Размер измеряемой величины. Измеряемые величины

Метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Теоретическая (фундаментальная) метрология – раздел метрологии предметом которого является разработка фундаментальных основ метрологии.

Законодательная метрология – раздел метрологии, предметом которого является установление обязательных технических и юридических требований по применению единиц физических величин, эталонов, методов и средств измерений, направленных на обеспечение единства и необходимости точности измерений в интересах общества.

Практическая (прикладная) метрология – раздел метрологии, предметом которого являются вопросы практического применения разработок теоретической метрологии и положений законодательной метрологии.

(Гранеев)

Физическая величина - свойство, общее в качественном отношении для множества объектов и индивидуальное в количественном отношении для каждого из них.

Размер физической величины количественное содержание свойства (или выражение размера физической величины), соответствующего понятию «физическая величина», присущее данному объекту.

Значение физической величины - количественная оценка измеряемой величины в виде некоторого числа принятых для данной величины единиц.

Единица измерения физической величины – физическая величина фиксированного размера, которой присвоено числовое значение, равное единицы, и применяемая для количественного выражения однородных с ней физических величин.

При измерениях используют понятия истинного и действительного значения физической величины. Истинное значение физической величины – значение величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину. Действительное значение физической величины – это значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

Измерение - нахождение значения физической величины опытным путем с помощью специальных технических средств.

Главные признаки понятия «измерение»:

а) измерять можно свойства реально существующих объектов познания, т. е. физические величины;

б) измерение требует проведения опытов, т. е. теоретические рассуждения или расчеты не могут заменить эксперимент;

в) для проведения опытов требуются особые технические средства - средства измерений, приводимые во взаимодействие с материальным объектом;

г) результатом измерения является значение физической величины.

Характеристики измерений: принцип и метод измерений, результат, погрешность, точность, сходимость, воспроизводимость, правильность и достоверность.

Принцип измерения – физическое явление или эффект, положенное в основу измерений. Например:

Метод измерения – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. Например:

Результат измерения – значение величины, полученное путем ее измерения.

Погрешность результата измерений – отклонение результата измерений от истинного (действительного) значения измеряемой величины.

Точность результата измерений – одна из характеристик качества измерений, отражающая близость к нулю погрешности результата измерения.

Сходимость результатов измерений – близость друг к другу результатов измерений одной и той же величины, выполненных повторно одними и теми же средствами, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью. Сходимость измерений отражает влияние случайных погрешностей на результат измерения.

Воспроизводимость – близость результатов измерений одной и той же величины, полученных в разных местах, разными методами и средствами, разными операторами, в разное время, но приведенных к одним и тем же условиям (температура, давление, влажность и др.).

Правильность – характеристика качества измерений, отражающая близость к нулю систематических погрешностей в их результатах.

Достоверность – характеристика качества измерений, отражающая доверие к их результатам, которая определяется вероятностью (доверительной) того, что истинное значение измеряемой величины находится в указанных границах (доверительных).

Совокупность величин, связанных между собой зависимостями, образуют систему физических величин. Единицы, образующие какую-нибудь систему, называют системными единицами, а единицы, не входящие ни в одну из систем, - внесистемными.

В 1960г. 11 Генеральная конференция по мерам и весам утвердила Международную систему единиц – СИ, которая включает в себя систему единиц МКС (механические единицы) и систему МКСА (электрические единицы).

Системы единиц строятся из основных и производных единиц. Основные единицы образуют минимальный набор независимых исходных единиц, а производные единицы представляют собой различные комбинации основных единиц.

Виды и методы измерений

Для выполнения измерений необходимо осуществление следующих измерительных операций: воспроизведения, сравнения, измерительного преобразования, масштабирования.

Воспроизведение величины заданного размера – операция создания выходного сигнала с заданным размером информативного параметра, т. е. величиной напряжения, тока, сопротивления и т. д. Эта операция реализуется средством измерений – мерой.

Сравнение – определение соотношения между однородными величинами, осуществляемое путем их вычитания. Эта операция реализуется устройством сравнения (компаратором).

Измерительное преобразование – операция преобразования входного сигнала в выходной, реализуемая измерительным преобразователем.

Масштабирование – создание выходного сигнала, однородного с входным, размер информативного параметра которого пропорционален в К раз размеру информативного параметра входного сигнала. Масштабное преобразование реализуется в устройстве, которое называется масштабным преобразователем.

Классификация измерений:

по числу измерений – однократные, когда измерения выполняют один раз, и многократные – ряд однократных измерений физической величины одного и того же размера;

характеристике точности – равноточные – это ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью, и неравноточные , когда ряд измерений какой-либо величины выполняется различающимися по точности средствами измерений и в разных условиях;

характеру изменения во времени измеряемой величины – статические, когда значение физической величины считается неизменным на протяжении времени измерения, и динамические – измерения изменяющиеся по размеру физической величины;

способу представления результатов измерений – абсолютные измерения величины в ее единицах, и относительные – измерения изменений величины по отношению к одноименной величине, принимаемой за исходную.

способу получения результата измерения (способу обработки экспериментальных данных) – прямые и косвенные, которые делят на совокупные или совместные.

Прямое измерение - измерение, при котором искомое значение величины находят непосредственно из опытных данных в результате выполнения измерения. Пример прямого измерения - измерение вольтметром напряжения источника.

Косвенное измерение - измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенном измерении значение измеряемой величины получают путем решения уравнения х = F(х1 , х2 , х3 , ...., х n), где х1 , х2 , х3 , ...., х n - значения величин, полученных прямыми измерениями.

Пример косвенного измерения: сопротивление резистора R находят из уравнения R= U/ I, в которое подставляют измеренные значения падения напряжения U на резисторе и тока I через него.

Совместные измерения - одновременные измерения нескольких неодноименных величин для нахождения зависимости между ними. При этом решают систему уравнений

F(х1 , х2, х3 , ...., хn, х1́ , х2́, х3́ , ...., хḿ) = 0;

F(х1 , х2, х3 , ...., хn, х1΄΄ , х2΄΄, х3΄΄ , ...., хm΄΄) = 0;

…………………………………………………

F(х1 , х2, х3 , ...., хn, х1(n) , х2(n), х3(n), ...., хm(n)) = 0,

где х1 , х2 , х3 , ...., хn – искомые величины; х1́ , х2́, х3́ , ...., хḿ ; х1΄΄ , х2΄΄, х3΄΄ , ...., хm΄΄; х1(n) , х2(n), х3(n), ...., хm(n) - значения измеренных величин.

Пример совместного измерения: определяют зависимость сопротивления резистора от температуры Rt = R0(1 + At + Bt2); измеряя сопротивление резистора при трех различных температурах, составляют систему из трех уравнений, из которых находят параметры R0, А и В зависимости.

Совокупные измерения - одновременные измерения нескольких одноименных величин, при которых искомые значения величин находят решением системы уравнений, составленных из результатов прямых измерений различных сочетаний этих величин.

Пример совокупного измерения: измерение сопротивлений резисторов, соединенных треугольником, путем измерения сопротивлений между различными вершинами треугольника; по результатам трех измерений определяют сопротивления резисторов.

Взаимодействие средств измерений с объектом основано на физических явлениях, совокупность которых составляет принцип измерений , а совокупность приемов использования принципа и средств измерений называют методом измерений .

Методы измерения классифицируют по следующим признакам:

по физическому принципу положенному в основу измерения – электрические, механические, магнитные, оптические и т. д.;

степени взаимодействия средства и объекта измерения – контактный и бесконтактный;

режиму взаимодействия средства и объекта измерения – статические и динамические;

виду измерительных сигналов – аналоговые и цифровые;

организации сравнения измеряемой величины с мерой – методы непосредственной оценки и сравнения с мерой.

При методе непосредственной оценки (отсчета) значение измеряемой величины определяют непосредственно по отсчетному устройству измерительного прибора прямого преобразования, шкала которого заранее была градуирована с помощью многозначной меры, воспроизводящей известные значения измеряемой величины. В приборах прямого преобразования в процессе измерения оператором производится сравнение положения указателя отсчетного устройства и шкалы, по которой производится отсчет. Измерение силы тока с помощью амперметра - пример измерения по методу непосредственной оценки.

Методы сравнения с мерой - методы, при которых производится сравнение измеряемой величины и величины, воспроизводимой мерой. Сравнение может быть непосредственным или опосредствованным через другие величины, однозначно связанные с первыми. Отличительной чертой методов сравнения является непосредственное участие в процессе измерения меры известной величины, однородной с измеряемой.

Группа методов сравнения с мерой включает в себя следующие методы: нулевой, дифференциальный , замещения и совпадения.

При нулевом методе измерения разность измеряемой величины и известной величины или разность эффектов, производимых измеряемой и известной величинами, сводится в процессе измерения к нулю, что фиксируется высокочувствительным прибором - нуль-индикатором. При высокой точности мер, воспроизводящих известную величину, и высокой чувствительности нуль-индикатора может быть достигнута высокая точность измерений. Примером применения нулевого метода является измерение сопротивления резистора с помощью четырех-плечего моста, в котором падение напряжения на резисторе

с неизвестным сопротивлением уравновешивается падением напряжения на резисторе известного сопротивления.

При дифференциальном методе разность измеряемой величины и величины известной, воспроизводимой мерой, измеряется с помощью измерительного прибора. Неизвестная величина определяется по известной величине и измеренной разности. В этом случае уравновешивание измеряемой величины известной величиной производится не полностью и в этом заключается отличие дифференциального метода от нулевого. Дифференциальный метод также может обеспечить высокую точность измерения, если известная величина воспроизводится с высокой точностью и разность между ней и неизвестной величиной мала.

В качестве примера измерения с использованием этого метода является измерение напряжения Ux постоянного тока с помощью дискретного делителя R напряжения U и вольтметра V (рис. 1). Неизвестное напряжение Ux = U0 + ΔUx, где U0- известное напряжение, ΔUx -измеренная разность напряжений.

При методе замещения производится поочередное подключение на вход прибора измеряемой величины и известной величины и по двум показаниям прибора оценивается значение неизвестной величины. Наименьшая погрешность измерения получается в том случае, когда в результате подбора известной величины прибор дает тот же выходной сигнал, что и при неизвестной величине. При этом методе может быть получена высокая точность измерения при высокой точности меры известной величины и высокой чувствительности прибора. Примером этого метода является точное измерение малого напряжения с помощью высокочувствительного гальванометра, к которому сначала подключают источник неизвестного напряжения и определяют отклонение указателя, а затем с помощью регулируемого источника известного напряжения добиваются того же отклонения указателя. При этом известное напряжение равно неизвестному.

При методе совпадения измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Примером этого метода является измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, по частоте вспышек и смещению метки определяют частоту вращения детали.

КЛАССИФИКАЦИЯ СРЕДСТВ ИЗМЕРЕНИЙ

Средство измерений (СИ) – техническое средство, предназначенное для измерений, нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

По назначению СИ подразделяются на меры, измерительные преобразователи, измерительные приборы, измерительные установки и измерительные системы.

Мера – средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью. Различают меры:

- однозначные – воспроизводящие физическую величину одного размера;

- многозначные – воспроизводящие физическую величину разных размеров;

- набор мер – комплект мер разного размера одной и той же физической величины, предназначенных для практического применения как в отдельности, так и в различных сочетаниях;

- магазин мер – набор мер конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях.

Измерительный преобразователь – техническое средство с нормативными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал удобный для обработки. Это преобразование должно выполняться с заданной точностью и обеспечивать требуемую функциональную зависимость между выходной и входной величинами преобразователя.

Измерительные преобразователи могут быть классифицированы по признакам:

по характеру преобразования различают следующие виды измерительных преобразователей: электрических величин в электрические, магнитных в электрические, неэлектрических в электрические;

месту в измерительной цепи и функциям различают первичные, промежуточные, масштабные, и передающие преобразователи.

Измерительный прибор – средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне.

Измерительные приборы подразделяются:

по форме регистрации измеряемой величины – на аналоговые и цифровые;

применению – амперметры, вольтметры, частотомеры, фазометры осциллографы и т. д.;

назначению – приборы для измерения электрических и неэлектрических физических величин;

действию – интегрирующие и суммирующие;

способу индикации значений измеряемой величины – показывающие, сигнализирующие и регистрирующие;

методу преобразования измеряемой величины – непосредственной оценки (прямого преобразования) и сравнения;

способу применения и по конструкции – щитовые, переносные, стационарные;

защищенности от воздействия внешних условий – обыкновенные, влаго-, газо-, пылезащищенные, герметичные, взрывобезопасные и др.

Измерительные установки – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте.

Измерительная система – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях. В зависимости от назначения измерительные системы подразделяют на информационные, контролирующие, управляющие и др.

Измерительно-вычислительный комплекс – функционально объединенная совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи.

По метрологическим функциям СИ подразделяются на эталоны и рабочие средства измерений.

Эталон единицы физической величины – средство измерений (или комплекс средств измерений), предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера нижестоящим по поверочной схеме средствам измерений и утвержденное в качестве эталона в установленном порядке.

Рабочее средство измерений – это средство измерений, используемое в практике измерений и не связанное с передачей единиц размера физических величин другим средствам измерений.

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ СРЕДСТВ ИЗМЕРЕНИЙ

Метрологическая характеристика средства измерений – характеристика одного из свойств средства измерений, влияющая на результат и погрешность его измерений. Метрологические характеристики, устанавливаемые нормативно-техническими документами, называют нормируемыми метрологическими характеристиками, а определяемые экспериментально – действительными метрологическими характеристиками.

Функция преобразования (статическая характеристика преобразования) – функциональная зависимость между информативными параметрами выходного и входного сигналов средства измерений.

Погрешность СИ – важнейшая метрологическая характеристика, определяемая как разность между показанием средства измерений и истинным (действительным) значением измеряемой величины.

Чувствительность СИ – свойство средства измерений, определяемое отношением изменения выходного сигнала этого средства к вызывающему его изменению измеряемой величины. Различают абсолютную и относительную чувствительность. Абсолютную чувствительность определяют по формуле

Относительную чувствительность – по формуле

где ΔY – изменение сигнала на выходе; ΔX – изменение измеряемой величины, Х – измеряемая величина.

Цена деления шкалы ( постоянная прибора) – разность значения величины, соответствующая двум соседним отметкам шкалы СИ.

Порог чувствительности – наименьшее значение изменения физической величины, начиная с которого может осуществляться ее измерение данным средством. Порог чувствительности в единицах входной величины.

Диапазон измерений – область значений величины, в пределах которой нормированы допускаемые пределы погрешности СИ. Значения величины, ограничивающие диапазон измерений снизу и сверху (слева и справа), называют соответственно нижним и верхним пределом измерений. Область значений шкалы прибора, ограниченную начальными и конечными значениями шкалы, называют диапазон показаний.

Вариация показаний – наибольшая вариация выходного сигнала прибора при неизменных внешних условиях. Она является следствием трения и люфтов в узлах приборов, механического и магнитного гистерезиса элементов и др.

Вариация выходного сигнала – это разность между значениями выходного сигнала, соответствующими одному и тому же действительному значению входной величины при медленном подходе слева и справа к выбранному значению входной величины.

Динамические характеристики, т. е. характеристики инерционных свойств (элементов) измерительного устройства, определяющие зависимость выходного сигнала СИ от меняющихся во времени величин: параметров входного сигнала, внешних влияющих величин, нагрузки.

КЛАССИФИКАЦИЯ ПОГРЕШНОСТЕЙ

Процедура измерения состоит из следующих этапов: принятие модели объекта измерения, выбор метода измерения, выбор СИ, проведение эксперимента для получения результата. В итоге результат измерения отличается от истинного значения измеряемой величины на некоторую величину, называемую погрешностью измерения . Измерение можно считать законченным, если определена измеряемая величина и указана возможная степень ее отклонения от истинного значения.

По способу выражения погрешности средств измерения делятся на абсолютные, относительные и приведенные.

Абсолютная погрешность – погрешность СИ, выраженная в единицах измеряемой физической величины:

Относительная погрешность – погрешность СИ, выраженная отношением абсолютной погрешности средства измерений к результату измерений или к действительному значению измеренной физической величины:

Для измерительного прибора γотн характеризует погрешность в данной точке шкалы, зависит от значения измеряемой величины и имеет наименьшее значение в конце шкалы прибора.

Приведенная погрешность – относительная погрешность, выраженная отношением абсолютной погрешности СИ к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона:

где Хнорм – нормирующее значение, т. е. некоторое установленное значение, по отношению к которому рассчитывается погрешность. Нормирующим значением может быть верхний предел измерений СИ, диапазон измерений, длина шкалы и т. д.

По причине и условиям возникновения погрешности средств измерения подразделяются на основную и дополнительную.

Основная погрешность – это погрешность СИ, находящихся в нормальных условиях эксплуатации.

Дополнительная погрешность – составляющая погрешности СИ, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения или вследствие ее выхода за пределы нормальной области значений.

Предел допускаемой основной погрешности – наибольшая основная погрешность, при которой СИ может быть признано годным и допущено к применению по техническим условиям.

Предел допускаемой дополнительной погрешности – это та наибольшая дополнительная погрешность, при которой средство измерения может быть допущено к применению.

Обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность, называется классом точности СИ.

Систематическая погрешность – составляющая погрешности средства измерений, принимаемая за постоянную или закономерно изменяющуюся.

Случайная погрешность – составляющая погрешности СИ, изменяющаяся случайным образом.

Промахи – грубые погрешности, связанные с ошибками оператора или неучтенными внешними воздействиями.

По зависимости от значения измеряемой величины погрешности СИ подразделяют на аддитивные, не зависящие от значения входной величины Х, и мультипликативные – пропорциональные Х.

Аддитивная погрешность Δадд не зависит от чувствительности прибора и является постоянной по величине для всех значений входной величины Х в пределах диапазона измерений. Пример: погрешность нуля, погрешность дискретности (квантования) в цифровых приборах. Если прибору присуща только аддитивная погрешность или она существенна превышает другие составляющие, то предел допустимой основной погрешности нормируют в виде приведенной погрешности.

Мультипликативная погрешность зависит от чувствительности прибора и изменяется пропорционально текущему значению входной величины. Если прибору присуща только мультипликативная погрешность или она существенна, то предел допускаемой относительной погрешности выражают в виде относительной погрешности. Класс точности таких СИ обозначают одним числом, помещенным в кружок и равным пределу допускаемой относительной погрешности.

В зависимости от влияния характера изменения измеряемой величины погрешности СИ подразделяют на статические и динамические.

Статические погрешности – погрешность СИ применяемого при измерении физической величины, принимаемой за неизменную.

Динамическая погрешность – погрешность СИ, возникающая при измерении изменяющейся (в процессе измерений) физической величины, являющаяся следствием инерционных свойств СИ.

СИСТЕМАТИЧЕСКИЕ ПОГРЕШНОСТИ

По характеру изменения систематические погрешности разделяют на постоянные (сохраняющие величину и знак) и переменные (изменяющиеся по определенному закону).

По причинам возникновения систематические погрешности подразделяют на методические, инструментальные и субъективные.

Методические погрешности возникают вследствие несовершенства, неполноты теоретических обоснований принятого метода измерения, использования упрощающих предположений и допущений при выводе применяемых формул, из-за неправильного выбора измеряемых величин.

В большинстве случаев методические погрешности носят систематический характер, а иногда и случайный (например, когда коэффициенты рабочих уравнений метода измерения зависят от условий измерения, изменяющихся случайным образом).

Инструментальные погрешности обусловливаются свойствами применяемых СИ, их влиянием на объект измерений, технологией и качеством изготовления.

Субъективные погрешности вызываются состоянием оператора, проводящего измерения, его положением во время работы несовершенством органов чувств, эргономическими свойствами средств измерений – все это сказывается на точности визирования.

Обнаружение причин и вида функциональной зависимости позволяет скомпенсировать систематическую погрешность введением в результат измерения соответствующих поправок (поправочных множителей).

СЛУЧАЙНЫЕ ПОГРЕШНОСТИ

Полным описанием случайной величины, а следовательно и погрешности, является ее закон распределения, которым определяется характер появления различных результатов отдельных измерений.

В практике электрических измерений встречаются различные законы распределения, некоторые из которых рассмотрены ниже.

Нормальный закон распределения (закон Гаусса). Этот закон является одним из наиболее распространенных законов распределения погрешностей. Объясняется это тем, что во многих случаях погрешность измерения образуется под действием большой совокупности различных, независимых друг от друга причин. На основании центральной предельной теоремы теории вероятностей результатом действия этих причин будет погрешность, распределенная по нормальному закону при условии, что ни одна из этих причин не является существенно преобладающей.

Нормальный закон распределения погрешностей описывается формулой

где ω(Δx) -плотность вероятности погрешности Δx; σ[Δx]- среднее квадратическое отклонение погрешности; Δxc - систематическая составляющая погрешности.

Вид нормального закона представлен на рис. 1,а для двух значений σ[Δx]. Так как

То закон распределения случайной составляющей погрешности

имеет тот же вид (рис 1,б) и описывается выражением

где - среднее квадратическое отклонение случайной составляющей погрешности; = σ [Δx]

Рис. 1. Нормальный закон распредёления погрешности измерений (а) и случайной составляющей погрешности измерений (б)

Таким образом, закон распределения погрешности Δx отличается от закона распределения случайной составляющей погрешности только сдвигом по оси абсцисс на величину систематической составляющей погрешности Δхс.

Из теории вероятностей известно, что площадь под кривой плотности вероятности характеризует вероятность появления погрешности. Из рис.1, б видно, что вероятность Р появления погрешности в диапазоне ± при больше, чем при (площади, характеризующие эти вероятности, заштрихованы). Полная площадь под кривой распределения всегда равна 1, т. е. полной вероятности.

Учитывая это, можно утверждать, что погрешности, абсолютные значения которых превышают появляются с вероятностью, равной 1 - Р, которая при меньше, чем при . Следовательно, чем меньше , тем реже встречаются большие погрешности, тем точнее выполнены измерения. Таким образом, Среднее квадратическое отклонение можно использовать для характеристики точности измерений:

Равномерный закон распределения. Если погрешность измерений с одинаковой вероятностью может принимать любые значения, не выходящие за некоторые границы, то такая погрешность описывается равномерным законом распределения. При этом плотность вероятности погрешности ω(Δx) постоянна внутри этих границ и равна нулю вне этих границ. Равномерный закон распределения представлен на рис. 2. Аналитически он может быть записан так:

При –Δx1 ≤ Δx ≤ + Δx1;

Рис 2. Равномерный закон распределения

С таким законом распределения хорошо согласуется погрешность от трения в опорах электромеханических приборов, не-исключенные остатки систематических погрешностей, погрешность дискретности в цифровых приборах.

Трапециевидный закон распределения. Это распределение графически изображено на рис.3, а. Погрешность имеет такой закон распределения, если она образуется из двух независимых составляющих, каждая из которых имеет равномерный закон распределения, но ширина интервала равномерных законов различна. Например, при последовательном соединении двух измерительных преобразователей, один из которых имеет погрешность, равномерно распределенную в интервале ±Δx1, а другой - равномерно распределенную в интервале ± Δx2, суммарная погрешность преобразования будет описываться трапециевидным законом распределения.

Треугольный закон распределения (закон Симпсона). Это распределение (см. рис.3, б) является частным случаем трапециевидного, когда составляющие имеют одинаковые равномерные законы распределения.

Двухмодальные законы распределения. В практике измерений встречаются двухмодальные законы распределения, т. е. законы распределения, имеющие два максимума плотности вероятности. В двухмодальный закон распределения, который может быть в приборах, имеющих погрешность от люфта кинематических механизмов или от гистерезиса при перемагничивании деталей прибора.

Рис.3. Трапециевидный (а) и треугольный (б) законы распределения

Вероятностный подход к описанию погрешностей. Точечные оценки законов распределения.

Когда при проведении с одинаковой тщательностью и в одинаковых условиях повторных наблюдений одной и той же постоянной величины получаем результаты. отличающиеся друг от друга, это свидетельствует о наличии в них случайных погрешностей. Каждая такая погрешность возникает вследствие одновременного воздействия на результат наблюдения многих случайных возмущений и сама является случайной величиной. В этом случае предсказать результат отдельного наблюдения и исправить его введением поправки невозможно. Можно лишь с определенной долей уверенности утверждать, что истинное значение измеряемой величины находится в пределах разброса результатов наблюдений от л>.т до Хп. ах, где хтт. Ат<а - соответственно, нижняя и верхняя границы разброса. Однако остается неясным, какова вероятность появления того или ^иного значения погрешности, какое из множества лежащих в этой области значений величины принять за результат измерения и какими показателями охарактеризовать случайную погрешность результата. Для ответа на эти вопросы требуется принципиально иной, чем при анализе систематических погрешностей, подход. Подход этот основывается на рассмотрении результатов наблюдений, результатов измерений и случайных погрешностей как случайных величин. Методы теории вероятностен и математической статистики позволяют установить вероятностные (статистические) закономерности появления случайных погрешностей и на основании этих закономерностей дать количественные оценки результата измерения и его случайной погрешности

На практике все результаты измерений и случайные погрешности являются величинами дискретными, т. е. величинами xi, возможные значения которых отделимы друг от друга и поддаются счету. При использовании дискретных случайных величин возникает задача нахождения точечных оценок параметров их функций распределения на основании выборок - ряда значений xi, принимаемых случайной величиной x в n независимых опытах. Используемая выборка должна быть репрезентативной (представительной), т. е. должна достаточно хорошо представлять пропорции генеральной совокупности.

Оценка параметра называется точечной, если она выражается одним числом. Задача нахождения точечных оценок - частный случай статистической задачи нахождения оценок параметров функции распределения случайной величины на основании выборки. В отличие от самих параметров их точечные оценки являются случайными величинами, причем их значения зависят от объема экспериментальных данных, а закон

распределения - от законов распределения самих случайных величин.

Точечные оценки могут быть состоятельными, несмещенными и эффективными. Состоятельной называется оценка, которая при увеличении объема выборки стремится по вероятности к истинному значению числовой характеристики. Несмещенной называется оценка, математическое ожидание которой равно оцениваемой числовой характеристике. Наиболее эффективной считают ту из «нескольких возможных несмещенных оценок, которая имеет наименьшую дисперсию . Требование несмещенности на практике не всегда целесообразно, так как оценка с небольшим смещением и малой дисперсией может оказаться предпочтительнее несмещенной оценки с большой дисперсией. На практике не всегда удается удовлетворить одновременно все три этих требования, однако выбору оценки должен предшествовать ее критический анализ со всех перечисленных точек зрения.

Наиболее распространенным методом получения оценок является метод наибольшего правдоподобия, который приводит к асимптотически несмещенным и эффективным оценкам с приближенно нормальным распределением. Среди других методов можно назвать методы моментов и наименьших квадратов.

Точечной оценкой МО результата измерений является среднее арифметическое значение измеряемой величины

При любом законе распределения оно является состоятельной и несмещенной оценкой, а также наиболее эффективной по критерию наименьших квадратов.

Точечная оценка дисперсии, определяемая по формуле

является несмещенной и состоятельной.

СКО случайной величины х определяется как корень квадратный из дисперсии. Соответственно его оценка может быть найдена путем извлечения корня из оценки дисперсии. Однако эта операция является нелинейной процедурой, приводящей к смещенности получаемой таким образом оценки. Для исправления оценки СКО вводят поправочный множитель k(n), зависящий от числа наблюдений n. Он изменяется от

k(3) = 1,13 до k(∞) 1,03. Оценка среднего квадратического отклонения

Полученные оценки МО и СКО являются случайными величинами. Это проявляется в том, что при повторениях серий из n наблюдений каждый раз будут получаться различные оценки и . Рассеяние этих оценок целесообразно оценивать с помощью СКО Sx Sσ.

Оценка СКО среднего арифметического значения

Оценка СКО среднего квадратического отклонения

Отсюда следует, что относительная погрешность определения СКО может быть

оценена как

Она зависит только от эксцесса и числа наблюдений в выборке и не зависит от СКО, т. е. той точности, с которой производятся измерения. Ввиду того, что большое число измерений проводится относительно редко, погрешность определения σ может быть весьма существенной. В любом случае она больше погрешности из-за смещенности оценки, обусловленной извлечением квадратного корня и устраняемой поправочным множителем k(n). В связи с этим на практике пренебрегают учетом смещенности оценки СКО отдельных наблюдений и определяют его по формуле

т. е. считают k(n)=1.

Иногда оказывается удобнее использовать следующие формулы для расчета оценок СКО отдельных наблюдений и результата измерения:

Точечные оценки других параметров распределений используются значительно реже. Оценки коэффициента асимметрии и эксцесса находятся по формулам

Определение рассеяния оценок коэффициента асимметрии и эксцесса описывается различными формулами в зависимости от вида распределения. Краткий обзор этих формул приведен в литературе.

Вероятностный подход к описанию случайных погрешностей.

Центр и моменты распределения.

В результате измерения получают значение измеряемой величины в виде числа в принятых единицах величины. Погрешность измерения тоже удобно выражать в виде числа. Однако погрешность измерения является случайной величиной, исчерпывающим описанием которой может быть только закон распределения. Из теории вероятностей известно, что закон распределения можно охарактеризовать числовыми характеристиками (неслучайными числами), которые и используются для количественной оценки погрешности.

Основными числовыми характеристиками законов распределения являются математическое ожидание и дисперсия, которые определяются выражениями:

где М - символ математического ожидания; D - символ дисперсии.

Математическое ожидание погрешности измерений есть неслучайная величина, относительно которой рассеиваются другие значения погрешностей при повторных измерениях. Математическое ожидание характеризует систематическую составляющую погрешности измерения, т. е. М [Δх]=ΔxC. Как числовая характеристика погрешности

М [Δх] показывает на смещенность результатов измерения относительно истинного значения измеряемой величины.

Дисперсия погрешности D [Δх] характеризует степень рассеивания (разброса) отдельных значений погрешности относительно математического ожидания. Так как рассеивание происходит за счет случайной составляющей погрешности то .

Чем меньше дисперсия, тем меньше разброс, тем точнее выполнены измерения. Следовательно, дисперсия может служить характеристикой точности проведенных измерений. Однако дисперсия выражается в единицах погрешности в квадрате. Поэтому в качестве числовой характеристики точности измерений используют среднее квадратическое отклонение с положительным знаком и выражаемое в единицах погрешности.

Обычно при проведении измерений стремятся получить результат измерения с погрешностью, не превышающей допускаемое значение. Знание только среднего квадратического отклонения не позволяет найти максимальную погрешность, которая может встретиться при измерениях, что свидетельствует об ограниченных возможностях такой числовой характеристики погрешности, как σ[Δx]. Более того, при разных условиях измерений, когда законы распределения погрешностей могут отличаться друг от друга, погрешность с меньшей дисперсией может принимать большие значения.

Максимальные значения погрешности зависят не только от σ[Δx], но и от вида закона распределения. Когда распределение погрешности теоретически неограниченно, например при нормальном законе распределения, погрешность может быть любой по значению. В этом случае можно лишь говорить об интервале, за границы которого погрешность не выйдет с некоторой вероятностью. Этот интервал называют доверительным интервалом, характеризующую его вероятность - доверительной вероятностью, а границы этого интервала - доверительными значениями погрешности.

В практике измерений применяют различные значения доверительной вероятности, например: 0,90; 0,95; 0,98; 0,99; 0,9973 и 0,999. Доверительный интервал и доверительную вероятность выбирают в зависимости от конкретных условий измерений. Так, например, при нормальном законе распределения случайных погрешностей со средним квадратическим отклонением часто пользуются доверительным интервалом от до , для которого доверительная вероятность равна

0,9973. Такая доверительная вероятность означает, что в среднем из 370 случайных погрешностей только одна погрешность по абсолютному значению будет

больше .Так как на практике число отдельных измерений редко превышает несколько десятков, появление даже одной случайной погрешности, большей, чем

Маловероятное событие, наличие же двух подобных погрешностей почти невозможно. Это позволяет с достаточным основанием утверждать, что все возможные случайные погрешности измерения, распределенные по нормальному закону, практически не превышают по абсолютному значению (правило «трех сигм»).

В соответствии с ГОСТ доверительный интервал является одной из основных характеристик точности измерений. Одну из форм представления результата измерения этот стандарт устанавливает в следующем виде: x; Δx от Δxн до Δxв1; Р, где x - результат измерения в единицах измеряемой величины; Δx, Δxн, Δxв - соответственно погрешность измерения с нижней и верхней ее границами в тех же единицах; Р - вероятность, с которой погрешность измерения находится в этих границах.

ГОСТ допускает и другие формы представления результата измерения, отличающиеся от приведенной формы тем, что в них указывают раздельно характеристики систематической и случайной составляющих погрешности измерения. При этом для систематической погрешности указывают ее вероятностные характеристики. Ранее уже отмечалось, что иногда систематическую погрешность приходится оценивать с вероятностных позиций. В этом случае основными характеристиками систематической погрешности являются М [Δхс], σ [Δхс] и ее доверительный интервал. Выделение систематической и случайной составляющих погрешности целесообразно, если результат измерения будет использован при дальнейшей обработке данных, например при определении результата косвенных измерений и оценке его точности, при суммировании погрешностей и т. п.

Любая из форм представления результата измерения, предусмотренная ГОСТ должна содержать необходимые данные, на основании которых может быть определен доверительный интервал для погрешности результата измерения. В общем случае доверительный интервал может быть установлен, если.известен вид закона распределения погрешности и основные числовые характеристики этого закона.

________________________

1 Δxн и Δxв должны быть указаны со своими знаками. В общем случае |Δxн| может быть не равна |Δxв|. Если границы погрешности симметричны, т. е. |Δxн| = |Δxв| = Δx, то результат измерения может быть записан так: x ±Δx; P.

ЭЛЕКТРОМЕХАНИЧЕСКИЕ ПРИБОРЫ

Электромеханический прибор включает в себя измерительную цепь, измерительный механизм и отсчетное устройство.

Магнитоэлектрические приборы.

Магнитоэлектрические приборы состоят из магнитоэлектрического измерительного механизма с отсчетным устройством и измерительной цепи. Эти приборы применяют для измерения постоянных токов и напряжений, сопротивлений, количества электричества (баллистические гальванометры и кулонметры), также для измерения или индикации малых токов и напряжений (гальванометры). Кроме того, магнитоэлектрические приборы используют для регистрации электрических величин (самопишущие приборы и осциллографические гальванометры).

Вращающий момент в измерительном механизме магнитоэлектрического прибора возникает в результате взаимодействия магнитного поля постоянного магнита и магнитного поля катушки с током. Применяют магнитоэлектрические механизмы с подвижной катушкой и с подвижным магнитом. (наиболее распространены с подвижной катушкой).

Достоинства: высокая чувствительность, малое собственное потребление энергии, линейная и стабильная номинальная статическая характеристика преобразования α=f(I), отсутствие влияния электрических полей и мало влияние магнитных полей (из-за достаточно сильного поля в воздушном зазоре (0.2 – 1.2Тл)).

Недостатки: малая перегрузочная способность по току, относительная сложность и дороговизна., реагируют только на постоянный ток.

Электродинамические (ферродинамические) приборы.

Электродинамические (ферродинамические) приборы состоят из электродинамического (ферродинамического) измерительного механизма с отсчетным устройством и измерительной цепи. Эти приборы применяют для измерения постоянных и переменных токов и напряжений, мощности в цепях постоянного и переменного тока, угла фазового сдвига между переменными токами и напряжениями. Электродинамические приборы являются наиболее точными электромеханическими приборами для цепей переменного тока.

Вращающий момент в электродинамических и ферродинамических измерительных механизмах возникает в результате взаимодействия магнитных полей неподвижных и подвижных катушек с токами.

Достоинства: работают как на постоянном так и на переменном токе (до 10кГц) с высокой точностью и высокой стабильностью своих свйств.

Недостатки: электродинамические измерительные механизмы имеют низкую чувствительность по сравнению с магнитоэлектрическими механизмами. Поэтому они обладают большим собственным потреблением мощности. Электродинамические измерительные механизмы имеют малую перегрузочную способность по току, относительно сложны и дороги.

Ферродинамический измерительный механизм отличается от электродинамического механизма тем, что его неподвижные катушки имеют магнитопровод из магнитомягкого листового материала, позволяющий существенно увеличивать магнитный поток, а следовательно, и вращающий момент. Однако использование ферромагнитного сердечника приводит к появлению погрешностей, вызванных его влиянием. При этом ферродинамические измерительные механизмы мало подвержены влиянию внешних магнитных полей.

Электромагнитные приборы

Электромагнитные приборы состоят из электромагнитного измерительного механизма с отсчетным устройством и измерительной цепи. Они применяются для измерения переменных и постоянных токов и напряжений, для измерения частоты и фазового сдвига между переменным током и напряжением. Из-за относительно низкой стоимости и удовлетворительных характеристик электромагнитные приборы составляют большую часть всего парка щитовых приборов.

Вращающий момент в этих механизмах возникает в результате взаимодействия одного или нескольких ферромагнитных сердечников подвижной части и магнитного поля катушки, по обмотке которой протекает ток.

Достоинства: простота конструкции и дешевизна, высокая надежность в работе, способность выдерживать большие перегрузки, способность работать в цепях как постоянного так и переменного тока (примерно до 10кГц).

Недостатки: малая точность и низкая чувствительность, сильное влияние на работу внешних магнитных полей.

Электростатические приборы.

Основой электростатических приборов является электростатический измерительный механизм с отсчетным устройством. Они применяются главным образом для измерения напряжений переменного и постоянного тока.

Вращающий момент в электростатических механизмах возникает в результате взаимодействия двух систем заряженных проводников, одна из которых является подвижной.

Индукционные приборы.

Индукционные приборы состоят из индукционного измерительного механизма с отсчетным устройством и измерительной схемой.

Принцип действия индукционных измерительных механизмов основан на взаимодействии магнитных потоков электромагнитов и вихревых токов, индуктированных магнитными потоками в подвижной части, выполненной в виде алюминиевого диска. В настоящее время из индукционных приборов находя применение счетчики электрической энергии в цепях переменного тока.

Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения. Погрешность измерения Δx = x - xи, где х - измеренное значение; xи - истинное значение.

Поскольку истинное значение неизвестно, практически по­грешность измерения оценивают, исходя из свойств средства измерений, условий проведения эксперимента и анализа получен­ных результатов. Полученный результат отличается от истинного значения, поэтому результат измерения имеет ценность только в том случае, если дана оценка погрешности полученного значе­ния измеряемой величины. Причем чаще всего определяют не конкретную погрешность результата, а степень недостоверно­сти - границы зоны, в которой находится погрешность.

Часто применяют понятие «точность измерения», - понятие отражающее близость результата измерения к истинному значению измеряемой величины. Высокая точность измерения соответствует малой погрешности измерения.

В качестве основных могут быть выбраны любые из данного числа величин, но практически выбирают величины, которые могут быть воспроизведены и измерены с наиболее высокой точ­ностью. В области электротехники основными величинами приня­ты длина, масса, время и сила электрического тока.

Зависимость каждой производной величины от основных ото­бражается её размерностью. Размерность величины представля­ет собой произведение обозначений основных величин, возведен­ных в соответствующие степени, и является ее качественной характеристикой. Размерности величин определяют на основе соответствующих уравнений физики.

Физическая величина является размерной, если в ее размер­ность входит хотя бы одна из основных величин, возведенная в степень, не равную нулю. Большинство физических величин являются размерными. Однако имеются безразмерные (относи­тельные) величины, представляющие собой отношение данной физической величины к одноименной, применяемой в качестве исходной (опорной). Безразмерными величинами являются, на­пример, коэффициент трансформации, затухание и т. д.

Физические величины в зависимости от множества размеров, которые они могут иметь при изменении в ограниченном диапазо­не, подразделяют на непрерывные (аналоговые) и квантованные (дискретные) по размеру (уровню).

Аналоговая величина может иметь в заданном диапазоне бесконечное множество размеров. Таким является подавляющее число физических величин (напряжение, сила тока, температура, длина и т. д.). Квантованная величина имеет в заданном диапа­зоне только счетное множество размеров. Примером такой вели­чины может быть малый электрический заряд, размер которого определяется числом входящих в него зарядов электронов. Раз­меры квантованной величины могут соответствовать только определенным уровням - уровням квантования. Разность двух со­седних уровней квантования называют ступенью квантования (квантом).

Значение аналоговой величины определяют путем измерения с неизбежной погрешностью. Квантованная величина может быть определена путем счета ее квантов, если они постоянны.

Физические величины могут выть постоянными или перемен­ными во времени. При измерении постоянной во времени величи­ны достаточно определить одно ее мгновенное значение. Перемен­ные во времени величины могут иметь квазидетерминированный или случайный характер изменения.

Квазидетерминированная физическая величина - величина, для которой известен вид зависимости от времени, но неизвестен измеряемый параметр этой зависимости. Случайная физическая величина - величина, размер которой изменяется во времени случайным образом. Как частный случай переменных во времени величин можно выделить дискретные во времени величины, т. е. величины, размеры которых отличны от нуля только в опреде­ленные моменты времени.

Физические величины делят на активные и пассивные. Актив­ные величины (например, механическая сила, ЭДС источника электрического тока) способны без вспомогательных источников энергии создавать сигналы измерительной информации (см. да­лее). Пассивные величины (например, масса, электрическое со­противление, индуктивность) сами не могут создавать сигналы измерительной информации. Для этого их нужно активизировать с помощью вспомогательных источников энергии, например при измерении сопротивления резистора через него должен проте­кать ток. В зависимости от объектов исследования говорят об электрических, магнитных или неэлектрических величинах.

Физическую величину, которой по определению присвоено числовое значение, равное единице, называют единицей физиче­ской величины . Размер единицы физической величины может быть любым. Однако измерения должны выполняться в общепри­нятых единицах. Общность единиц в международном масштабе устанавливают международными соглашениями. Единицы физических величин, согласно которому в нашей стране введена к обяза­тельному применению международная система единиц (СИ).

При изучении объекта исследования необходимо выделить для измерений физические величины, учитывая цель измерении, которая сводится к изучению или оценке каких-либо свойств объекта. Поскольку реальные объекты обладают бесконечным множеством свойств, то для получения результатов измерений, адекватных цели измерений, выделяют в качестве измеряемых величин определенные свойства объектов, существенные при выбранной цели, т. е. выбирают модель объекта.

СТАНДАРТИЗАЦИЯ

Государственная система стандартизации (ДСС) в Украине регламентирована в основных стандартах к ней:

ДСТУ 1.0 – 93 ДСС. Оснвные положения.

ДСТУ 1.2 – 93 ДСС. Порядок разработки государственных (национальных) стандартов.

ДСТУ 1.3 – 93 ДСС. Порядок разработки построения, изложения, оформления, согласования, утверждения, обозначения и регистрации ТУ.

ДСТУ 1.4 – 93 ДСС. Стандарты предприятия. Основные положения.

ДСТУ 1.5 – 93 ДСС. Основные положения к построению, изложению, оформлению и содержанию стандартов;

ДСТУ 1.6 – 93 ДСС. Порядок государственной регистрации отраслевых стандартов, стандартов научно-технических и инженерных товариществ и сообществ (союзов).

ДСТУ 1.7 – 93 ДСС. Правила и методы принятия и применения международных и региональных стандартов.

Органами стандартизации являются:

Центральный орган исполнительной власти в сфере стандартизации ДКТРСП

Совет стандартизации

Технические комитеты стандартизации

Другие субъекты, которые занимаются стандартизацией.

Классификация нормативных документов и стандартов действующих в Украине.

Международные нормативные документы, стандарты и рекоментации.

Гос. Стандарты Украины.

Республиканские стандарты бывшей УССР, утвержденные до 01.08.91.

Настановчі документы Украины (КНД и Р)

Гос. Классификаторы Украины (ДК)

Отраслевые стандарты и ТУ бывшего СССР, утвержденные до 01.01.92 с продленными сроками действия.

Отраслевые стандарты Украины зарегестрированные в УкрНДИССИ

ТУ зарегестрированные территориальными органами стандартизации Украины.

Целью измерения является получение информации о размере физической величины.

Под физической величиной подразумевается свойство, общее в качественном отношении многим объектам, но в количественном отношении индивидуальное для каждого объекта.

Леонард Эйлер определил это так: "величиной называется все, что способно увеличиваться или уменьшаться, или то, к чему можно нечто прибавить или от чего можно отнять".

Размер есть количественная характеристика измеряемой физической величины.

На практике появляется необходимость проводить измерения величин, характеризующих свойства явлений и процессов. Некоторые свойства проявляются качественно, другие количественно.

Отображение свойств в виде множества элементов или чисел или условных знаков представляет собой шкалу измерений этих свойств.

Шкала измерений - это упорядоченная совокупность значений физической величины, которая служит основой для ее измерения.

Поясним это понятие на примере температурных шкал. В шкале Цельсия за начало отсчета принята температура таяния льда, а в качестве основного интервала (опорной точки) - температура кипения воды. Одна сотая часть этого интервала является единицей температуры (градус Цельсия).

Различают несколько типов шкал: наименований, порядка, разностей (интервалов), отношений и абсолютные и др..

Типы шкал:

1. Шкалы наименований характеризуются только отношением эквивалентности (равенства). Шкала наименований это - качественная шкала, она не содержит количественную информацию, в ней нет нуля и единиц измерений. Элементы этих шкал характеризуются только соотношениями эквивалентности (равенства) и сходства конкретных качественных проявлений свойств. Примером может служить атлас цветов (шкала цветов). Процесс измерения заключается в визуальном сравнении окрашенного предмета с образцами цветов (эталонными образцами атласа).

2. Шкалы порядка - характеризуют значение измеряемой величины в баллах. Эти шкалы описывают свойства, для которых имеют смысл не только соотношения эквивалентности, но и соотношения порядка по возрастанию или убыванию количественного проявления свойства. Характерным примером шкал порядка являются существующие шкалы чисел твердости тел, шкалы баллов землетрясений, шкалы баллов ветра, шкала оценки событий на АЭС и т.п. Узкоспециализированные шкалы порядка широко применяются в методах испытаний различной продукции.



В этих шкалах также нет возможности ввести единицы измерений из-за того, что они не только принципиально нелинейны, но и вид нелинейности может быть различен и неизвестен на разных ее участках. Результаты измерений в шкалах твердости, например, выражаются в числах твердости по Бринеллю, Виккерсу, Роквеллу, Шору, а не в единицах измерений. Шкалы порядка допускают монотонные преобразования, в них может быть или отсутствовать нулевой элемент.

3. Шкалы разностей (интервалов) - отличаются от шкал порядка тем, что для описываемых ими свойств имеют смысл не только соотношения эквивалентности и порядка, но и суммирования интервалов (разностей) между различными количественными проявлениями свойств.

Характерный пример - шкала интервалов времени.
Интервалы времени (например, периоды работы, периоды учебы) можно складывать и вычитать, но складывать даты каких-либо событий бессмысленно.
Другой пример, шкала длин (расстояний) пространственных интервалов определяется путем совмещения нуля линейки с одной точкой, а отсчет делается у другой точки. К этому типу шкал относятся и шкалы температур по Цельсию, Фаренгейту,Реомюру.
Шкалы разностей имеют условные (принятые по соглашению) единицы измерений и нули, опирающиеся на какие-либо реперы.
В этих шкалах допустимы линейные преобразования, в них применимы процедуры для отыскания математического ожидания, стандартного отклонения, коэффициента асимметрии и смещенных моментов.

4. Шкалы отношений имеют естественное нулевое значение, а единица измерений устанавливается по согласованию. Например, шкала массы, начинаясь от нуля, может быть градуирована по-разному в зависимости от требуемой точности взвешивания. Сравните бытовые и аналитические весы. К множеству количественных проявлений в этих шкалах применимы соотношения эквивалентности и порядка - операции вычитания и умножения, (шкалы отношений 1-го рода - пропорциональные шкалы), а во многих случаях и суммирования (шкалы отношений 2-го рода - аддитивные шкалы).
Массы любых объектов можно суммировать, но суммировать температуры разных тел нет смысла, хотя можно судить о разности и, отношении их термодинамических температур. Примерами шкал отношений являются шкалы массы (2-го рода), термодинамическая температурная шкала (1-го рода).
Шкалы отношений широко используются в физике и технике, в них допустимы все арифметические и статистические операции.

5. Абсолютные шкалы обладают всеми признаками шкал отношений, но в них дополнительно существует естественное однозначное определение единицы измерения. Такие шкалы используются для измерений относительных величии (отношений одноименных величин: коэффициентов усиления, ослабления, КПД, коэффициентов отражений и поглощений, амплитудной модуляции и т.д

Средства измерений

Измерения выполняются с применениемтехнических средств .

Необходимыми техническими средствами для проведения измерений являютсямеры и измерительные приборы .

Меры - средства измерений, предназначенные для воспроизведения физической величины заданного размера.

Меры наивысшего порядка точности называютэталонами .

Эталоны - средства измерений или их комплексы, обеспечивающие воспроизведение и хранение узаконенных единиц физических величин, а также передачу их размеранижестоящим по поверочной схеме средствам измерения.

Образцовые средства измерений - меры, измерительные приборы или преобразователи, утвержденные в качестве образцовых для поверки по ним других средств измерений.

Рабочие средства измерений - такие средства, которые применяют для измерений, не связанных с передачей размера единиц.

Эталоны

Средства измерения высшей точности - эталоны делятся на несколько категорий.

1. Эталон, воспроизводящий единицу с наивысшей в стране точностью, называется государственным первичным эталоном. Эталон единицы физической величины воспроизводят с практически наивысшей достижимой точностью на основе физических принципов на специальных установках.

В 1983 году на XVII Генеральной конференции мер и весов в качестве эталона единицы длины утвержден метр - длина пути, проходимого светом в вакууме за 1/299792458 долю секунды. Ранее эталоном метра был метр равный 1 650 763,73 длин световых волн в вакууме излучения, соответствующего переходу между уровнями 2р10 и 5d5 атома криптона 86.

За эталон времени принята секунда, равная 9192631770 периодам излучения , соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Эталон единицы массы (1 кг) представляет собой цилиндр из сплава платины (90 %) и иридия (10 %), у которого диаметр и высота примерно одинаковы (около 30 мм).

За единицу количества вещества принят моль - количество вещества системы, содержащей столько же структурных элементов частиц, сколько атомов содержится в 12,000 г углерода-12.

В качестве эталона единицы силы света принята (кандела) - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 10 в 12-ой степени Гц, энергетическая сила света которого в этом направлении составляет 1/683 B/cp.

В качестве эталона единицы силы тока принят ампер - сила неизменяющегося во времени электрического тока, который, протекая с вакууме по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным один от другого на расстоянии 1 м, создает на каждом участке проводника длиной 1 м силу взаимодействия 2 10 в минус 7-ой степени Н.

Эталон термодинамической температуры - кельвин, составляющий 1/273,16 часть термодинамической температуры тройной точки воды.

Если прямая передача размера единицы от существующих эталонов с требуемой точностью технически неосуществима в виду особых условий, то для её воспроизведения единицы создаются специальные эталоны.

Такими условиями могут быть: повышенное или пониженное давление; высокая влажность; измерения на предельных границах диапазона значений измеряемой величины.

В метрологической практике широко используются

2. вторичные эталоны,

3. рабочие эталоны и

4. эталоны-копии.

Эти эталоны создаются и утверждаются в тех случаях, когда это необходимо для организации поверочных работ, а также для обеспечения сохранности и наименьшего износа государственного первичного эталона.

Существуют также следующие категории эталонов:

эталон сравнения - вторичный эталон, применяемый для сличения эталонов, которые по каким-либо причинам не могут быть сличаемыми друг с другом;

эталон-свидетель - вторичный эталон, применяемый для проверки сохранности государственного эталона или для его замены в случае порчи или утраты.

эталон-копия - представляет собой вторичный эталон, предназначенный для передачи размера рабочим эталонам. Он не всегда может быть точной физической копией государственного эталона.

рабочий эталон - это вторичный эталон, применяемый для хранения единицы и передачи ее размера образцовым средствам или наиболее точным рабочим средствам измерений .

Рабочие эталоны могут быть реализованы в виде одиночного эталона (или одиночной меры) , в виде группового эталона , в виде комплекса средств измерений и в виде эталонного набора .

Пример одиночного эталона - эталон массы в виде платиноиридиевой гири. Пример группового эталона - эталон-копия вольта, состоящая из 20 нормальных элементов. Пример комплекса средств измерений - эталон единицы молярной доли концентрации компонентов в газовых смесях. В этом виде измерений различные компоненты, различные диапазоны концентраций, различные газы-разбавители создают большое количество измерительных задач с общей постановкой. Поэтому, в этом случае один эталон состоит из нескольких десятков измерительных установок. Пример эталонного набора - набор средств измерения плотности жидкостей для различных участков диапазона.

В международных метрологических документах такой широкий набор разновидностей эталонов не предусмотрен. Международные эталоны, хранящиеся в Международном бюро по мерам и весам, воспроизводят ограниченное число единиц физических величин. Обычно это либо основные единицы системы СИ, либо единицы, которые могут быть воспроизведены на уровне точности, равной или даже превосходящей точность эталона основной единицы. Пример такого эталона - эталон Вольта, основанный на эффекте Джозефсона, состоящий в протекании постоянного тока через контакт, образованный двумя сверхпроводниками, разделенными тонким слоем диэлектрика (стационарный эффект) или в протекании переменного тока через контакт двух сверхпроводников, к которому приложена постоянная разность потенциалов (нестационарный эффект).

Меньшее в сравнении с отечественным число международных эталонов объясняется тем, что во многих странах понятие эталон и образцовое средство измерения не имеют четкого разграничения. Существует емкое понятие - стандарт (standart ), что по смыслу может быть переведено как вторичный стандарт (образцовое средство измерения) или как эталон (исходное образцовое средство измерения).

Метрология - это наука об измерениях, о методах и средствах обеспеченияих единства и способах достижения требуемой точности [ 2 ].

Метрология зародилась в глубокой древности и по словообразованию означает учение о мерах. В первом русском труде по метрологии (Ф.И.Петрушевский. Общая метрология) приводятся именно ее описательные функции: «Метрология есть описание всякого рода мер по их наименованиям, подразделениям и взаимному отношению». В дальнейшем, в зависимости от усложнения задач, стоящих перед метрологами, происходят изменения в определении понятия «метрология». Так, М.Ф. Маликов приводит уже более широкое, но двоякое определение понятия: «Метрология есть учение об единицах и эталонах» и «Метрология есть учение об измерениях, приводимых к эталонам» . Второе определение свидетельствует о том, что сделан переход от описательных задач непосредственно к измерениям с использованием эталонов. С введением в действие ГОСТ 16263-70 было закреплено определение понятия «Метрология». В этом определении сделан еще больший шаг в сторону практического приложения - обеспечения единства измерений в стране.
Измеряемыми величинами, с которыми имеет дело метрология в настоящее время, являются физические величины, т.е. величины, входящие в уравнения опытных наук (физики, химии и др.). Метрология проникает во все науки и дисциплины, имеющие дело с измерениями, и является для них единой наукой. К основным понятиям, которыми оперирует метрология, можно отнести следующие: физическая величина, единица физической величины, передача размера единицы физической величины, средства измерений физической величины, эталон, образцовое средство измерений, рабочее средство измерений, измерение физической величины, метод измерений, результат измерений, погрешность измерений, метрологическая служба, метрологическое обеспечение и др.
Метрология подразделяется на законодательную метрологию - раздел метрологии, включающий комплексы взаимосвязанных и взаимообусловленных общих правил, требований и норм, а также другие вопросы, нуждающиеся в регламентации и контроле со стороны государства, направленные на обеспечение единства измерений и единообразия средств измерений ; теоретическую метрологию - раздел метрологии, посвященный изучению ее теоретических основ; практическую метрологию - раздел метрологии, посвященный изучению вопросов практического применения в различных сферах деятельности результатов теоретических исследований в рамках метрологии и положений законодательной метрологии.
Метрология является научной основой измерительной техники - всех технических средств, с помощью которых выполняется измерение, и техники проведения измерений.

    • Основные понятия и определения

Метрология является одной из областей науки и её роль за последние десятилетия чрезвычайно возросла. Метрология проникла и завоевала (или завоевывает) себе позиции во всех областях жизни и деятельности человечества. В силу этого обстоятельства метрологическая терминология тесно соприкасается с терминологией каждой из «специальных сфер».
В нашей стране действует стандарт на терминологию ГОСТ 16263—70 «Государственная система обеспечения единства измерений. Метрология. Термины и определения» и закон об обеспечении единства измерений , вводящий новые понятия и определения и уточняющий ранее действующие.
Далее в разделе рассматриваются некоторые основные понятия и относящиеся к ним термины и определения, нашедшие широкое применение и выходящее за рамки метрологии. Поэтому их рассмотрение нельзя отнести к какому-либо разделу метрологии. С другой стороны, многие из этих терминов именно в силу их широкого распространения получают искаженное толкование, неправильно применяются или заменяются неправильными терминами. Не установив единства понимания и толкования таких общих терминов, практически невозможно излагать ни одного раздела метрологии.

    • Измерение. Измеряемые величины

Определения метрологии и метрологического обеспечения начинаются с основного понятия - измерение. Пожалуй, ни одно определение в области метрологии не вызывает столько споров, как определение этого понятия. Профессором М. Ф. Маликовым было дано следующее определение: «Измерение - познавательный процесс, заключающийся в сравнении путем физического эксперимента данной величины с известной величиной, принятой за единицу сравнения». Недостатком этого определения является то, что оно предполагает сравнение измеряемой величины с ее единицей, что имеет место только при прямых измерениях с использованием метода сравнения с мерой. В частности, это определение не согласуется с косвенными измерениями. К.П.Широковым дано более общее определение: «Измерение - нахождение значения физической величины опытным путем с помощью специальных технических средств». Это определение, включенное в ГОСТ 16263-70, четко определяет границы самого понятия и содержит указания на все важнейшие его элементы. К тому же лаконичность этого определения является его достоинством. Предложения о включении в формулировку определения элементов терминологии кибернетики и теории информации не опровергают стандартизированную формулировку, но усложняют ее понимание и запоминание. Следует отметить, что в нахождение значения физической величины (далее - величины) включается и математическая обработка результатов измерения, в частности введение поправок и статистическая обработка результатов наблюдений (если это требуется).
Значение величины, найденное путем его измерения, называется результатом измерения . Значение величины, полученное при отдельном измерении, называется результатом наблюдения (точнее - измерения). Наблюдением при измерении является экспериментальная операция, выполняемая в процессе измерений, в результате которой получают одно значение из группы значений величины, подлежащих совместной обработке для получения результата измерения.
В определение понятия метрологического обеспечения входит термин «единство измерений », под которым понимается такое состояние измерений, при котором их результаты выражены в узаконенных единицах, размеры которых соответствуют единицам, воспроизводимым эталонами, погрешности результатов измерения известны с заданной вероятностью и не выходят за установленные пределы.
Этот термин позволяет обеспечить сопоставимость измерений, выполненных в разное время, разными средствами и методами. Единство измерений обеспечивается единообразием средств измерений и правильностью методик их выполнения. При этом под единообразием средств измерений понимается такое их состояние, при котором они градуированы в узаконенных единицах и их метрологические свойства соответствуют установленным нормам.
Показателями качества измерений являются погрешность (точность), правильность, сходимость и воспроизводимость измерений.
Погрешность измерения - отклонение результата измерения от истинного значения измеряемой величины.
Точность измерений - их качество, отражающее близость их результатов к истинному значению измеряемой величины.
Правильность измерений - их качество, отражающее близость к нулю систематических погрешностей в их результатах.
Сходимость измерений - их качество, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях.
Воспроизводимость измерений - их качество, отражающее близость друг к другу результатов измерений, выполняемых в различных условиях (в разное время, в различных местах, разными методами и средствами). Ниже будут рассмотрены более подробно все важнейшие элементы, необходимые для осуществления процесса измерений и обеспечения единства измерений .
Объектом измерения является физическая величина, характеризующая одно из свойств физического объекта.
Физическая величина, подлежащая измерению, измеряемая или измеренная в соответствии с основной целью измерительной задачи, называется измеряемой физической величиной или просто измеряемой величиной .
Измеряемые величины - это величины непосредственно воспринимаемые средствами измерений. Их можно классифицировать с помощью различных признаков, основными из которых являются: природа величины, вид отражаемой стороны эмпирических объектов, метризуемость и изменяемость .
По природе измеряемые величины разделяются на 11 классов: электрические, магнитные, электромагнитные, механические, акустические, тепловые, оптические, химические, радиоактивные, пространственные и временные. Каждый класс включает конечное множество конкретных величин.
По виду отражаемой стороны эмпирических объектов каждый класс измеряемых величин разделяется на два подкласса: энергетические и вещественные величины . К энергетическим величинам относятся, например, сила электрического тока, электрическое напряжение, напряженность электрического поля, напряженность магнитного поля, механическая сила, давление и т.п. Метрологическая общность энергетических величин заключается в использовании при их измерении энергии объектов исследования. Вещественными величинами являются различные свойства веществ и материалов, а также параметры физических тел и объектов, например удельное электрическое сопротивление, диэлектрическая проницаемость, магнитная проницаемость, магнитное сопротивление, акустическое сопротивление и т.п. Метрологическая общность вещественных величин состоит в использовании при их измерении измерительных преобразований и других приемов косвенных измерений.
По признаку метризуемости измеряемые величины разделяются на непосредственно и косвенно метризуемые величины . К непосредственно метризуемым величинам относится около двух десятков физических величин, остальные являются косвенно метризуемыми величинами. Непосредственно метризуемые величины измеряются наиболее просто и с высокой точностью. Измерение косвенно метризуемых величин осуществляется с использованием различных функциональных связей и с преобразованием их в непосредственно метризуемые величины.
По признаку изменяемости выделяют состояния и изменения величин. Состояние величины в общем случае характеризуется размером величины, нахождение значения которого и является задачей измерения.
Изменение величины может происходить в пределах какого-либо диапазона размеров и во времени. В зависимости от числа размеров по диапазону различают непрерывные и квантованные по размеру изменения величин. При непрерывном по размеру изменении величины имеется бесконечное число размеров по диапазону. При квантованном по размеру изменении величины в данном диапазоне проявляется конечное число размеров величины.
Изменение величины во времени может быть непрерывным и дискретным (прерывным во времени). При непрерывном изменении величины во времени значения размеров величины определены на данном отрезке времени при бесконечно большом числе моментов времени. При дискретном изменении величины значения размеров величины отличны от нуля только в определенные моменты или интервалы времени. На рис. 1.1 и 1.2 показаны четыре характерные разновидности изменения величин.





Проявления размеров величины по диапазону и во времени могут быть неслучайными (детерминированными) и случайными . Детерминированное изменение величины характеризуется тем, что закон его известен. Случайное изменение величины происходит случайным образом.
Детерминированные непрерывные и дискретные изменения величин подразделяются на периодические и непериодические. Непрерывные периодические и непериодические изменения величин далее подразделяются по виду описывающих их функций. Указанные изменения величин характеризуются обобщенными параметрами и диапазонами их значений.
Для периодически изменяющейся величины x(t) любой формы с периодом Т важными параметрами являются амплитудное x m , среднее
и действующее значения, а также
частота изменения величин. Непериодическое изменение величины характеризуется максимальным значением, скоростью нарастания и скоростью спада.
Дискретные периодические и непериодические изменения величин подразделяются по форме импульса и характеризуются обобщенными параметрами (мгновенным, амплитудным, средним значениями, а также длительностью импульса, временем нарастания (спада) импульса, частотой следования) и диапазонами их значений.
Случайные непрерывные и дискретные изменения величин разделяются на стационарные и нестационарные . При стационарном изменении величин, в отличие от нестационарного, закон распределения отдельных проявлений размеров не зависит от времени.
Случайные изменения величин описываются различными функциями (функцией распределения вероятностей, функцией плотности распределения вероятностей, автокорреляционной функцией, спектральной плотностью и другими) , каждая из которых может определяться вероятностями и количеством реализации, а также диапазонами их значений.
Независимо от того, воспринимается состояние или изменение величины измеряемой величиной, в любом конкретном случае может быть определено мгновенное значение размера величины. При измерении состояния величины, т.е. не изменяющейся во времени величины или весьма медленно меняющейся, процесс измерения может осуществляться в течение длительного времени и к средствам измерения не предъявляется особых требований по быстродействию.
Измерение параметров изменений величин требует повышенного быстродействия средств измерений. При этом помимо мгновенного значения размера величины в качестве измеряемой величины может выступать любой из указанных выше параметров изменений величин.
Различают истинное и действительное значения размера величины. Истинное значение размера величины есть значение размера величины, которое идеальным образом отражает количественную сторону соответствующего свойства объекта. Экспериментально определить его можно только в случае измерения количеств дискретных элементов каких-либо совокупностей, когда погрешность измерения практически может отсутствовать. Получить путем измерения истинное значение размера непрерывного изменения величины невозможно, так как в этом случае погрешности измерения неизбежны. Поэтому на практике часто вместо истинного пользуются действительным значением.
Действительное значение размера величина - это значение, найденное экспериментальным путем и настолько приближающееся к истинному, что может быть использовано вместо него. Определяют его с помощью образцовых средств измерения, погрешностями которых по сравнению с используемыми при измерении средствами можно пренебречь.

    • Физическая величина. Единица физической величины

Физическая величина - это свойство, общее в качественном отношении многим объектам (системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта.
Индивидуальность в количественном отношении следует понимать в том смысле, что свойство может быть для одного объекта в определенное число раз больше или меньше, чем для другого.
Как правило, термин «величина» применяют в отношении свойств или их характеристик, которые можно оценить количественно, т. е. измерить. Существуют такие свойства и характеристики, которые еще не научились оценивать количественно, но стремятся найти способ их количественной оценки, например запах, вкус и т. п. Пока не научимся их измерять, следует называть их не величинами, а свойствами.
В стандарте есть только термин «физическая величина», а слово «величина» дано как краткая форма основного термина, которую разрешается применять в случаях, исключающих возможность различного толкования. Другими словами, можно называть физическую величину кратко величиной, если и без прилагательного очевидно, что речь идет о физической величине. В дальнейшем тексте настоящей книги краткая форма термина «величина» применяется только в указанном смысле.
В метрологии слову «величина» придано терминологическое значение путем наложения ограничения в виде прилагательного «физическая». Словом «величина» часто пытаются выразить размер данной конкретной физической величины. Говорят: величина давления, величина скорости, величина напряжения. Это неправильно, так как давление, скорость, напряжение в правильном понимании этих слов являются величинами, и говорить о величине величины нельзя. В приведенных выше случаях применение слова «величина» является лишним. Действительно, зачем говорить о большой или малой «величине» давления, когда можно сказать: большое или малое давление и т.п..
Физическая величина отображает свойства объектов, которые можно выражать количественно в принятых единицах. Всякое измерение реализует операцию сравнения однородных свойств физических величин по признаку "больше-меньше". В результате сравнения каждому размеру измеряемой величины приписывается положительное действительное число:
х = q [х] , (1.1)
где q числовое значение величины или результат сравнения; [х] - единица величины.
Единица физической величины — физическая величина, которой по определению придано значение, равное единице. Можно сказать также, что единица физической величины — такое ее значение, которое принимают за основание для сравнения с ним физических величин того же рода при их количественной оценке.
Уравнение (1.1) является основным уравнением измерения. Числовое значение q находят следующим образом
q = х/ [х] ,
следовательно, оно зависит от принятой единицы измерения .

    • Системы единиц физических величин

При проведении любых измерений измеряемая величина сравнивается с другой однородной с ней величиной, принятой за единицу. Для построения системы единиц выбирают произвольно несколько физических величин. Они называются основными. Величины, определяемые через основные, называются производными. Совокупность основных и производных величин называется системой физических величин.
В общем виде связь между производной величиной Z и основными может быть представлена следующим уравнением:
Z = L a M b T g I e Q h J l,
где L, М, Т, I , Q , J — основные величины; a, b, g, e, h, l— показатели размерности. Эта формула называется формулой размерности. Система величин может состоять как из размерных, так и безразмерных величин. Размерной называется величина, в размерности которой хотя бы одна из основных величин возведена в степень, не равную нулю. Безразмерной называется величина, в размерность которой основные величины входят в степени, равной нулю. Безразмерная величина одной системы величин может быть размерной величиной в другой системе. Система физических величин используется для построения системы единиц физических величин.
Единица физической величины представляет собой значение этой величины, принятое за основание для сравнения с ней значений величин того же рода при их количественной оценке. Ей по определению присвоено числовое значение, равное 1.
Единицы основных и производных величин называются соответственно основными и производными единицами, их совокупность называется системой единиц. Выбор единиц в пределах системы в какой-то мере произволен. Однако в качестве основных единиц выбирают такие, которые, во-первых, могут быть воспроизведены с наивысшей точностью, а во-вторых, удобны в практике измерений или их воспроизведения. Единицы величин, входящих в систему, называются системными. Кроме системных единиц, применяются и внесистемные единицы. Внесистемные единицы — это единицы, не входящие в систему. Они удобны для отдельных областей науки и техники или регионов и поэтому получили широкое распространение. К внесистемным единицам относятся: единица мощности — лошадиная сила, единица энергии - киловатт-час, единицы времени - час, сутки, единица температуры - градус Цельсия и многие другие . Они возникли в процессе развития техники измерений для удовлетворения практических потребностей или введены для удобства пользования ими при измерениях. С теми же целями применяются кратные и дольные единицы величин.
Кратной единицей называется такая, которая в целое число раз больше системной или внесистемной единицы: килогерц, мегаватт. Дольной единицей называется такая, которая в целое число раз меньше системной или внесистемной единицы: миллиампер, микровольт. Строго говоря, многие внесистемные единицы могут рассматриваться как кратные или дольные единицы.
В науке и технике широко распространены также относительные и логарифмические величины и их единицы, которыми характеризуются усиление и ослабление электрических сигналов, коэффициенты модуляции, гармоник и т.д. Относительные величины могут выражаться в безразмерных относительных единицах, в процентах, в промилле. Логарифмическая величина представляет собой логарифм (в радиоэлектронике обычно десятичный) безразмерного отношения двух одноименных величин. Единицей логарифмической величины является бел (Б), определяемый соотношением:
N = lg P1// P2 = 2 lg F1/ F2 , (1.2)
где P1 , P2 - одноименные энергетические величины (значения мощности, энергии, потока плотности мощности и т.п.); F1, F2 - одноименные силовые величины (напряжение, сила тока, напряженность электромагнитного поля и т.п.).
Как правило, применяют дольную единицу от бела, называемую децибелом, равным 0,1 Б. В этом случае в формуле (1.2) после знаков равенства добавляется дополнительный множитель 10. Например, отношение напряжений U1/U2 = 10 соответствует логарифмической единице 20 дБ.
Имеется тенденция к применению естественных систем единиц, основанных на универсальных физических постоянных (константах), которые могли бы быть приняты в качестве основных единиц: скорость света, постоянная Больцмана, постоянная Планка, заряд электрона и т.п. . Преимуществом такой системы является постоянство основания системы и высокая стабильность констант. В некоторых эталонах такие постоянные уже используются: эталон единицы частоты и длины, эталон единицы постоянного напряжения. Но размеры единиц величин, основанных на константах, на современном уровне развития техники неудобны для практических измерений и не обеспечивают необходимой точности получения всех производных единиц. Однако такие достоинства естественной системы единиц, как неразрушаемость, неизменность во времени, независимость от местоположения стимулируют работы по изучению возможности их практического применения.
Впервые совокупность основных и производных единиц, образующих систему, предложил в 1832 г. К. Ф. Гаусс. В качестве основных единиц в этой системе приняты три произвольные единицы—длина, масса и время, соответственно равные миллиметру, миллиграмму и секунде. Позднее были предложены и другие системы единиц физических величин, базирующихся на метрической системе мер и различающихся основными единицами. Но все они, удовлетворяя одних специалистов, вызывали возражения других. Это требовало создания новой системы единиц. В какой-то мере удалось разрешить существовавшие противоречия после принятия в 1960 г. XI Генеральной конференцией по мерам и весам Международной системы единиц, названной сокращенно СИ (SI). В России она вначале была принята как предпочтительная (1961 г.), а затем после введения в действие ГОСТ 8.417—81 «ГСИ. Единицы физических величин» - и как обязательная во всех областях науки, техники, народного хозяйства, а также во всех учебных заведениях.
В качестве основных в Международной системе единиц (СИ) выбраны семь следующих единиц: метр, килограмм, секунда, ампер, Кельвин, кандела, моль.
Международная система единиц включает в себя две дополнительные единицы - для измерения плоского и телесного углов. Эти единицы не могут быть введены в разряд основных, так как они определяются отношением двух величин. В то же время они не являются производными единицами, так как не зависят от выбора основных единиц.
Радиан (рад) - угол между двумя радиусами окружности, дуга между которыми по длине равна радиусу.
Стерадиан (ср) - телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности. сферы площадь, равную площади квадрата со стороной, по длине равной радиусу сферы .
В соответствии с Законом об обеспечении единства измерений в Российской Федерации в установленном порядке допускаются к применению единицы величин Международной системы единиц, принятой Генеральной конференцией по мерам и весам, рекомендованные Международной организацией законодательной метрологии.
Наименования, обозначения и правила написания единиц величин, а также правила их применения на территории Российской Федерации устанавливает правительство Российской Федерации, за исключением случаев, предусмотренных актами законодательства Российской Федерации.
Правительством Российской Федерации могут быть допущены к применению наравне с единицами величин Международной системы единиц внесистемные единицы величин.

    • Размер величины. Значение величины

Размер физической величины - количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу .
Иногда возражают против широкого применения слова «размер», утверждая, что оно относится только к длине. Однако заметим, что каждое тело обладает определенной массой, вследствие чего тела можно различать по их массе, т.е. по размеру интересующей нас физической величины (массы). Рассматривая предметы А и В, можно, например, утверждать, что по длине или размеру длины они отличаются друг от друга (например, А > В). Более точная оценка может быть получена лишь после измерений длины этих предметов.
Часто в словосочетании «размер величины» слово «размер» опускают или заменяют его на словосочетание «значение величины».
В машиностроении широко применяют термин «размер», подразумевая под ним значение физической величины - длины, свойственной какой-либо детали. Это значит, что для выражения одного понятия «значение физической величины» применяются два термина («размер» и «значение»), что не может способствовать упорядочению терминологии. Строго говоря, необходимо уточнить понятие «размер» в машиностроении так, чтобы оно не противоречило понятию «размер физической величины», принятому в метрологии. В ГОСТ 16263-70 дано четкое разъяснение по этому вопросу.
Количественная оценка конкретной физической величины, выраженная в виде некоторого числа единиц данной величины, называется «значением физической величины».
Отвлеченное число, входящее в «значение» величины, называется числовым значением.
Между размером и значением величины есть принципиальная разница. Размер величины существует реально, независимо от того, знаем мы его или нет. Выразить размер величины можно при помощи любой из единиц данной величины, другими словами, при помощи числового значения.
Для числового значения характерно, что при применении другой единицы оно изменяется, тогда как физический размер величины остается неизменным.
Если обозначить измеряемую величину через x, единицу величины - через , а отношение их—через q1, то x = q1× .
Размер величины x не зависит от выбора единицы, чего нельзя сказать о числовом значении q , которое целиком определяется выбором единицы. Если для выражения размера величины x вместо единицы применить единицу , то неизменившийся размер x будет выражен другим значением:
x = q2× , где n2 ¹ n1.
Если в приведенных выражениях применять q = 1, то размеры единиц
x1 = 1× и x2 = 1× .
Размеры разных единиц одной и той же величины различны. Так, размер килограмма отличается от размера фунта; размер метра—от размера фута и т. п.

1.6. Размерность физических величин
Размерность физических величин— это соотношение между единицами величин, входящих в уравнение, связывающее данную величину с другими величинами, через которые она выражается.
Размерность физической величины обозначается dim A (от лат. dimension - размерность ). Допустим, что физическая величина А связана с X, Y уравнением A = F(Х, Y). Тогда величины X, Y, А можно представить в виде
Х = х ×[Х]; Y = y ×[Y]; A = а ×[A],
где А, X, Y - символы, обозначающие физическую величину; а, х, y - числовые значения величин (безразмерные); [A]; [X]; [Y] - соответствующие единицы данных физических величин.
Размерности значений физических величин и их единиц совпадают. Например:
A = X/Y; dim (a) = dim (X/Y) = [Х ]/[Y].
Размерность — качественная характеристика физической величины, дающая представление о виде, природе величины, о соотношении ее с другими величинами, единицы которых принимаются за основные.

    • Измерительное преобразование

В некоторых случаях, когда нельзя непосредственно сравнить измеряемую величину с воспроизводимой единицей физической величины, используют измерительное преобразование. Это такой вид преобразования, при котором устанавливается однозначное соответствие между значениями двух величин (входной и выходной). Зависимость между этими величинами стремятся сделать линейной. Диапазон преобразования определяется множеством значений входной величины, подвергаемой преобразованию .

    • Вид измерений

Вид измерений - часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин. Например, в области электрических и магнитных измерений могут быть выделены как виды измерения электрического сопротивления, электродвижущей силы, электрического напряжения, магнитной индукции и др.

    • Методы и средства измерений

Под понятием метод измерения подразумевается совокупность процессов использования принципов и средств измерений.
Принцип измерений - это совокупность физических явлений, на которых основаны измерения. Например, измерение температуры с использованием термоэлектрического эффекта; измерение расхода газа по перепаду давления в сужающем устройстве.
Конкретные методы измерений определяются видом измеряемых величин, их размерами, требуемой точностью результата, быстротой процесса измерения, условиями, при которых проводятся измерения, и рядом других признаков.
Каждую физическую величину можно измерить несколькими методами, которые могут отличаться друг от друга особенностями как технического, так и методического характера. В отношении технических особенностей можно сказать, что существует множество методов измерения и по мере развития науки и техники число их все увеличивается. С методической стороны все методы измерений поддаются систематизации и обобщению по общим характерным признакам. Рассмотрение и изучение этих признаков не только помогает правильному выбору метода и его сопоставлению с другими, но и существенно облегчает разработку новых методов измерения.
Для прямых измерений, при которых искомое значение величины находят непосредственно из опытных данных, можно выделить несколько основных методов: метод непосредственной оценки, дифференциальный метод, нулевой метод, метод совпадений и метод замещений.
При косвенных измерениях, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, широко применяется измерительное преобразование измеряемой величины в процессе измерений.
Средства измерений - это технические средства, используемые при измерениях и имеющие нормированные метрологические свойства. От средств измерений непосредственно зависит правильное определение значения измеряемой величины в процессе измерения. В число средств измерений входят меры, измерительные приборы, измерительные установки, измерительные системы и измерительные преобразователи; к ним относятся также измерительные принадлежности, которые, однако, не могут применяться самостоятельно, а служат для расширения диапазона измерений, повышения точности измерений, передачи результатов измерений на расстояние и обеспечения техники безопасности в процессе измерения. К средствам измерения не следует относить устройства, служащие для создания заданных условий измерений (различные регулирующие устройства, реостаты, термостаты, барокамеры и т. п.) .

    • Меры

Мера - средство измерений, предназначенное для воспроизведения
физической величины заданного размера.
Некоторые меры являются телами определенной формы, изготовленными с необходимой тщательностью. Например, концевые меры длины, гири, измерительные колбы. Другие меры представляют совокупность многих деталей с определенной взаимосвязью (нормальный элемент, измерительный конденсатор, генератор стандартных сигналов), но не это является характерным для мер и их роли в измерениях. Вспомним любой процесс измерения. Относительно редко сравнивают измеряемую величину с мерой, значение которой равно единице. На рычажных весах сравнивают массу взвешиваемого тела с массой гирь 0,1; 0,2; 0,5; 1; 2; 5 кг. Следовательно, любая из этих гирь или их комбинация в процессе измерения может стать исходной для определения измеряемой массы. Таким образом, мера воспроизводит величины, значения которых связаны с принятой единицей этой величины определенным, известным соотношением. Мера - это, как правило, основа измерений .

1.11. Эталоны единиц физических величин. Образцовые средства
измерений
Эталон единицы физической величины — средство измерений (или комплекс средств измерений), предназначенное для воспроизведения и хранения единицы данной величины (в некоторых случаях только для воспроизведения или только для хранения единицы). Назначение эталона единицы физической величины - передача ее размера ниже стоящим по точности средствам измерений в общегосударственном или в международном масштабе.
Эталон единицы физической величины выполняется по особой спецификации и официально утверждается в установленном порядке. При конкретном применении термина слова «единицы физической величины» заменяют ее наименованием: эталон килограмма, эталон ампера и т.п. Опускать слова «единицы физической величины» или наименование единицы в целях сокращения следует очень осторожно.
В технике, науке и даже в художественной литературе слово «эталон» употребляется в более широком смысле. Под эталоном понимают образец наивысшего достижения в чем-либо, образец, по которому следует равняться. В метрологии и измерительной технике слово «эталон» следует применять только в том смысле, о котором сказано выше. Неправильно называть наиболее точные средства измерений, применяемые на предприятиях для поверок, эталонами, эталонными средствами измерений. Для них установлены и широко применяются наименования «образцовые средства измерений ».
Сам по себе термин «образцовое средство измерений» допускает двоечтение. Он может быть ошибочно понят как лучшее средство измерений и на основании такого толкования может быть применен для измерений в то время, как основное правило метрологии говорит о том, что образцовые меры и образцовые измерительные приборы, предназначенные для поверки, недопустимо применять для измерений, так как это грозит нарушением единства мер и измерений .

1.12. Точность измерений
Термин «точность измерения » применяется очень широко, однако пока нет общепринятого способа выражать точность измерения количественно. В ГОСТ 16263—70 сказано: «Количественно точность может быть выражена обратной величиной модуля относительной погрешности. Например, если погрешность измерений равна 10-2 % = 10-4, то точность равна 104. Такой способ количественного выражения точности был предложен давно, однако он широко не распространился.
Под точностью измерения понимают степень приближения результатов измерений к истинному значению измеряемой величины. Однако выражения вроде «точность измерения равна 0,1 %» или «результат измерения верен с точностью до 0,001» неправильны. Термин же «точность» применим лишь для сравнения результатов или относительной характеристики методов измерений, например, точность измерения длины с помощью микрометра больше, чем при измерении с помощью штангенциркуля .

1.13. Погрешность измерений
Под погрешностью измерения понимается алгебраическая разность между полученным при измерении значением измеряемой величины и значением, выражающим истинный размер этой величины. Практически мы всегда заменяем значение, соответствующее истинному размеру измеряемой величины (сокращенно истинное значение измеряемой величины), значением, наиболее близким к истинному. По крайней мере, настолько близким, насколько это может удовлетворить нас в каждом данном конкретном случае. Таким образом, результат измерения дает нам только приближенное значение измеряемой величины. И оценить степень этого приближения мы можем тоже только приближенно. Можно ли погрешность измерения назвать ошибкой измерения? Видимо, нет, так как мы не умеем измерять лучше, точнее. Ошибкой измерения можно назвать ошибку, допущенную экспериментатором и обнаруженную при контрольных измерениях. В этих случаях мы говорим, что экспериментатор ошибся.
Выше было сказано, что на практике истинное значение измеряемой величины мы заменяем более близким к нему значением, более точным, чем полученное при измерении. Это значение, более близкое к истинному, мы называем «действительным» значением измеряемой величины.
Действительное значение измеряемой величины - это значение, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него. Оно необходимо нам для оценки погрешности измерения, определение которой приобретает теперь несколько другой характер.Погрешность результата измерения - это алгебраическая разность между полученным при измерении и действительным значением измеряемой величины. Это уже реальная величина, доступная для определения.
Погрешность результата измерения может быть выражена в единицах измеряемой величины или в долях (или в процентах) ее значения. Погрешности измерения, выраженные в долях или в процентах от значения измеряемой величины, называют относительными. В отличие от них погрешности, выраженные в единицах измеряемой величины, называют абсолютными .

    • Поверка средств измерений

Поверка - совокупность операций, выполняемых органами государственной метрологической службы с целью определения и подтверждения соответствия средства измерений установленным техническим требованиям. Если поверяемые средства измерений предназначены для применения с учетом поправок к их показаниям, то при поверке определяются их погрешности. Если же они предназначены для применения без введения поправок, как, например, используемые в торговле, то при поверке выясняют, не превышают ли их погрешности допускаемые. Кроме того, при поверке производят несколько других операций, чтобы убедиться в отсутствии неисправных или ненадежных узлов, которые могут стать причиной выхода из строя или появления больших погрешностей.
Неправильно поверку средств измерений называть «проверкой», так как слово «проверка» имеет иной смысл. Например, можно проверять выполнение различных требований. Но, с другой стороны, нельзя называть поверкой операции, имеющие целью определение отдельных характеристик или свойств средств измерений. Нельзя говорить «поверка чувствительности», «поверка плоскопараллельности», «поверка исправности». Правильно в этих случаях говорить «определение чувствительности», «проверка плоскопараллельности», «проверка исправности» и т. д. Следует всегда помнить, что поверке могут подвергаться только средства измерений с точки зрения точности.
Сличение средств измерений — разновидность поверки, при выполнении которой проводится сравнение средства измерений того же вида с эталонным или образцовым средством измерений для определения погрешности (меры с мерой, измерительного прибора с измерительным прибором).
Калибровка меры или набора мер - поверка совокупности однозначных мер или одной многозначной меры на различных отметках шкалы, при которой погрешности отдельных мер или значений шкалы оценивают путем сравнения их между собой в различных сочетаниях (отдельные меры, группы мер или отдельные участки шкалы).
Согласно Закону об единстве измерений стандарту калибровка - это совокупность операций, выполняемых с целью определения и подтверждения действительных значений метрологических характеристик и (или) пригодности к применению средства измерений, не подлежащего метрологическому контролю и надзору.
Иногда термин «калибровка» употребляют как синоним поверки, однако это неправильно, так как калибровкой можно называть лишь такую поверку, при которой сравниваются несколько мер или деления шкалы между собой в различных сочетаниях.
Градуировка средств измерений - нанесение отметок на шкалу или определение значений измеряемой величины, соответствующих уже нанесенным условным отметкам. При отсутствии шкалы под градуировкой понимают определение зависимости между измеряемой и другой величиной, легко определяемой по показаниям измерительного прибора, например, зависимости значений световых величин, воспроизводимых светоизмерительной лампой, от силы тока, протекающего по ее нити и т. п. Во всех этих случаях речь идет об определении градуировочной характеристики средств измерений. Поэтому более кратко градуировка средства измерения—это определение градуировочной характеристики средства измерения. В технической литературе можно встретить неправильное употребление этих терминов, когда поверку называют градуировкой, градуировку — калибровкой и т.п. Иногда эти термины заменяют другими, неверными и не отражающими существа метрологической операции, например, «тарировка» вместо «поверка» или «градуировка» .
.

Определения метрологии и метрологического обеспечения на­чинаются с основного понятия - измерение. Пожалуй, ни одно определение в области метрологии не вызывает столько споров, как определение этого понятия. Профессором М. Ф. Маликовым было дано следующее определение: «Измерение - познавательный процесс, заключающийся в сравнении путем физического эксперимента данной величины с известной величиной, принятой за единицу сравнения». Недостатком этого определения является то, что оно предполагает сравнение измеряемой величины с ее единицей, что имеет место только при прямых измерениях с использованием метода сравнения с мерой. В частности, это определение не со­гласуется с косвенными измерениями. К.П.Широковым дано бо­лее общее определение: «Измерение - нахождение значения фи­зической величины опытным путем с помощью специальных тех­нических средств». Это определение, включенное в ГОСТ 16263-70, четко определяет границы самого понятия и содержит указания на все важнейшие его эле­менты. К тому же лаконичность этого определения является его до­стоинством. Предложения о включении в формулировку опреде­ления элементов терминологии кибернетики и теории информа­ции не опровергают стандартизированную формулировку, но усложняют ее понимание и запоминание. Следует отметить, что в нахождение значения физической величины (далее - величины) включается и математическая обработка результатов измерения, в частности введение поправок и статистическая обработка ре­зультатов наблюдений (если это требуется).

Значение величины, найденное путем его измерения, называется результатом измере­ния . Значение величины, полученное при отдельном измерении, называется результатом наблюдения (точнее - измерения). На­блюдением при измерении является экспериментальная операция, выполняемая в процессе измерений, в результате которой полу­чают одно значение из группы значений величины, подлежащих совместной обработке для получения результата измерения.

В определение понятия метрологического обеспечения входит термин «единство измерений », под которым понимается такое состояние измерений, при котором их результаты выражены в узаконенных единицах, размеры которых соответствуют едини­цам, воспроизводимым эталонами, погрешности результатов из­мерения известны с заданной вероятностью и не выходят за ус­тановленные пределы.

Этот термин позволяет обеспечить сопоставимость измерений, выпол­ненных в разное время, разными средствами и методами. Един­ство измерений обеспечивается единообразием средств измерений и правильностью методик их выполнения. При этом под едино­образием средств измерений понимается такое их состояние, при котором они градуированы в узаконенных единицах и их метро­логические свойства соответствуют установленным нормам.

Показателями качества измерений являются погрешность (точность), правильность, сходимость и воспроизводимость из­мерений.

Погрешность измерения - отклонение результата измерения от истинного значения измеряемой величины.

Точность измерений - их качество, отражающее близость их результатов к истинному значению измеряемой величины.

Правильность измерений - их качество, отражающее близость к нулю систематических погрешностей в их результатах.

Сходимость измерений - их качество, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях.

Воспроизводимость измерений - их качество, отражающее близость друг к другу результатов измерений, выполняемых в различных условиях (в разное время, в различных местах, разными методами и средствами). Ниже будут рассмотрены более подробно все важнейшие элементы, необходимые для осуществления процесса измерений и обеспечения единства измерений .

Объектом измерения является физическая величина, характеризующая одно из свойств физического объекта.

Физическая величина, подлежащая измерению, измеряемая или измеренная в соответствии с основной целью измерительной задачи, называется измеряемой физической величиной или просто измеряемой величиной .

Измеряемые величины - это величины непосредственно воспринимаемые средствами измерений. Их можно классифицировать с помощью различных признаков, основными из которых являются: природа величины, вид отражаемой сто­роны эмпирических объектов, метризуемость и изменяемость .

По природе измеряемые величины разделяются на 11 классов: электрические, магнитные, электромагнитные, меха­нические, акустические, тепловые, оптические, химические, радио­активные, пространственные и временные. Каждый класс включает ко­нечное множество конкретных величин.

По виду отражаемой стороны эмпиричес­ких объектов каждый класс измеряемых величин разделяется на два подкласса: энергетические и вещественные величины . К энергетичес­ким величинам относятся, например, сила электрического тока, электрическое напряжение, напряженность электрического поля, на­пряженность магнитного поля, механическая сила, давление и т.п. Метрологическая общность энергетических величин заключается в использовании при их измерении энергии объектов исследования. Ве­щественными величинами являются различные свойства веществ и ма­териалов, а также параметры физических тел и объектов, например удельное электрическое сопротивление, диэлектрическая проницаемость, магнитная проницаемость, магнитное сопротивление, акустическое сопротивление и т.п. Метрологическая общность вещественных величин состоит в использовании при их измерении измерительных преобразо­ваний и других приемов косвенных измерений.

По признаку метризуемости измеряемые величины разделяются на непосредственно и косвенно метризуемые величины . К непосредственно метризуемым величинам относится около двух десятков физических величин, остальные являются косвенно метризуемыми величинами. Непосредственно метризуемые величины измеряются наиболее просто и с высокой точностью. Из­мерение косвенно метризуемых величин осуществляется с использованием различных функциональных связей и с преобразованием их в непосред­ственно метризуемые величины.

По признаку изменяемости выделяют состояния и измене­ния величин. Состояние величины в общем случае характеризуется раз­мером величины, нахождение значения которого и является задачей из­мерения.

Изменение величины может происходить в пределах какого-либо диапазона размеров и во времени. В зависимости от числа размеров по диапазону различают непрерывные и квантованные по размеру изменения величин. При непрерывном по размеру изменении величины имеется бесконечное число размеров по диапазону. При ква­нтованном по размеру изменении величины в дан­ном диапазоне проявляется конечное число размеров величины.

Изменение величины во времени может быть непрерывным и дискрет­ным (прерывным во времени). При непрерывном из­менении величины во времени значения размеров величины определены на данном отрезке времени при беско­нечно большом числе моментов времени. При дискретном из­менении величины значения размеров величины отлич­ны от нуля только в определенные моменты или интервалы времени. На рис. 1.1 и 1.2 показаны четыре характерные разновидности изменения величин.





Проявления размеров величины по диапазону и во времени могут быть неслучайными (детерминированными) и случайными . Детерми­нированное изменение величины характеризуется тем, что закон его известен. Случайное изменение величины происходит случайным образом.

Детерминированные непрерывные и дискретные изменения величин под­разделяются на периодические и непериоди­ческие. Непрерывные периодические и непериодические изменения величин далее подразделяются по виду описывающих их функций. Указанные из­менения величин характеризуются обобщенными параметрами и диапазо­нами их значений.

Для периодически изменяющейся величины x(t) любой формы с пе­риодом Т важными параметрами являются амплитудное x m , среднее

и действующее значения, а также

частота изменения величин. Непериодическое изме­нение величины характеризуется максимальным значением, скоростью нарастания и скоростью спада.

Дискретные периодические и непериодические изменения величин подразделяются по форме импульса и характеризуются обобщенными параметрами (мгновенным, амплитудным, средним значениями, а также длительностью импульса, временем нарастания (спада) импульса, час­тотой следования) и диапазонами их значений.

Случайные непрерывные и дискретные изменения величин разделяют­ся на стационарные и нестационарные . При стационарном изменении величин, в отличие от нестационарного, закон распределения отдельных проявлений размеров не зависит от времени.

Случайные изменения величин описываются различными функциями (функцией распределения вероятностей, функцией плотности распреде­ления вероятностей, автокорреляционной функцией, спектральной плот­ностью и другими) , каждая из которых может определяться вероятностя­ми и количеством реализации, а также диапазонами их значений.

Независимо от того, воспринимается состояние или изменение вели­чины измеряемой величиной, в любом конкретном случае может быть определено мгновенное значение раз­мера величины. При измерении состояния величины, т.е. не изменяющейся во времени величины или весьма медленно меняющейся, процесс измерения может осуществляться в течение длительного времени и к средствам измерения не предъявляется особых требований по быстродействию.

Измерение параметров изменений величин требует повышенного быст­родействия средств измерений. При этом помимо мгновенного значения размера величины в качестве измеряемой величины может выступать любой из указанных выше параметров изменений величин.

Различают истинное и действительное значения размера величины. Истинное значение размера величины есть значение размера величины, которое идеальным образом отражает количественную сторону соответствующего свойства объекта. Экспериментально определить его можно только в случае измерения количеств дискретных элементов каких-либо совокупностей, когда погрешность измерения практически может отсутствовать. Получить путем измерения истинное значение размера непрерывного изменения величины невоз­можно, так как в этом случае погрешности измерения неизбежны. Поэтому на практике часто вместо истинного пользуются действительным значением.

Действительное значение размера величина - это значение, найденное экспериментальным путем и настолько приближающееся к истинному, что может быть использова­но вместо него. Определяют его с помощью образцовых средств измере­ния, погрешностями которых по сравнению с используемыми при измере­нии средствами можно пренебречь.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Омск 2000
УДК 389 (075) ББК 30.10 я 73 Б 64 Рецензенты: В.М.Осипов, гл. конструктор ПО “Электроточприбор”; А.И.Калачев, проректор по научной работе Сибирского

МЕТРОЛОГИЯ. ОСНОВНЫЕ ПОНЯТИЯ В ОБЛАСТИ МЕТРОЛОГИИ
Метрология - это наука об измерениях, о методах и средствах обеспеченияих единства и способах достижения требуемой точ­ности [ 2 ]. Метрология зародилась в глубокой др

Физическая величина. Единица физической величины
Физическая величина - это свойство, общее в качественном отношении многим объектам (системам, их состояниям и проис­ходящим в них процессам), но в количественном отношении ин­дивидуальное дл

Системы единиц физических величин
При проведении любых измерений измеряемая величина сравнивается с другой однородной с ней величиной, принятой за единицу. Для построения системы единиц выбирают произвольно несколько физических вел

Размер величины. Значение величины
Размер физической величины – количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу . Иногда возражают проти

Размерность физических величин
Размерность физических величин- это соотношение между единицами величин, входящих в уравнение, свя­зывающее данную величину с другими величинами, через которые она выражается. Разм

Методы и средства измерений
Под понятием метод измерения подразумевается совокупность процессов использования принципов и средств измерений. Принцип измерений - это совокупность физических явлений, на к

Измерений
Эталон единицы физической величины - средство измерений (или комплекс средств измерений), предназначенное для воспро­изведения и хранения единицы данной величины (в некоторых случаях только

Точность измерений
Термин «точность измерения» применяется очень широко, одна­ко пока нет общепринятого способа выражать точность измерения количественно. В ГОСТ 16263-70 сказано: «Количественно точ­ность може

Погрешность измерений
Под погрешностью измерения понимается алгебраическая раз­ность между полученным при измерении значением измеряемой величины и значением, выражающим истинный размер этой величины. Практически

Поверка средств измерений
Поверка – совокупность операций, выполняемых органами государственной метрологической службы с целью определения и подтверждения соответствия средства измерений установленным техническим тре

Меры и наборы мер
Мерой называется средство измерений, предназначенное для воспроизведения физической величины заданного размера. При­мерами мер являются аттенюаторы - меры затухания, магазины сопротивлений

Измерительные преобразователи
Согласно ГОСТ 16263 - 70 измерительный преобразователь - это средство измерений, предназначенное для выработки сигнала из­мерительной информации в форме, удобной для передачи, дальней­шего п

Измерительные приборы
Измерительный прибор - средство измерения, предназначен­ное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Выработк

Измерительные установки и системы
Измерительная установка - это совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, предназначе

Метрологические характеристики средств измерений
Измерительная техника обладает большим арсеналом разнообраз­ных средств измерений, предназначенных для решения различных из­мерительных задач. Все средства измерений можно характеризовать некоторым

Погрешности средств измерений
Составляющая погрешности измерений, обуслов­ленная свойствами применяемых средств измерений (далее СИ), называется инст­рументальной погрешностью измерения. Эта погреш­ность является важнейш

Нормирование метрологических характеристик средств измерений
Средства из­мерений можно использовать по назначению, если известны их метрологические свойства. Последние обычно описывают путем указания номинальных значений тех или иных характеристик и допускае

Способы выражения пределов допускаемых погрешностей средств измерений
В настоящее время для большинства электрических средств измерений, используемых в статическом режиме, нормируют пределы допускаемых погрешностей. Пределом допускаемой погрешности (д

Погрешности измерений
При практическом осуществлении процесса измере­ний независимо от точности средств измерений, правиль­ности методики и тщательности выполнения измерений результаты измерений отличаются от и

Абсолютные и относительные погрешности
Абсолютная погрешность D - это разность между измерен­ным X и истинным Xи значениями измеряемой величины. Абсо­лютная погрешность выражается в единицах измеряемой ве­личины: D =

Отсчитывания и установки
Инструменталь­ными (приборными или аппаратурными) погрешностями называются такие, которые принадлежат данному средству измерений, могут быть определены при его испытаниях и занесены в его п

Систематические, прогрессирующие, случайные и грубые погрешности
Систематическая погрешность измерений Dс - состав­ляющая погрешности измерения, остающаяся постоян­ной или закономерно изменяющаяся при повторных из­мерениях одной и той же велич

Вероятностный подход к описанию погрешностей
Законы распределения случайных погрешностей. Случайные погрешности обнаруживают при проведении ряда измерений одной и той же величины. Результаты измерений при этом, как правило, не совпадаю

Формы представления результатов измерения
Результат измерения имеет ценность лишь тогда, когда можно оценить его интервал неопределенности, т.е. степень достоверности. Поэтому результат измерений должен содержать значение измеряемой величи

ЭТАЛОНЫ. ОБРАЗЦОВЫЕ И РАБОЧИЕ МЕРЫ
Для обеспечения единства измерений необходима тожде­ственность единиц, в которых проградуированы все средства изме­рений одной и той же физической величины. Единство измерений достигается

Эталоны
Эталоном единицы величины называют средство измерений, предназначенное для воспроизведения и хранения единицы величины (или кратных либо дольных значений единицы величины) с целью пере­дачи

Меры электрических величин
Эталоны, которые воспроизводят единицу измерения, называют мерами. По назначению меры делят на образцовые и рабочие. Меры, утвержденные в качестве образцо­вых, предназначаются для пов

Об обеспечении единства измерений
Измерения являются могучим средством, объединяющим те­орию с практической деятельностью человека. Результаты из­мерений в современном обществе приобретают большую значи­мость. Они служат основой дл

Государственное управление обеспечением единства измерений
Государственное управление деятельностью по обеспечению единства измерений в Российской Федерации осуществляет Комитет Российской Фе­дерации по стандартизации, метрологии и серти­фикации (Госстанда

Государственный метрологический контроль и надзор
Виды государственного метрологического контроля и надзора. Государственный метрологический контроль и надзор осуществляется Государственной метрологической службой Госстандарта России. Госуд

Калибровка и сертификация средств измерений
1. Калибровка средств измерений Средства измерений, не подлежащие поверке, могут подвергаться калибровке, при выпуске из производства или ремонта, при ввозе по импорту, при эксплуатации, п

Б И Б Л И О Г Р А Ф И Я
1. Атамалян Э.Г. Приборы и методы измерения электрических величин: Учеб. пособие для студ. втузов. – М.: Высш. шк., 1989. – 384 с. 2. ГОСТ 16263-70 ГСИ. Метрология. Термины и определения.

В. Я. Бараш

В настоящей статье приводится и обсуждается функциональное для метрологии понятия «величина». Определение понятия «величина» является одним из основных с точки зрения построение теории измерений.

Приведем определения величины в известных источниках.

В термин «физическая величина, величина»: Одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.

Термины «измеряемая физическая величина, измеряемая величина».

Физическая величина, подлежащая измерению, измеряемая или измеренная в соответствии с основной целью измерительной задачи.

В термин «Величина (измеряемая)»: Свойство явления, тела или вещества, которое может быть различимо качественно и определено количественно.

В термин «измеряемая величина»: Конкретная величина, подлежащая измерению.

В термин «величина»: Свойство явления, тела и вещества, которое может быть выражено количественно в виде числа с указанием репера1 (как основы для сравнения). Значение величины.

В термин «значение физической величины»: Выражение физической величины в виде некоторого числа принятых для нее единиц.

В : Количественное значение величины, обычно в форме произведения единицы измерения на некоторое число.

В термин «значение величины» отсутствует.

В термин «значение величины» отсутствует. Однако, трактовка этого термина следует из вышеприведенного Примечания 1 к термину «величина».

Из изложенного следует важное отличие в подходе, принятом в , и , с одной стороны, и в с другой, относительно способа представления значения величины. Если в первых трех документах оно выражается только в единицах измерения, то в это значение выражается в реперах (англ. reference), разновидностью которых может быть единица измерения, методика измерения, стандартный образец или их комбинация.

Приведенные термины и определения дают возможность сравнить концепцию неопределенности и концепцию погрешности.

В основе различий двух концепций метрологии лежит, прежде всего, различие в принципиальных подходах к фундаментальному понятию метрологии, именно к понятию «величина». В концепции погрешности величина рассматривается свойство явления, тела или вещества, имеющее единственное (уникальное) значение. В соответствии с этим и результат измерения имеет единственное значение, которое находится в некотором доверительном интервале. Принимается, что в пределах этого интервала с некоторой вероятностью находится уникальное значение измеряемой величины. Разность между результатом измерения и этим истинным значением представляет собой погрешность результата измерения. Эта разность, в силу того, что и истинное значение и результат измерения являются единственными, представляет собой действительную величину. Следовательно, упомянутый интервал или область представляет собой погрешность результата измерения. В силу того, что истинное значение величины неизвестно, указанная погрешность также является неизвестной величиной.

В концепции неопределенности понятие «погрешность» сохранилось, однако претерпело существенное изменение. Погрешность может использоваться только в тех случаях, когда измерению подлежит величина, имеющая условное (приписанное) значение. В этих случаях погрешность, как разность результата измерения и измеряемой величины, является известной.

В концепции неопределенности можно обходиться без понятия истинного значения величины,применяя просто термин «величина».

Кроме того, в концепции неопределенности величины характеризуется не единственным значениям, а совокупностью значений, ограниченных некоторым интервалом, представляющим собой неопределенность измеряемой величины.

В отличие от концепции погрешности, где результат измерения имеет единственное значение, в концепции неопределенности результат измерения представляет собой интервал значений, включающий неопределеность измеряемой величины, нeoпределенность, связанную с процессом измерения, и неопределенность калибровки средства измерения.

Анализ определений величины в приведенных документах свидетельствует о том, что понятие «величина» не рассматривается с точки зрения ее зависимости от времени и пространства.

Вместе с тем с теоретической точки зрения признание объекта измерения неизменяемым и, следовательно, характеризуемым неизменными величинами, с физической точки зрения является неприемлемым.

Появление новых видов измерений, например, измерений переменного тока, вибрации, удара, переменных сил, переменных давлений, геометрических параметров поверхности, а также необходимость повышения точности измерений привели к созданию средств измерений, с помощью которых можно было измерять переменные во времени и пространстве физические величины. Однако, до сих пор, несмотря на то, что в отдельных видах измерений физических величин, переменных во времени и пространстве, созданы соответствующие средства измерений и нормативно-техническая база для их проведения, важнейшие метрологические проблемы общего характера остаются практически незатронутыми. К таким вопросам относятся: связь между статическими и динамическими измерениями, методология оценки погрешности и неопределенности измерений, методы корректировки динамических характеристик средств измерений и т. п.

Анализ определений величины и ее разновидностей в приведенных документах свидетельствует об отсутствии в них указания о связи величины с временем и пространством, т.е. с формами существования материальных объектов. Это можно расценить как указание на то, что величина всегда является неизменной во времени и пространстве. Между тем, с точки зрения физики гораздо более приемлемым является утверждение о том, что величины всегда являются переменными во времени и пространстве, что является фундаментальным свойством как величин, так и объектов измерения, ими характеризуемых. Закономерности изменения величины в пространстве и времени могут быть разнообразными и, с математической точки зрения, могут описываться различными зависимостями. Однако, можно попытаться на основе законов физики предложить обобщенную математическую модель величины, по меньшей мере, не противоречащую этим законам и дающую возможность на основе этой обобщенной модели создавать частные модели, описывающие все разнообразие форм изменения величин во времени и пространстве.

Признавая изменчивость величины во времени и пространстве, следует к основному определению величины добавить следующие положения:

  • величина изменяется во времени и пространстве, т. е. в разные моменты времени и в разных координатах пространства величина имеет различные значения;
  • обобщенная математическая модель представляет собой нецентрированный случайный процесс, т.е. случайный процесс, математическое ожидание которого не равно нулю;
  • значение величины можно представить суммой ее математического ожидания и центрированной случайной величины;
  • параметр величины-комбинация значения величины за интервал времени или пространственной координаты в соответствии с определенным алгоритмом. Параметр величины не является физической (материально) величиной,так как он представляет собой результат вычисления значения входной или преобразованной в процессе измерений входной величины.