуляторы уже находятся в высокой степени готовности и скоро могут пойти в серийное производство.

Теоретически, литий-серные аккумуляторы позволяют достичь более высокой энергоемкости, чем литий-ионные, которые уже подошли к своим предельным возможностям. Очень важно, что литий-серные аккумуляторы можно полностью разряжать и неограниченное время хранить в полностью разряженном виде без эффекта памяти. Сера вторичный продукт переработки нефти, в новых аккумуляторах не будет тяжелых металлов (никель и кобальт), новый состав батарей будет более экологичным и аккумуляторы будет проще утилизировать.

Совсем скоро будет известно, какая технология окажется наиболее перспективной и вытеснит устаревающие литий-ионные аккумуляторы.

А пока предлагаем Вам познакомиться с популярной профессией .

Многие считают, что будущее автомобилестроения именно за электрокарами. За границей существуют законопроекты, по которым часть ежегодно продаваемых автомобилей должны либо быть гибридами, либо работать на электричестве, поэтому деньги вкладываются не только в рекламу таких авто, но и в постройку заправок.

Однако многие люди все-таки ждут, когда электрокары станут настоящими соперниками традиционным автомобилям. А может, это будет, когда время зарядки уменьшится, а время автономной работы увеличится? Возможно, в этом человечеству помогут графеновые аккумуляторы.

Что такое графен?

Революционный материал нового поколения, самый легкий и прочный, самый электропроводящий - все это о графене, который является не чем иным, как двумерной углеродной решеткой толщиной в один атом. Создатели графена, Константин Новоселов и получили Нобелевскую премию. Обычно между открытием и началом практического использования этого открытия на практике проходит продолжительное время, иногда даже десятки лет, однако графен такая участь не постигла. Возможно, это связано с тем, что Новоселов и Гейм не утаили технологию его производства.

Они не только рассказали о ней всему миру, но и показали: есть видео на YouTube, где Константин Новоселов подробно рассказывает об этой технологии. Поэтому, возможно, скоро мы сможем даже делать графеновые аккумуляторы своими руками.

Разработки

Попытки применения графена были практически во всех областях науки. Его пробовали в солнечных батареях, наушниках, корпусах и даже пытались лечить рак. Однако на данный момент одна из самых перспективных и нужных человечеству вещей - это графеновый аккумулятор. Напомним, что при таком неоспоримом преимуществе, как дешевое и экологичное топливо, электромобили имеют серьезный недостаток - относительно небольшую максимальную скорость и запас хода не более трехсот километров.

Решение проблемы века

Графеновый аккумулятор работает по тому же принципу, что и свинцовые с щелочным или кислотным электролитом. Этим принципом является электрохимическая реакция. По устройству графеновый аккумулятор схож с литиево-ионным с твердым электролитом, в котором катодом является угольный кокс, близкий по составу к чистому углероду.

Однако уже сейчас среди инженеров, разрабатывающих графеновые аккумуляторы, есть два принципиально разных направления. В США ученые предложили делать катод из пластин графена и кремния, перемежающихся между собой, а анод - из классического кобальта лития. Российские инженеры нашли другое решение. Токсичная и дорогая литиевая соль может быть заменена более экологичным и дешевым оксидом магния. Емкость аккумулятора увеличивается в любом случае за счет повышения скорости прохождения ионов от одного электрода к другому. Это достигается вследствие того, что графен обладает высоким показателем электрической проницаемости и способностью к накоплению электрического заряда.

Мнения ученых относительно инноваций разделяются: российские инженеры утверждают, что графеновые аккумуляторы имеют емкость в два раза больше, чем литий-ионные, а вот их зарубежные коллеги утверждают, что в десять.

Графеновые аккумуляторы запущены в массовое производство в 2015 году. К примеру, этим занимается испанская компания Graphenano. По словам производителя, использование этих аккумуляторов в электрокарах на логистических площадках показывает реальные практические возможности батареи с графеновым катодом. Для полной зарядки ему требуется всего восемь минут. Максимальную длину пробега также способны увеличить графеновые аккумуляторы. Зарядка на 1000 км вместо трехсот - вот что хочет предложить потребителю корпорация Graphenano.

Испания и Китай

С Graphenano сотрудничает китайская компания Chint, которая купила 10 % акций испанской корпорации за 18 миллионов евро. На совместные средства будет осуществляться постройка завода с двадцатью производственными линиями. Проект уже получил около 30 миллионов инвестиций, которые будут вложены в установку оборудования и наем сотрудников. По первоначальному плану завод должен был начать выпускать около 80 миллионов батарей. На начальном этапе основным рынком должен стать Китай, а затем планировалось начало поставок в другие страны.

На втором этапе компания Chint готова инвестировать 350 миллионов евро для постройки еще одного завода, на котором будет около пяти тысяч сотрудников. Такие цифры неудивительны, если учесть, что суммарный доход будет составлять около трех миллиардов евро. К тому же Китай, известный своими проблемами с экологией, будет обеспечен экологичным и дешевым "топливом". Однако, как мы можем наблюдать, кроме громких заявлений, свет не увидел ничего, только тестовые модели. Хотя корпорация Volkswagen тоже объявила о своем намерении сотрудничать с Graphenano.

Ожидания и реальность

На дворе 2017 год, а это значит, что Graphenano занимаются "массовым" производством аккумуляторов уже два года, однако встретить электромобиль на дороге - большая редкость не только для России. Все характеристики и данные, обнародованные корпорацией, довольно неопределенны. В целом они никак не выходят за рамки общепринятых теоретических представлений о том, какими параметрами должен обладать графеновый аккумулятор для электромобиля.

К тому же до сих пор все, что было представлено как потребителям, так и инвесторам, - это только компьютерные модели, никаких настоящих прототипов. Добавляет проблем и то, что графен - материал, который очень дорог в производстве. Несмотря на громкие заявления ученых о том, как его можно будет "печатать на коленке", на данном этапе снизить удается только стоимость некоторых компонентов.

Графен и мировой рынок

Сторонники всяческих теорий заговоров скажут, что никому не выгодно появление такого автомобиля, потому что тогда нефть уйдет на задний план, а значит, сократятся и доходы от ее добычи. Однако, скорее всего, инженеры столкнулись с какими-то проблемами, но не хотят это афишировать. Слово "графен" сейчас на слуху, многие считают его поэтому, возможно, ученым не хочется портить его славу.

Проблемы в разработках

Однако дело может быть и в том, что материал действительно инновационный, поэтому подхода требует соответствующего. Возможно, аккумуляторы с использованием графена должны быть принципиально отличными от традиционных литий-ионных или литий-полимерных.

Существует и еще одна теория. Корпорация Graphenano заявила, что новые аккумуляторы заряжаются всего за восемь минут. Специалисты подтверждают, что это действительно возможно, только мощность источника питания должна быть не менее одного мегаватта, что возможно в тестовых условиях на заводе, но никак не в домашних. Постройка достаточного количества заправок с такой мощностью будет стоить огромных денег, цена одной подзарядки будет довольно высока, поэтому графеновый аккумулятор для авто не принесет никакой выгоды.

Практика показывает, что революционные технологии достаточно долго встраиваются в мировой рынок. Необходимо провести множество тестов, чтобы убедиться в безопасности продукта, поэтому выход новых технологических устройств порой затягивается на долгие годы.