Чем актуально использовать водородное топливо. Каким должно быть топливо будущего

На данный момент водород является самым разрабатываемым "топливом будущего". На это есть несколько причин: при окислении водорода образуется как побочный продукт вода, из нее же можно водород добывать. А если учесть, что 73% поверхности Земли покрыты водой, то можно считать, что водород неисчерпаемое топливо. Так же возможно использование водорода для осуществления термоядерного синтеза, который вот уже несколько миллиардов лет происходит на нашем Солнце и обеспечивает нас солнечной энергией.

Управляемый термоядерный синтез

Управляемый термоядерный синтез использует ядерную энергию, выделяющуюся при слиянии легких ядер, таких как ядра водорода или его изотопов дейтерия и трития. Ядерные реакции синтеза широко распространены в природе, будучи источником энергии звезд. Ближайшая к нам звезда - Солнце - это естественный термоядерный реактор, который уже многие миллиарды лет снабжает энергией жизнь на Земле. Ядерный синтез уже освоен человеком в земных условиях, но пока не для производства мирной энергии, а для производства оружия он используется в водородных бомбах. Начиная с 50 годов, в нашей стране и параллельно во многих других странах проводятся исследования по созданию управляемого термоядерного реактора. С самого начала стало ясно, что управляемый термоядерный синтез не имеет военного применения. В 1956 году исследования были рассекречены и с тех пор проводятся в рамках широкого международного сотрудничества. В то время казалось, что цель близка, и что первые крупные экспериментальные установки, построенные в конце 50 годов, получат термоядерную плазму. Однако потребовалось более 40 лет исследований для того, чтобы создать условия, при которых выделение термоядерной мощности сравнимо с мощностью нагрева реагирующей смеси. В 1997 году самая крупная термоядерная установка - Европейский Токамак, JET, получила 16 МВт термоядерной мощности и вплотную подошла к этому порогу.

Электроводородный генератор

В результате проведенных работ изобретено и патентуется по системе РСТ простое высокопроизводительное устройство для разложения воды и производства из нее беспрецедентно дешевого водорода методом гравитационного электролиза раствора электролита, получившее название "электроводородный генератор (ЭВГ)". Он приводится в действие механическим приводом и работает при обычной температуре в режиме теплового насоса, поглощая через свой теплообменник необходимое при этом тепло из окружающей среды или утилизируя теплопотери промышленных или транспортных энергоустановок. В процессе разложения воды подведенная к приводу ЭВГ избыточная механическая энергия может быть на 80 % преобразована в электроэнергию, которая затем используется любым потребителем на нужды полезной внешней нагрузки. При этом на каждую единицу затраченный мощности привода генератором в зависимости от заданного режима работы поглощается от 20 до 88 энергетических единиц низкопотенциального тепла, что собственно и компенсирует отрицательный термический эффект химической реакции разложения воды. Один кубический метр условного рабочего объема генератора, работающего в оптимальном режиме с КПД 86-98 %, способен за секунду произвести 3,5 м3 водорода и одновременно около 2,2 МДж постоянного электрического тока. Единичная тепловая мощность ЭВГ в зависимости от решаемой технической задачи может варьироваться от нескольких десятков ватт до 1000 МВт.

"Водородный" автомобиль

Французский автомобильный концерн Renault совместно с компанией Nuvera Fuel Cells планирует разработать серийный автомобиль, использующий в качестве топлива водород, уже к 2010 году (рис.6)

Рис. 6

Nuvera - небольшая американская компания, с 1991 года занимающаяся разработкой двигателей, альтернативных доминирующим сейчас бензиновым и дизельным. В основе разработок Nuvera лежит так называемый "топливный элемент" (Fuel Cell). Топливный элемент - устройство, не имеющее движущихся частей, в котором происходит химическая реакция водорода и кислорода, в результате которой вырабатывается электричество. Побочными продуктами реакции является выделяемое тепло и некоторое количество воды.

Принцип "топливного элемента" в корне отличается от обычного процесса электролиза, применяемого сейчас в батареях и аккумуляторах. Разработчики утверждают, что их продукция - это по сути дела "вечная батарейка", имеющая весьма значительный срок службы. Кроме того, в отличие от обычной батареи, "топливный элемент" не нуждается в подзарядке.

"Водородные батарейки"

Группа инженеров из технологического института штата Массачусетс (Massachusetts Institute of Technology) совместно со специалистами других университетов и компаний разрабатывает миниатюрный топливный двигатель, который в будущем сможет заменить батареи и аккумуляторы.

Журнал Popular Science, опубликовавший статью об исследованиях американских учёных, не удержался от восторга: "Вы только представьте себе жизнь без батареи! Когда топливо заканчивается в вашем ноутбуке, вы "заливаете полный бак" - и вперёд!"

Известно, что в 30-е годы прошлого столетия в Советском Союзе в МВТУ им Н.Э Баумана Сороко-Новицкий В. И., (зав. кафедрой «Легкие двигатели» до 1937 г.) совместно с А. К. Курениным исследовал влияние добавок водорода к бензину на двигателе ЗИС-5. Известны также работы по использованию в качестве топлива водорода , которые проводильсь в нашей стране Ф. Б. Перельманом. Однако практическое применение водорода в качестве моторного топлива началось в 1941 году. В Великую Отечественную войну в блокадном Ленинграде техник-лейтенант Шелищ Б. И. предложил использовать водород , «отработавший» в аэростатах, как моторное топливо для двигателей автомобиля ГАЗ-АА.

Рисунок 1. Пост ПВО Лениградского фронта ВОВ, оборудованный водороднгой установкой

На рис. 1 на заднем плане виден спущенный на землю водородный аэростат, из которого водород перекачивается в газгольдер, расположенный на переднем плане. Из газгольдера с «отработашим» водородом газообразное топливо посредством гибкого шланга подается в двигатель внутреннего сгорания автомобиля ГАЗ-АА. Заградительные аэростаты поднимались на высоту до пяти километров и являлись надежным противовоздушным средством обороны города, не позволяя самолетам противника осуществлять прицельное бомбометание. Для опускания аэростатов, частично потерявших свою подъемную силу требовалось большое усилие. Эта операция осуществлялась с использованием механической лебедки, установленной на автомобиль ГАЗ-АА. ДВС вращал лебедку для опускания аэростатов. В условиях острого дефицита бензина были переоборудованы для работы на водороде несколько сотен постов ПВО, на которых использовались автомобили ГАЗ-АА, работающие на водороде.

После воины в семидесятые годы прошлого века Бриса Исааковича неоднократно приглашали на различные научные конферкнции, где в своих выступлениях он подробно рассказывал о тех далеких героических днях. Одно из таких мероприятий — I Всесоюзная школа молодых ученых и специалистов по проблемам водородной энергетики и технологии, организованная по инициативе ЦК ВЛКСМ, Комиссии АН СССР по водородной энергетике, Институтом атомной энергии им И. В. Курчатова и Донецким политехническим институтом, проводилась в сентябре 1979 года за полгода до его смерти. Борис Иссакович свой доклад «Водород вместо бензина» на секции «Технология использования Водорода» сделал 9 сентября.

В семидесятые годы в нескольких научно-исследовательских организациях СССР интенсивно проводились работы по использованию водорода в качестве топлива. Наиболее известны такие организации как Центральный научно-исследовательский автомобильный и автомоторный институт (НАМИ), Институт проблем машиностроения АН УССР (ИПМАШ АН УССР), Сектор механики неоднородных сред АН СССР (СМНС АН СССР), Завод-ВТУЗ при ЗИЛе и др. В частности, в НАМИ под руководством Шатрова Е. В. начиная с 1976 года были проведены научно-исследовательские и опытно-конструкторские работы по созданию водородного микроавтобуса РАФ 22034. Была разработана система питания двигателя позволяющая работать на водороде. Она прошла полный комплекс стендовых и лабораторно-дорожных испытаний.

Рисунок 2. Слева направо Шатров Е. В., Кузнецов В. М., Раменский А. Ю.

На рис. 2 фотографии слева на право: Шатров Е.В - научный руководитель проекта; Кузнецов В. М. - руководителя группы водородных двигателей; Раменский А. Ю. — аспирант НАМИ, внесшие значительный клад в организацию и проведение НИОКР по созданию водородного автомобиля. Фотографии стендов для испытания двигателя, работающего на водороде и микроавтобуса РАФ 22034, работающего на водороде и бензоводородных топливных композициях (БВТК), представлены на рис. 3 и 4.

Рисунок 3. Моторный отсек Болкса № 20 для испытаний ДВС на водороде Отдела мотрорных лабораторий НАМИ

Рисунок 4. Водородный микроавтобус РАФ (НАМИ)

Первый опытный образец микроавтобуса был построен в НАМИ в период 1976-1979 году (рис. 4). Начиная с 1979 года в НАМИ осуществлялись его лабораторно-дорожные испытания и опытная эксплуатация.

Параллельно работы по созданию автомобилей работающих на водорода велись в ИПМАШ АН УССР и СМНС АН СССР и Заводе Втузе при ЗИЛе. Благодаря активной позиции академика Струминского В. В. (рис. 5), руководителя СМНС АН СССР несколько образцов микроавтобусов использовались на ХХII Олимпийских летних играх в Москве в 1980 году.

Рисунок 5. Слева направво Легасов В. А., Семененко К. Н. Струминский В. В.

Как головной институт Министерства автомобильной промышленности СССР НАМИ сотрудничал с указанными выше организациями. Примером такого сотрудничества были совместные исследования с ИПМаш АН УССР, директором которого в те времена работал член-корреспондент АН УССР Подгорный А. Н. В области применения водорода на автомобиле следует обратить внимание на работы руководителей ведущих подразделений института: Варшавского И. Л., Мищенко А. И., Соловья В. В. и многих других (Рис. 6).

Рисунок 6. Сотрудники ИПМАШ АН УССР, слева направо Подгорный А. Н., Варшавский И. Л., Мищенко А. И.

Широко известны разработки этого института по созданию автомобилей и автопогрузчиков, работающих на БВТК с металлогидридными системами хранения водорода на борту.

Другим примером сотрудничества НАМИ с ведущими НИИ страны была работа по созданию металлогидридных систем хранения водорода на автомобиле. В рамках консорциума по созданию металлогидридных систем хранения сотрудничали три ведущие организации: ИАЭ им И. В. Курчатова, НАМИ и МГУ им М. В. Ломоносова. Инициатива создания такого консорциума принадлежала академику Легасову В. А. Институт атомной энергии им И. В. Курчатова был головным разработчиком металлогидридной системы хранения водорода на борту автомобиля. Руководителем проекта был Чернилин Ю. Ф., активными участниками работ были Удовенко А. Н. и Столяревский А. Я.

Металлогидридные соединения разработал и изготовил в необходимом количестве МГУ им. М. В. Ломоносова. Эта работа велась под руководством Семененко К. Н., заведующего кафедрой химии и физики высоких давлений. 21 ноября 1979 года были зарегистрированы в Государственном реестре изобретений СССР заявки № № 263140 и 263141 с приоритетом изобретения 22 июня 1978 года. Авторские свидетельства на сплавы-аккумуляторы водорода А. С. № 722018 и № 722021 от 21 ноября 1979 г. были одними из первых изобретений в этой области в СССР и в мире.

В изобретениях предлагались новые составы, позволяющие существенно увеличить количество запасаемого водорода. Это достигалось путем модификации состава и количества компонентов в сплавах на основе титана или ванадия.Такие композиции позволили добиться концентрации от 2.5 до 4.0 массовых процентов водорода. Выделение водорода из интерметаллида осуществлялось в интервале температур 250-400°С. Этот результат и по сей день является практически максимальным достижением для сплавов такого типа. В разработке сплавов принимали участие ученые ведущих научных организаций СССР, связанных с разработкой материалов и устройств на базе гидридов интерметаллических сплавов — МГУ им. М. В. Ломоносова (Семененко К. Н., Вербецкий В. Н., Митрохин С. В., Зонтов В. С.); НАМИ (Шатров Е. В., Раменский А. Ю.); ИМаш АН СССР (Варшавский И. Л.); Завода-ВТУЗа при ЗИЛ (Гусаров В. В., Кабалкин В. Н.). В середине восьмидесятых годов испытания металлогидридной системы хранения водорода на борту микроавтобуса РАФ 22034, работающего на БВТК, проводились в Отделе двигателей на газовых и других видах альтернативных топлив НАМИ (зав. отделом Раменский А. Ю.) . Активное участие в работе принимали сотрудники отдела: Кузнецов В. М., Голубченко Н. И., Иванов А. И., Козлов Ю. А. Фотография металлогидридной системы хранения водорода для микроавтобуса представлена на рис. 7.

Рисунок 7. Водородный автомобильныйметаллогидридный аккумулятор водорода (1983 г.)

В начале восьмидесятых годов начало зарождаться новое направление в применении водорода в качестве топлива для автомобилей, которое в настоящее время рассматривается как основная тенденция. Это направление связано с созданием автомобилей работающих на топливных элементах. Создание такого автомобиля осуществлялось в НПП «Квант». Под руководством Н. С. Лидоренко. Автомобиль впервые был представлен на международной выставке «Электро-82» в 1982 г. в Москве (рис. 8).

Рисунок 8. Водородный микроавтобус РАФ на топливных элементад (НПП «КВАНТ»)

В 1982 микроавтобус РАФ, на борту которого были смонтированы электрохимические генераторы и был установлен электрический привод, демонстрировался заместителю министра автомобильной промышленности Е. А. Башинджагяну. Демонстрировал автомобиль сам Н. С. Лидоренко. Для опытного образца, автомобиль на топливных элементах, имел неплохие ездовые качества, о чем не без удовлетворения отметили все участники просмотра. Планировалось осуществлять эту работу совместно с предриятиями Минавтопрома СССР. Однако в 1984 году Н. С. Лидоренко оставил пост руководителя предприятия, может быть с этим связано то обстоятельство, что эта работа не получила своего продолжения. Создание первого российского водородного автомобиля на топливных элементах, построенного коллективом предприятия более 25 лет могла бы претендовать на историческое событие в нашей стране.

Особенности ДВС при работе на водороде

По отношению к бензину водород имеет в 3 раза большую теплотворную способность, в 13-14 раз меньшую энергию воспламенения, и, что существенно для ДВС, более широкие пределы воспламенения топливно-воздушной смеси. Такие свойства водорода делают его чрезвычайно эффективным для применения в ДВС, даже в качестве добавки. В то же время к недостаткам водорода как топлива можно отнести: падение мощности ДВС по сравнению с бензиновым аналогом; «жесткий» процесс сгорания водородовоздушных смесей в области стехиометрического состава, что приводит к детонации на режимах высоких нагрузок. Эта особенность водородного топлива требует изменений конструкции ДВС. Для существующих двигателей необходимо применять водород в композиции с углеводородными топливами, например с бензином. или природным газом.

Например, организацию топливоподачи бензоводородных топливных композиций (БВТК) для существующих автомобилей необходимо осуществлять таким образом, чтобы на режимах холостого хода и частичных нагрузок двигатель работал на топливных композициях с высоким содержанием водорода. По мере возрастания нагрузок концентрация водорода должна снижаться и на режиме полного дросселя подачу водорода необходимо прекратить. Это позволит сохранить мощностные характеристики двигателя на прежнем уровне. На рис. 9 представлены графики изменения экономических и токсических характеристик двигателя с рабочим объемом 2,45 л. и степенью сжатия 8,2 ед. от состава бензоводородовоздушной смеси и концентрации водорода в БВТК.

Рисунок 9. Экономические и токсические характеристики ДВС на водороде и БВТК

Регулировочные характеристики двигателя по составу смеси при постоянной мощности Ne=6,2 квт и частоте вращения коленчатого вала n=2400 об/мин дают возможность представить, как меняются показатели двигателя при работе на водороде, БВТК и бензине.

Мощностные и скоростные показатели двигателя для испытаний выбраны таким образом, чтобы они наиболее полно отражали условия эксплуатации автомобиля в городских условиях. Мощность двигателя Ne=6,2 квт и частота вращения коленчатого вала n=2400 об/мин соответствует движению автомобиля, например «ГАЗЕЛЬ» с постоянной скоростью 50-60 км/час по горизонтальной, ровной дороге. Как видно из графиков, по мере увеличения концентрации водорода в БВТК эффективный КПД двигателя возрастает. Максимальное значение КПД при мощности 6,2 квт и частоте вращения коленчатого вала 2400 об/мин достигает на водороде 18,5 процентов. Это в 1,32 раза выше, чем при работе двигателя на этой же нагрузке на бензине. Максимальное значение эффективного КПД двигателя на бензине составляет на этой нагрузке 14 процентов. При этом состав смеси соответствующий максимальному КПД двигателя (эффективный предел обеднения) смещается в сторону бедных смесей. Так при работе на бензине эффективный предел обеднения топливно-воздушной смеси соответствовал коэффициенту избытка воздуха (а) равному 1,1 единицы. При работе на водороде коэффициент избытка воздуха соответствующий эффективному пределу обеднения топливно-воздушной смеси а=2,5. Не менее важным показателем работы автомобильного двигателя внутреннего сгорания на частичных нагрузках является токсичность отработавших газов (ОГ). Исследование регулировочных характеристик двигателя по составу смеси на БВТК с различными концентрациями водорода показали, что по мере обеднения смеси концентрация окиси углерода (СО) в отработавших газах снижалась практически до нуля не зависимо от вида топлива. Увеличение концентрации водорода в БВТК приводит к снижению выброса с отработавшими газами углеводородов СnHm. При работе на водороде концентрация этого компонента на отдельных режимах падала до нуля. При работе на этом виде топлива выброс углеводородов во многом определялся интенсивностью сгорания в камере сгорания ДВС. Образование окислов азота NxOy, как известно, не связано родом топлива. Их концентрация в ОГ определяется температурным режимом горения топливно-воздушной смеси. Возможность работы двигателя на водороде и БВТК в диапазоне бедных составов смесей позволяет снизить максимальную температуру цикла в камере сгорания ДВС. Это существенно уменьшает концентрацию окислов азота. При обеднении топливно-воздушной смеси свыше а=2, концентрация NxOy снижается до нуля. В 2005 году НАВЭ разработан микроавтобус ГАЗЕЛЬ, работающий на БВТК. В декабре 2005 года он был представлен на одном из мероприятий, проводимых в Президиуме Российской академии наук. Презентация микроавтобуса была приурочена к 60 летию президента НАВЭ П. Б. Шелища. Фотография бензоводородного микроавтобуса представлена на Рис.10.

Рисунок 10. Водородный микроавтобус «Газель»(2005 г.)

Для оценки надежности бензоводородной аппаратуры и пропаганды перспектив водородной экономики, прежде всего в сфере автомобильного транспорта, НАВЭ провела с 20 по 25 августа 2006 года автопробег водородных автомобилей. Пробег осуществлялся по по маршруту Москва - Н.Новгород - Казань - Нижнекамск - Чебоксары - Москва протяженностью 2300 км. Автопробег был приурочен к Первому всемирному конгрессу «Альтернативная энергетика и экология». В пробеге принимали участие два водородных автомобиля. Второй грузовой многотопливного автомобиля ГАЗ 3302, работал на водороде, сжатом природном газе, БВТК и бензине. Автомобиль был оснащен 4 облегченными стеклопластиковыми баллонами с рабочим давлением 20 мпа. Масса бортовой системы хранения водорода составляет 350 кг. Запас хода автомобиля на БВТК составлял 300 км.

При поддержке Федерального агентства по науке и инновациям НАВЭ при активном участии Московского энергетического института МЭИ (ТУ), Автокомбината № 41, Инженерно-технического центра «Водородные технологии и ООО «Славгаз» был создан опытный образец автомобиля ГАЗ 330232 «ГАЗЕЛЬ-ФЕРМЕР» грузоподъемностью 1,5 тонны, работающий на БВТК с электронной системой подачи водорода и бензина. Автомобиль оснащен трехкомпонентным нейтрализатором ОГ. На рис. 11 представлены фотографии автомобиля и коплект электронной аппаратуры для подачи водорода в ДВС.

Рисунок 11. Опытный образец автомобиля ГАЗ 330232 «ГАЗЕЛЬ-ФЕРМЕР»

Перспективы внедрения водорода на автомобильном транспорте

Наиболее перспективным направлением в области использования водорода для автомобильной техники являются комбинированные энергоустановки на базе электрохимических генераторов с топливными элементами (ТЭ) . При этом, необходимым условием является получение водорода из возобновляемых, экологически чистых источников энергии, для производства которых, в свою очередь, должны использоваться экологически чистые материалы и технологии.

К сожалению, в ближайшей перспективе применение таких высокотехнологичных транспортных средств в широком масштабе проблематично. Это связано с несовершенством рядя технологий, применяемых при их производстве, недостаточной отработанностью конструкции электрохимических генераторов, ограниченностью и высокой стоимостью применяемых материалов. Например, удельная стоимость одного кВт мощности ЭХГ на топливных элементах достигает 150-300 тысяч рублей (при курсе российского рубля 30 руб/долл США). Другим важным элементом сдерживания продвижения на автомобильном рынке водородной техники с топливными элементами является недостаточная отработка конструкции таких АТС в целом. В частности, отсутствуют достоверные данные при испытании автомобиля на топливную экономичность в условиях реальной эксплуатации. Как правило, оценка эффективности работы энергоустановки установки осуществляется на основе вольт-амперной характеристики. Такая оценка эффективности не соответствует принятой в практике двигателестроения оценки эффективного КПД ДВС, при расчете которого учитываются также и все механические потери, связанные с приводом агрегетов двигателя. Нет достоверных данных по топливной экономичности автомобилей в реальных условиях эксплуатации, на величину которых оказывает влияние необходимость обслуживания дополнительных бортовых устройств и систем, устанавливаемых на автомобили как традиционно, так и вязанные с особенностями конcтракции автомобилей на топливных элементах. Нет достоверных данных и по оценке эффективности в условиях отрицательных температур, при которых необходимо осуществлять поддержание температурного режима, обеспечивающего работоспособность как самой энергоустановки и подаваемого топлива, так и подогрев кабины водителя или салона с пассажирами. Для современных автомобилей рабочий режим эксплуатации может достигать -40 оС, это особо надо учитывать в российских условиях эксплуатации.

Как известно, в топливных элементах вода является не только продуктом реакции взаимодействия водорода и кислорода, но и активно участвует в рабочем процессе генерации энергии, смачивая твердополимерные материалы, входящие в конструкцию топливных ячеек. В современной технической литературе отсутствуют данные о надежности и долговечности топливных элементов в условиях низких температур. Очень противоречивые данные публикуются в литературе и по долговечности работы ЭХГ на ТЭ.

В этой связи, вполне закономерным является продвижение рядом ведущих мировых автопроизводителей транспортных средств, работающих на водороде, оснащенных двигателями внутреннего сгорания. В первую очередь, это такие известных компании как BMW и Mazda. Двигатели автомобилей BMW Hydrogen-7 и Mazda 5 Hydrogen RE Hybrid (2008) успешно конвертированы на водород.

С точки зрения надежности конструкции, относительной низкой стоимости одного кВт установленной мощности энергоустановки на базе двигателей внутреннего сгорания работающие на водороде значительно превосходят ЭХГ на ТЭ, однако ДВС имеют, как принято считать, меньший КПД. Кроме того, в отработавших газах двигателя внутреннего сгорания может содержаться некоторое количество токсичные вещества. В качестве основного направления совершенствования автомобильной техники, оснащенной двигателем внутреннего сгорания в ближайшей перспективе следует рассматривать использование комбинированных (гибридных) энергоустановок. Наилучший результат до топливной экономичности и токсичности отработавших газов, по-видимому следует ожидать от применения гибридных установок с последовательной схемой преобразования химической энергии топлива в ДВС в механическую энергию движения автомобиля. При последовательной схеме ДВС автомобиля работает практически на постоянном режиме с максимальной топливной эффективностью, приводя в движение электрогенератор, который подает электрический ток на электромотор привода колес автомобиля и накопитель электроэнергии (аккумулятор). Основной задачей оптимизации при такой схеме является поиск компромисса между топливной экономичностью ДВС и токсичностью ее отработавших газов. Особенность решения задачи заключается в том, что максимальный КПД двигателя достигается на при работе на обедненной топливовоздушной смеси, а максимальное снижение токсичности отработавших газов достигается при стехиометрическом составе, при котором количество топлива, подаваемого в камеру сгорания подается строго в соответствии с количеством воздуха, необходимым для его полного сгорания. Образование окислов азота при этом ограничивается дефицитом свободного кислорода в камере сгорания, а неполнота сгорания топлива нейтрализатором отработавших газов. В современных ДВС датчик для замера концентрации свободного кислорода в ОГ ДВС подает сигнал на электронную систему подачи топлива, которая спроектирована таким образом, чтобы максимально поддерживать стехиометрический состав топливовоздушной смеси в камере сгорания двигателя на всех режимах ДВС. Для гибридных энергоустановок с последовательной схемой, возможно добиться наилучшей эффективности регулирования топливовоздушной смеси из-за отсутствия знакопеременных нагрузок на ДВС. Вместе с тем, с точки зрения топливной экономичности, ДВС стехиометрический состав топливовоздушной смеси не является оптимальным. Максимальный КПД двигателя всегда соответствует смеси обедненной на 10-15 процентов по сравнения с стехиометрической. При этом КПД ДВС при работе на обедненной смеси может быть на 10-15 выше чем при работе на смеси стехиометрического состава. Решение проблемы повышенного выброса вредных веществ, свойственного на этих режимах для ДВС с искровым зажиганием, возможно в результате перевода работы ДВС на водород, бензоводородные топливные композиции (БВТК) или метановодородные топливные композиции (МВТК). Применение водорода в качестве топлива или в качестве добавки к основному топливу может позволить существенно расширить пределы эффективного обеднения топливовоздушной смеси. Это обстоятельство позволяет существенно увеличить КПД ДВС и снизить токсичность отработавших газов.

В отработавших газах двигателей внутреннего сгорания содержится свыше 200 различных углеводородов. Теоретически, в случае сгорания гомогенных смесей (из условий равновесия) углеводородов в отработавших газах ДВС не должно содержаться, однако из-за негомогенности топливовоздушной смеси в камере сгорания ДВС возникают разные начальные условия протекания реакции окисления топлива. Температура в камере сгорания различается по ее объему, что также существенно влияет на полноту сгорания топливовоздушной смеси. В ряде исследований было установлено, что вблизи сравнительно холодных стенок камеры сгорания происходит гашение пламени. Это приводит к ухудшению условий сгорания топливовоздушной смеси в пристеночном слое. В работе Daneshyar H и Watf M произвели фотографирование процесса сгорания бензовоздушной смеси в непосредственной близости от стенки цилиндра двигателя. Фотографирование осуществлялось через кварцевое окно в головке цилиндра двигателя. Это позволило определить толщину зоны гашения в пределах 0,05-0,38 мм. В непосредственной близости от стенок камеры сгорания СН в 2-3 раза возрастает. Авторы делают вывод, что зона гашения является одним из источников выделения углеводородов.

Другим важным источником образования углеводородов является моторное масло, которое попадает в цилиндр двигателя в результате не эффективного удаления со стенок маслосъемными кольцами или через зазоры между стержнями клапанов и их направляющими втулками. Исследования показывают, что расход масла через зазоры между стержнями клапанов и их направляющими втулками в автомобильных бензиновых ДВС достигает 75% общего расхода масла на угар.

При работе ДВС на водороде в топливе не содержится углеродосодержащих веществ. В этой связи подавляющее большинство публикаций содержит сведения о том, что в отработавших газах ДВС не может содержаться углеводородов. Однако это оказалось не так. Безусловно, с увеличение концентрации водорода в БВТК и МВТК концентрация углеводородов существенно снижается, но не исчезает полностью. Во много это может быть связано с несовершенством конструкцией топливной аппаратуры, дозирующей подачу углеводородного топлива. Даже небольшая утечка углеводородов при работе ДВС на сверхбедных смесях может привести к выбросу углеводородов. Такой выброс углеводородов может быть связан с износом цилиндропоршневой группы и как следствием повышенным угаром масла и др. В этой связи при организации процесса сгорания необходимо поддерживать температуру сгорания на таком уровне, при котором имеет место достаточно полно сгорание углеводородных соединений.

В процессе сгорания топлива окислы азота формируются за фронтом пламени в зоне повышенной температуры, вызванной реакцией сгорания топлива. Образование окислов азота, если это не азотосодержащие соединения образуются в результате взаимодействия кислорода и азота воздуха. Общепринятой теорией образования окислов азота является термическая теория. В соответствии с этой теорией выход окислов азота определяется максимальной температурой цикла, концентрацией азота и кислорода в продуктах сгорания и не зависит от химической природы топлива рода топлива (при отсутствии в топливе азота). В отработавших газах ДВС с искровым зажиганием содержание окиси азота составляет 99% от количества всех окислов азота (NOx). После выхода в атмосферу происходит окисление NO до NO2.

При работе ДВС на водороде образование окиси азота имеет некоторые особенности по сравнению с работой двигателя на бензине. Это связано с физико-химическими свойствами водорода. Главными факторами в этом случае являются температура сгорания водородовоздушной и ее пределы воспламенения. Как известно пределы воспламенения водородовоздушной смеси находятся в диапазоне 75% — 4,1%, что соответствует коэффициенту избытка воздуха 0,14 - 9,85, в то время как у изооктана в диапазоне 6,0%-1,18%, что соответствует коэффициенту, избытка воздуха 0,29 - 1,18. Важной особенностью сгорания водорода является повышенная скорость сгорания стехиометрических смесей. На рис. 12 представлен график зависимостей, характеризующих протекание рабочих процессов ДВС при работе на водороде и бензине.

Рисунок 12. Изменение параметров рабочего процесса ДВС при работена водороде и бензине, мощность ДВС 6,2 кВт, частота вращенияколенчатого вала 2400 об/мин.

Как следует их графиков, перевод ДВС с бензина на водород приводит в области стехиометрических смесей к резкому возрастанию максимальной температуры цикла. На графике видно, что скорость тепловыделения при работе ДВС на водороде в верхней мертвой точке ДВС в 3-4 раза выше, чем при работе на бензине При этом на индикаторной диаграмме отчетливо видны следы колебания давления, появление которых в конце такта сжатия свойственно «жесткому» сгоранию топливовоздушной смеси. На рис.13 представлены индикаторные диаграммы, описывающие изменение давления в цилиндре ДВС (ЗМЗ-24Д, Vh=2,4 л. степ. сжатия -8,2). в зависимости от угла поворота коленчатого вала (мощность 6,2 кВт, ч. в. к 2400 об/мин) при работе на бензине и водороде.

Рисунок 13. Индикаторные диаграммы ДВС (ЗМЗ-24-Д, Vh=24 л., степеньсжатия 8,2) примощности 6,2 кВт и ч. в. к 2400 об/мин. при работе на бензине и водороде

При работе ДВС на бензине отчетливо видна неравноменость протекания индикаторных диаграмм от цикла к циклу. При работе на водороде, особенно при стехиометрическом составе, неравномерность отсутствует. При этом угол опережения зажигания был настолько мал, что практически можно считать его равным нулю. Обращает на себя очень резкое нарастание давления за ВМТ, свидетельствующее о повышенной жесткости процесса. На нижнем графике представлены индикакторные диаграммы при работе на водороде при коэффициенте избытка воздуха 1,27. Угол опережения зажигания составлял 10 градусов п. к. в. На некоторых индикакторых диаграммах явно видны следы «жесткой » работы ДВС. Такой характер протекания рабочего процесса ДВС при использовании в качестве топлива водорода способствует повышенному образованию окислов азота. Максимальное значение концентрации окислов азота в ОГ соответствует работе ДВС с коэффициентом избытка воздуха 1,27. Это вполне закономерно, т. к. в топливовоздушной смеси содержится большое количество свободного кислорода и в результате высоких скростей сгорания имеет место высокая температура сгорания топливовоздушного заряда. Вмеасте с тем, при переходе на более бедные смесях скорости тепловыделения снижаются. Снижаются и максимальная температура цикла, а следовательно и концентрация в ОГ окислов азота.

Рисунок 14. Регулировочные характеристики по составу смеси при работе ДВС на бензоводородных топливных композициях, мощность ДВС 6,2 кВт, частота вращения коленчатого вала 2400 об/мин. 1. Бензин, 2. Бензин +Н2 (20%), 3. Бензин +Н2 (50%), 4. Водород

На рис. 14 представлены зависимости изменения выброса токсичных веществ с ОГ ДВС при работе на бензине, бензоводородных композициях и водороде. Как следует из графика наибольшее значение выбросов NOx соответствует работе ДВС на водороде. Вместе с тем по мере обеднения топливовоздушной смеси концентрация NOx снижается достигая практически нулевого значения при коэффициенте избытка воздуха большего 2 единиц. Таким образом перевод автомобильного двигателя на водород позволяет кардинально решить проблему топливной экономичности, токсичности отработавших газов и снижения выброса двуокиси углерода.

Применение водорода в качестве добавки к основному топливу может способствовать решению задачи улучшения топливной экономичности ДВС, снижения выброса токсичных веществ и уменьшения выброса двуокиси углерода, требования по содержанию которой в ОГ ДВС постоянно ужесточаются. Добавка водорода по массе в диапазоне 10-20 процентов может стать для автомобилей с гибридными двигателями оптимальной в самое ближайшее время.

Применение водорода в качестве моторного толива может быть эффективно только лишь при создании специализированных конструкций. В настоящее время ведущие производители автомобильных двигателей работают над созданием таких моторов. В принципе, основные направления по которым необходимо двигатья при создании новой конструкции водородных ДВС известны. К ним относятся:

1. Применение внутреннего смесеобразования позволит улучшить на 20-30 процентов удельные массогабаритные показатели водородного двигателя.

2. Применение сверх бедных водородовоздушных смесей для гибридных энергоустановок даст возможность существенно снизить температуру сгорания в камере сгорания ДВС и создаст предпосылки для повышения степени сжатия ДВС, использования новых материалов, в том числе и для внутренней поверхности камеры сгорания, позволяющих снизить потери тепла в систему охлаждения двигателя.

Все это по мнению специалистов позволит довести эффективный КПД ДВС, работающего на водороде до 42-45 процентв, что вполне сопоставимо с КПД электрохимических генераторов, для которых в настоящее время нет данных по экономической эффективности в условиях реальной эксплуатации автомобилей с учетом привода вспомогательных агрегатов, отоплания салона и др.

Достоинства: Главным и неоспоримым преимуществом автомобилей на водородном топливе является высокая их экологичность. Так и запишем:
Экологичность водородного топлива. Продуктом горения водорода является вода, точнее водяной пар. Это, естественно, не означает, что при езде на таком автотранспорте не будет выделяться токсичных газов, ведь в ДВС помимо водорода сгорают ещё и различные масла. Однако количество выбросов их несравнимо с чадящими бензиновыми коллегами. Собственно, ухудшающееся состояние экологии – это проблема человечества, и если количество бензиновых «монстров» будет расти такими темпами, то водородное топливо, как когда-то, в войну, станет единственным спасением теперь уже не города, а всего человечества.
ДВС на водороде может использовать и классические виды топлива, такие как бензин. Для этого придётся устанавливать на автомобиль дополнительный топливный бак. Такой гибрид гораздо легче «продвинуть» на рынок, чем чистый водородный ДВС.
Бесшумность.
Простота конструкции и отсутствие дорогостоящих, ненадёжных и опасных систем топливоподачи, охлаждения и т.д.
Коэффициент полезного действия электродвигателя работающего на водородном топливе в несколько раз выше, чем у классического двигателя внутреннего сгорания.

Недостатки: Большой вес автомобиля. Для работы электродвигателя на водородном топливе необходимы мощные аккумуляторные батареи и водородные преобразователи тока, которые в общей конструкции весят не мало, да и габариты у них внушительные.

Дороговизна водородных топливных элементов.

При использовании водорода с традиционным топливом велика опасность взрыва и возгорания.
Несовершенные технологии хранения водородного топлива. То есть, ученые и разработчики до сих пор не решат, какой сплав использовать для баков хранения водорода.
Не разработаны необходимые стандарты хранения, транспортировки, применения водородного топлива.
Полное отсутствие водородной инфраструктуры заправок автомобилей.
Сложный и дорогой способ получений водорода в промышленных масштабах.
Прочитав о достоинствах и недостатках водородного топлива можно сделать вывод, что в свете ухудшающийся экологии, альтернативный источник энергии водород станет единственным продуктивным решением проблемы. Но, если обратится к недостаткам, то становится ясным, почему, до сих пор, серийный выпуск водородных автомобилей откладывается на неопределённый срок.



Методы получения H2:

1) Паровая конверсия метана – ПКМ. Осуществляется в мире в основном путём паровой конверсии метана при температурах 750-850 °С в химических паровых реформерах и каталитических поверхностях. На первом этапе метан и водяной пар превращаются в водород и монооксид углерода (синтез-газ). Вслед за этим «реакция сдвига» превращает монооксид углерода и воду в диоксид угле­рода и водород. Эта реакция происходит при температурах 200-250 °С. Для осуществления эндотермического процесса ПКМ сжигается около поло­вины исходного газа. При использовании паровой конверсии метана в со­четании с высокотемпературным гелиевым реактором (ВТГР) требуемая тепловая мощность ВТГР составляет в расчёте на 5 млн т водорода около 6,5 ГВт.

2) Плазменная конверсия углеводородов. . В РКЦ «Курчатовский инсти­тут» выполнены исследования плазменной конверсии природного углево­дородного топлива (метан, керосин) в синтез-газ. Эта технология может быть применена на заправочных станциях или на борту водородных авто­мобилей при использовании обычного жидкого топлива. Разработаны так­же плазмохимические методы получения водорода с помощью ВЧ- и СВЧ-технологий с использованием в качестве сырья химических соединений, в Которых водород находится в слабосвязанном состоянии, например, серо­водорода.

3) Электролитическое разложение воды (электролиз). Электролитиче­ский водород является наиболее доступным, но дорогим продуктом. Для разложения чистой воды при нормальных условиях требуется напряжение 1,24 вольта. Величина напряжения зависит от температуры и давления, от свойств электролита и других параметров электролизера. В промышлен­ных и опытно-промышленных установках реализован к.п.д. электролизера ~70-80 %, в том числе для электролиза под давлением. Паровой электро­лиз - это разновидность обычного электролиза. Часть энергии, необходи­мой для расщепления воды, в этом случае вкладывается в виде высокотем­пературного тепла в нагрев пара (до 900 °С), делая процесс более эффек­тивным. Стыковка ВТГР с высокотемпературными электролизерами по­зволит повысить суммарный кпд производства водорода из воды до 50 %.

Одним из существенных ограничений крупномасштабного электро­лизного производства водорода является потребность в драгоценных ме­таллах (платина, родий, палладий) для катализаторов, которая пропорцио­нальна мощности и, следовательно, поверхности электродов.

4) Расщепление воды. По-видимому, в ближайшем будущем методы по­лучения водорода с использованием углеродного сырья будут основными. Однако сырьевые и экологические ограничения процесса паровой конверсии метана стимулируют разработку процессов производства водорода из воды.

5) Термохимические и термоэлек­трохимические циклы. Воду можно термиче­ски разложить и при более низкой температуре, используя последователь­ность химических реакций, которые выполняют следующие функции: свя­зывание воды, отщепление водорода и кислорода, регенерация реагентов. термохимический процесс получения водорода с кпд до 50 % исполь­зует последовательность химических реакций (например, серно-кислотно-йодный процесс) и требует подвода тепла при температуре около 1000 °С. Источником тепла при термохимическом разложении воды также может служить высокотемпературный реактор. На отдельных стадиях процессов такого типа наряду с термическим воздействием для отщепления водорода может использоваться электричество (электролиз, плазма).

Где можно взять водород было известно давно, еще пару веков назад. Способ получения водорода был достаточно подробно описан в издании:
О. Д. Хвольсон, Курс физики, Берлин, 1923, тт. 3 и.

Оказывается, не нарушая никаких законов физики можно построить машину, которая будет производить тепло за счет положительной разности энергии сжигания водорода, и энергии затрачиваемой на получение его в процессе электролиза воды.

Конкретно, 2 гр водорода при сгорании выделяют 67.54 больших калорий тепла, а при электролизе раствора серной кислоты, при напряжении 0.1 вольта, на получение такого же количества водорода будет затрачено менее 5 больших калорий тепла. Суть состоит в том, что при электролизе не расходуется энергия разъединения молекулы воды на кислород и водород. Эта работа совершается без нашего участия межмолекулярными силами при диссоциации воды ионами серной кислоты. Мы расходуем энергию только на то, чтобы нейтрализовать заряды уже имеющихся ионов водорода и остатка SO- Количество выделившегося водорода зависит не от энергии, а только от количества электричества, равного произведению силы тока на время его прохождения.

При сжигании водорода выделяется именно та энергия, которую надо было бы совершить для того, чтобы оторвать молекулу водорода от кислорода в воздухе. А это и есть 67.54 больших калорий. Полученный избыток энергии может быть использован по разному.

Можно получать водород прямо на заправочных станциях и заправлять им автомобили.

В условиях дома, взяв из сети один киловатт час энергии, сможем получить 10 квт часов тепловой энергии для бытовых нужд. Это своеобразный усилитель энергии. Отпадет надобность в проводке газовых труб, теплотрассах и котельных. Энергия будет приготовлена прямо в квартире из воды, а отходами будет снова только вода.

В крупных промышленных установках, даже при 33% кпд, как и в атомных станциях сегодня, сжигая водород получим электрической энергии в несколько раз больше, чем было затрачено ее на получение этого водорода.

Привлекательно использование водорода, как топлива для автомобилей, ввиду его нескольких особых преимуществ:

  • при сгорании водорода в двигателе образуется практически только вода, что делает двигатель на водородном топливе наиболее экологически чистым;
  • высокие энергетические свойства водорода (1 кг водорода эквивалентен почти 4,5 кг бензина);
  • неограниченная сырьевая база при получения водорода из воды.

Использовать водород в качестве топлива для автомобилей можно несколькими разными способами:

  • можно использовать только сам водород;
  • можно использовать водород вместе с традиционными топливами;
  • можно применять водород в топливных элементах.

Конечно, возникают определенные технические трудности, которые необходимо решить. Лет 30 назад, академик А. П. Александров, вел семинар по водородной энергетике. На нем обсуждались уже технические проекты. Предполагалось, что атомная энергия будет использоваться для получения водорода, а он уже будет использоваться как топливо. Но очевидно скоро поняли, что атомная энергетика здесь вообще не нужна. Тогда и похерили все водородные проекты, потому что нужно было не водородное топливо, а плутоний.

Писательница Л. Улицкая, генетик по образованию, писала в «Общей газете» 16-22 мая 2002 г. «Романтический период в истории науки закончился. Я совершенно уверена, что дешевые источники электроэнергии давно уже разработаны и разработки эти лежат в сейфах нефтяных королей. Убеждена, сегодня наука так работает, что этого не могут не сделать. Но до тех пор, пока последнюю каплю нефти не сожгут, такие разработки не выпустят из сейфа, им не нужен передел денег, мира, власти, влияния».

До сих пор сторонники развития атомной энергетики ставят коронный вопрос: А где альтернатива атому? Следует ожидать яростного противодействия не только сторонников ядерной энергетики, но всего топливно- энергетического комплекса. Они не пожалеют сил и средств, чтобы закопать проблему водородного топлива вместе с ее энтузиастами.

Более 90% водорода получают в нефтеперерабатывающих и нефтехимических процессах. Также водород вырабатывается при превращении природного газа в синтез-газ. Процесс получение водорода электролизом воды – чрезвычайно дорогой, по затратам энергии он практически равен количеству энергии, получаемой при сгорании водорода в двигателе.

На сегодняшний день, практически весь вырабатываемый водород используется в различных нефтеперерабатывающих и нефтехимических процессах.

С воздухом водород устойчиво воспламеняется в широком диапазоне концентраций, что обеспечивает устойчивую работу двигателя на всех скоростных режимах.

В отработавших газах практически отсутствуют оксиды углерода (СО и СО2) и несгоревшие углеводороды (СН), но выброс оксидов азота вдвое превышает выброс оксидов азота бензинового двигателя.

Из-за высокой реакционной способности водорода есть возможность проскока пламени во впускной трубопровод и преждевременного воспламенения смеси. Из всех вариантов устранения этого явления самым оптимальным является впрыск водорода непосредственно в камеру сгорания.

Проблемой использования водорода в качестве моторного топлива является его хранение на автомобиле.

Система хранения сжатого водорода позволяет уменьшить объем бака, но не его массу из-за увеличения толщины стенки. Хранение жидкого водорода – сложная задача, учитывая его низкую температуру кипения. Жидкий водород хранят в емкостях с двойными стенками.

При хранении водорода в виде гидридов металлов, водород находится в химически связанном состоянии. Если в качестве гидрида металла использовать гидрид магния, соотношение между водородом и металлом-носителем составляет около 168 кг магния и 13 кг водорода.

Высокая температура самовоспламенения водородо-воздушных смесей затрудняет использование водорода в дизелях. Устойчивое воспламенение может быть обеспечено принудительным поджогом от свечи.

Трудности при использовании водорода и высокая его цена привели к тому, что разрабатывается комбинированное топливо бензин-водород. Использование бензино-водородных смесей позволяет на 50% снизить расход бензина при скорости 90 – 120 км/ч и на 28% при езде в городе.

— сайт —

Комментарии:

    Я за комбинированное топливо бензин-водород

    А я за то, что бы использовать мобильный реактор водорода, как описывается выше. И не надо боков и безопасно. В качестве безопасности как уже извесно, можно использовать гидрозатвор.

    Никто и никогда не сможет эапустить водород как топлво пока есть нефть….как можно получить или посмотреть чертежи об устаноке дпя печного отопления……….

    В начале статьи говорится о серной кислоте, потом невзначай упоминается вода. Так с какой жидкостью будем иметь дело и соответсвующие экологические неоднозначности?
    Я не химик, прошу ногами не пинать, если что-то упустил.

    Если использовать серную кислоту некой средней концентрации, то после получения электролизом из нее водорода надо концентрацию кислоты как-то удерживать. Можно просто доливать воды и по ареометру следить, но вода из водопровода далека от дистиллировки и испарение оксида серы-6 в негерметичной системе тоже наверняка будет происходить, все же газ. Сжигать же водород в получаемом параллельно кислороде, чтобы обеспечить герметичность, надо малыми порциями, но и это взрывонебезопасно. Идея хорошая, надо попробовать – электролит аккумуляторный доступен, как и электросеть.

    в вов на дерижаблях в лененграде использовали водород а позже из них же питали движки машин с лебёдками

    Забудьте, это все теория, на самом деле все правильно, только вот Водород по калорийности в 3 раза меньше скажем природного газа сответствено КПД такого двигетеля ниже в 3 раза чем скажем на природном газе,тоесть он будет гудеть на холостом, но не ехать.Так что о применении самодостаточного водородного топлива забудьте это утопия,а вот молекулярная интенсивикация топлива бензин,газ, солярав двигателях внутренего сгорания и вгазотурбинных установках это перспективно экономически оправдано так как КПД двигателей растет 2-3 разы,при сокращению расхода топлива на 38-50% скажем на 100 км реально.Все эти раскозни про газ Брауна,Майера и других ничто так каз законы физики пока работают тесть получить методом электролиза газ и на нм ездить не реально так как мощность борт сети авто не достаточно генератор типового авто выдает максимум ток в 7.5А, дляустойчивой работы электролизера необходимая сила тока хотябы в 2 разы больше,значить мы посадим акамулятор достаточно быстро и еще и уграем как минимум реле регулятор авто.Все приплыли. Но решение все же есть.Так как октановое число водорода 1000то соответствено его в двигатель подавать надо очень мало, тоесть довести силу тока в электролизере до 3-4 ампер и готовит бензиновую или топливною смесь не посредственно перед впрыском в камеру сгорания обогащая ее полученым гремучим газом.Как показала практика на автомобилях испытуемых Шкода Октавия,БМВ-520.,Опель Аскона и других на протяжении порядка5-7 лет экономия составляла до 50% в зависимости от вида топлива двигателя,Увеличелся моторесурс в 2 разы,мощность двигателя возросла как минимум на 50%,соответствено увеличелся крутящий момент.Интересное явление наблюдается расход по топливу практически одинаков что в городском что в загородном цыкле.Машина становится резвая и очеь шустрая, скорость при базовом двигателе Шкоды Октавия обемом 1.6 литра набирает скорость до ста км за 12 сек, с молекулярным интенсификатором за 7 сек…крейсерская максимальная скорость Октавии составила 195 км в час при заводских настройках лиш 120-130 с горки,на бензиновых двигателях убитых большим пробегом оказалось что свечи зажигания смеси становятся вечними,прошли без замены по 250 тыс пробега…

    Н- на ~75% даёт больше дж чем бензин и ~50%больше чем метан(могу ошибаться).
    Интересно, какое давления создает в цилиндре Н?

    HHO .prom.ua
    Там собирают электр.лизеры на продажу

    автомобиль на водородном топливе уже в эксплуатации. в мире более 100 тысяч автомобилей ездит на водороде.

    Интересно, кто автор этого шедевра? Сначала он пишет: «В условиях дома, взяв из сети один киловатт час энергии, сможем получить 10 квт часов тепловой энергии для бытовых нужд». Просто и со вкусом автор предлагает обыкновенный вечный двигатель. Немного ниже: «Процесс получение водорода электролизом воды – чрезвычайно дорогой, по затратам энергии он практически равен количеству энергии, получаемой при сгорании водорода в двигателе». По-видимому автор это писал разными руками, а правая рука не ведает, что пишет левая и наоборот….

    Юрий.
    Автор имел ввиду что для власть и имущество имущих генерация водорода наиболее выгодна при синтезе с другими веществами. Но опять же это целые цепочки технологических мероприятий не говоря уже об дорогих оборудованиях. Способов масса но вот рентабельность нужно считать. Я считаю что наиболее рентабелен именно электролиз ибо ветряная энергия очень дешевая. А все другие способы добычи газ.об-водорода могут быть не рентабельными из за износа оборудований и слож. Технолог. Проццесов..

История водородного двигателя. Если нефть называют топливом сегодняшнего дня (топливом века), то водород можно назвать топливом будущего .

При нормальных условиях водород - это газ без цвета, запаха и вкуса, самое легкое вещество (в 14,4 раза легче воздуха); отличается очень низкими температурами кипения и плавления, соответственно, -252,6 и -259,1 СС.

Жидкий водород - бесцветная жидкость, без запаха, при -253 °С имеет массу 0,0708 г/см 3 .

Своим названием водород обязан французскому ученому Антуану Лорану Лавуазье, который в 1787 г., разлагая и вновь синтезируя воду, предложил назвать второе составляющее (кислород был известен) - гидрофеном, что в переводе означает «рождающий воду», или «водород». До этого выделяющийся при взаимодействии кислот с металлами газ назывался «горючим воздухом».

Первый патент на двигатель, работающий на смеси водорода с кислородом, появился в 1841 г. в Англии, а спустя 11 лет придворный часовщик Христиан Тейман построил в Мюнхене двигатель, который проработал на смеси водорода с воздухом в течение нескольких лет.


Одной из причин того, что эти двигатели не получили распространения, послужило отсутствие в природе свободного водорода.

Вновь к водородному двигателю обратились уже в нашем веке - в 70-е годы в Англии учеными Рикардо и Брусталлом были проведены серьезные исследования. Экспериментально - путем изменения только подачи водорода - они установили, что двигатель на водороде может работать во всем диапазоне нагрузок, от холостого хода до полной нагрузки. Причем на бедных смесях были получены более высокие значения индикаторного КПД, чем на бензине.

В Германии в 1928 г. дирижаблестроительная фирма «Цеппелин» использовала водород в качестве обогатителя топлива, чтобы осуществить дальний испытательный перелет через Средиземное море.

Перед второй мировой войной в той же Германии применялись автодрезины, работавшие на водороде. Водород для них получали в электролизерах высокого давления, работавших от электросети на заправочных станциях, расположенных близ железной дороги.

Большую роль в совершенствовании водородного двигателя сыграли работы Рудольфа Эррена. Он впервые применил внутреннее смесеобразование, что позволило осуществить конвертирование жидкотопливных двигателей на водород при сохранении основной топливной системы и тем самым обеспечить работу двигателя на углеводородном топливе, водороде и жидком топливе с присадкой водорода. Интересно отметить, что переходить с одного вида топлива на другой можно было без остановки двигателя.


Одним из двигателей, конвертированных Эрреном, является дизель автобуса «Лейланд», опытная эксплуатация которого выявила высокую экономичность при добавке водорода к дизельному топливу.

Эррен разработал также водородокислородный двигатель, продуктом сгорания которого был водяной пар Некоторая часть пара возвращалась в цилиндр вместе с кислородом а ос тальная конденсировалась. Возможность работы такого двигателя без наружного выхлопа была использована на германских подводных лодках довоенной постройки. В надводном положении дизели обеспечивали ход лодки и давали энергию для разложения воды на водород и кислород, в подводном положении - работали на парокислородной смеси и водороде. При этом подводная лодка не нуждалась в воздухе для дизелей и не оставляла на поверхности воды следов в виде пузырьков азота, кислорода и других продуктов сгорания.

В нашей стране исследование возможностей использовать водород в двигателях внутреннего сгорания началось в 30-е годы.

В период блокады Ленинграда для подъема и спуска аэростатов воздушного заграждения использовались автомобили-лебедки с двигателями «ГАЗ-АА», которые были переведены на водородное питание. С 1942 г. водород успешно использовался в московской службе ПВО, им надували аэростаты.

В 50-е годы на речных судах предполагалось использовать водород, получаемый разложением воды током гидроэлектростанций.

Использование водорода в настоящее время

В 70-е годы под руководством академика В. В. Струминского были проведены испытания автомобильного двигателя «ГАЗ-652», работавшего на бензине и водороде, и двигателя «ГАЗ-24», работавшего на жидком водороде. Испытания показали, что при работе на водороде повышается КПД и уменьшается нагрев двигателя.

В Харьковском институте проблем машиностроения АН УССР и Харьковском автодорожном институте под руководством профессора И. Л. Варшавского были проведены исследования детонационной стойкости водородовоздушных и бензоводородовоздушных смесей, а также выполнены разработки по конвертированию на водород и добавке водорода к бензину двигателей автомобилей «Москвич-412», «ВАЗ-2101», «ГАЗ-24» с использованием для получения и хранения водорода энергоаккумулирующих веществ и гидридов тяжелых металлов. Эти разработки достигли стадии опытной эксплуатации на автобусах и такси.

В космонавтике появился новый класс летательных аппаратов, имеющих в земной атмосфере гиперзвуковые скорости. Для достижения таких скоростей необходимо топливо с высокой теплотворной способностью и низким молекулярным весом продуктов сгорания; кроме того, оно должно обладать большим хладоресурсом.

Этим требованиям как нельзя лучше отвечает водород. Он способен поглощать тепло в 30 раз больше, чем керосин. При нагревании от -253 по +900 °С (температура на входе в двигатель) 1 кг водорода может поглотить более 4000 ккал.

Омывая изнутри обшивку летательного аппарата перед поступлением, в камеру сгорания, жидкий водород поглощает все тепло, выделяющееся при разгоне аппарата до скорости, в 10-12 раз превосходящей скорость звука в воздухе.

Жидкий водород в паре с жидким кислородом был применен в последних ступенях сверхтяжелых американских ракет - носителей «Сатурн-5», что в определенной степени способствовало успеху космических программ «Аполлон» и «Скайлэб».

Моторные свойства топлива

Основные физико-химические и моторные свойства водорода в сравнении с пропаном и бензином приведены в табл. 1.


Водород обладает наиболее высокими энергомассовыми показателями, превосходящими традиционные углеводородные топлива в 2,5-3 раза, а спирты - в 5-6 раз. Однако из-за низкой плотности по объемной тепло-производительности он уступает большинству жидких и газообразных топлив. Теплота сгорания 1 м 3 водородовоздушной смеси на 15% меньше, чем у бензина. Вследствие худшего наполнения цилиндра из-за низкой плотности литровая мощность бензиновых двигателей при переводе на водород снижается на 20-25%.

Температура воспламенения водородных смесей выше, чем углеводородных, но для воспламенения первых требуется меньшее количество энергии. Водородовоздушные смеси отличаются высокой скоростью сгорания в двигателе, причем сгорание протекает практически при постоянном объеме, что ведет к резкому возрастанию давления (в 3 раза выше по сравнению с бензиновым эквивалентом). Однако на бедных и даже очень бедных смесях скорость горения водорода обеспечивает нормальную работу двигателя.

Водородовоздушные смеси обладают исключительно широким диапазоном горючести, что позволяет при любых изменениях нагрузки применять качественное регулирование. Низкий предел воспламенения обеспечивает работу водородного двигателя на всех скоростных режимах в широком диапазоне состава смеси, вследствие чего его КПД на частичных нагрузках увеличивается на 25-50%.

Для подачи водорода в двигатели внутреннего сгорания известны следующие способы: впрыск во впускной трубопровод; при помощи модификации карбюратора, аналогичной системам питания сжиженным и природным газами; индивидуальное дозирование водорода около впускного клапана; непосредственный впрыск под высоким давлением в камеру сгорания.

Для обеспечения устойчивой работы двигателя первый и второй способы могут применяться только при частичной рециркуляции отработавших газов, при помощи присадки к топливному заряду воды и добавки бензина.

Наилучшие результаты дает непосредственный впрыск водорода в камеру сгорания, при котором полностью исключаются обратные вспышки во впускном тракте, максимальная же мощность не только не уменьшается, но может быть повышена на 10-15%.

Запас топлива

Объемно-массовые характеристики различных систем хранения водорода приведены в табл. 2. Все они по габаритам и массе уступают бензину.


Из-за малого энергозапаса и значительного увеличения размеров и массы топливного бака газообразный водород не применяется. Не применяются на транспортных средствах и тяжелые баллоны высокого давления.

Жидкого водорода в криогенных емкостях, имеющих двойные стенки, пространство между которыми теплоизолировано.

Большой практический интерес представляет аккумулирование водорода при помощи металлогидридов. Некоторые металлы и сплавы, например ванадий, ниобий, железотитановый сплав (FeTi), марганцевоникелевый (Mg + 5% Ni) и другие, при определенных условиях могут соединяться с водородом. При этом образуются гидриды, содержащие большое количество водорода. Если к гидриду подводить тепло, он будет разлагаться, освобождая водорот. Восстановленные металлы и сплавы можно многократно использовать для соединения с водородом.

В гидридных системах для выделения водорода обычно используется тепло отработавших газов двигателя. Зарядка гидридного аккумулятора водородом производится под небольшим давлением с одновременным охлаждением проточной водой из водопровода. По термодинамическим свойствам и низкой стоимости наиболее подходящим компонентом является сплав FeTi.

Гидридный аккумулятор представляет собой пакет трубок (гидридных патронов) из нержавеющей стали, заполненных порошкообразным сплавом FeTi и заключенных в общую оболочку. В пространство между трубками пропускаются отработавшие газы двигателя или вода. Трубки с одной стороны объединены коллектором, который служит для хранения небольшого запаса водорода, необходимого для запуска двигателя и его работы на переходных режимах. По массе и объему гидридные аккумуляторы соизмеримы с системами хранения жидкого водорода. По энергоемкости они уступают бензину, но превосходят свинцовые электроаккумуляторы.

Гидридный способ хранения хорошо согласуется с режимами работы двигателя посредством автоматического регулирования расхода отработавших газов через гидридный аккумулятор. Гидридная система позволяет наиболее полно утилизовать тепловые потери с отработавшими газами и охлаждающей водой. На автомобиле «Шевроле Монте-Карло» применена опытная гидридно-криогенная система. В этой системе запуск двигателя производится на жидком водороде, а гидридный аккумулятор включается после прогрева двигателя, причем для подогрева гидрида используется вода из системы охлаждения.

В довоенной Германии в опытной гидридной системе, разработанной фирмой «Даймлер-Бенц», были применены два гидридных аккумулятора, один из которых - низкотемпературный - поглощает тепло из окружающей среды и работает как кондиционер, другой - нагревается охлаждающей жидкостью из системы охлаждения двигателя. Время, необходимое для зарядки гидридного аккумулятора, зависит от количества времени, необходимого для отвода тепла. При охлаждении водопроводной водой время полной заправки гидридного аккумулятора емкостью 65 л, содержащего 200 кг сплава FeTi и поглощающего 50 м3 водорода, составляет 45 мин, причем за первые 10 мин происходит 75%-ная заправка.

Преимущества водорода

Главными преимуществами водорода как топлива в настоящее время являются неограниченные запасы сырья и отсутствие или малое количество вредных веществ в отработавших газах.

Сырьевая база для получения водорода практически неограничена. Достаточно сказать, что во вселенной это самый распространенный элемент. В виде плазмы он составляет почти половину массы Солнца и большинства звезд. Газы межзвездной среды и газовые туманности также в основном состоят из водорода.

В земной коре содержание водорода составляет 1% по массе, а в воде - самом распространенном на Земле веществе - 11,19% по массе. Однако свободный водород встречается крайне редко и в минимальных количествах в вулканических и других природных газах.

Водород является уникальным топливом, которое добывается из воды и после сгорания вновь образует воду. Если в качестве окислителя применять кислород, то единственным продуктом сгорания будет дистиллированная вода. При использовании воздуха к воде добавляются окислы азота содержание которых зависит от коэффициента избытка воздуха.

При использовании водорода не требуются ядовитые свинцовые антидетонаторы.

Несмотря на отсутствие в водородном топливе углерода, в отработавших газах из-за выгорания углеводородных смазок, попадающих в камеру сгорания, может содержаться незначительное количество окиси углерода и углеводородов.

Фирмой «Дженерал Моторс» (США) в 1972 г. были проведены соревнования автомобилей на наиболее чистый выхлоп. В соревнованиях приняли участие аккумуляторные электромобили и 63 автомобиля, работавших на различных топливах, в том числе на газе - аммиаке, пропане. Первое место было присуждено конвертированному на водород автомобилю «Фольксваген », отработавшие газы которого оказались чище окружающего атмосферного воздуха, потребляемого двигателем.

При работе двигателей внутреннего сгорания на водороде вследствие значительно меньшего выделения твердых частиц и отсутствия органических кислот, образующихся при сгорании углеводородных топлив, увеличивается срок службы двигателя и сокращаются ремонтные расходы.

О недостатках

Газообразный водород обладает высокой диффузионной способностью - его коэффициент диффузии в воздухе более чем в 3 раза выше по сравнению с кислородом, двуокисью водорода и метаном.

Способность водорода проникать в толщу металлов, получившая название наводораживание, возрастает с повышением давления и температуры. Проникновение водорода в кристаллическую решетку большинства металлов на 4-6 мм при нагартовке снижается на 1,5-2 мм. Наводораживание алюминия, достигающее 15-30 мм, при нагартовке может быть снижено до 4-6 мм. Наводораживание большинства металлов практически полностью устраняется легированием хромом, молибденом, вольфрамом.

Углеродистые стали не пригодны для изготовления деталей, контактирующих с жидким водородом, так как становятся хрупкими при низких температурах, Для этих целей применяются хромоникелевые стали Х18Н10Т, ОХ18Н12Б, Х14Г14НЗТ, латуни Л-62, ЛС 69-1, ЛЖ МЦ 59-1-1, оловянофосфористая БР ОФ10-1, берилиевая БРБ2 и алюминиевые бронзы.

Криогенные (для низкотемпературных веществ) емкости для хранения жидкого водорода изготавливаются обычно из алюминиевых сплавов АМц, АМг, АМг-5В и др.

Смесь газообразного водорода с кислородом в широких пределах отличается склонностью к воспламеняемости и взрываемости. Поэтому закрытые помещения должны быть оборудованы детекторами, контролирующими его концентрацию в воздухе.

Высокая температура воспламенения и способность к быстрому рассеиванию в воздухе делают водород в открытых объемах по безопасности примерно равноценным природному газу.

Для определения взрывобезопасности при дорожно-транспортном происшествии жидкий водород из криогенной емкости проливали на землю, однако он мгновенно испарялся и не воспламенялся при попытках поджечь.

В США автомобиль «Кадиллак Эльдорадо», переоборудованный на водородное топливо, подвергался следующим испытаниям. В полностью заправленную гидридную емкость с водородом стреляли из винтовки бронебойными пулями. При этом взрыва не происходило, а бензобак при аналогичном испытании взрывался.

Таким образом, серьезные недостатки водорода - высокая диффузионная способность и широкая область воспламеняемости и взрываемости водородокислородной газовой смеси уже не являются причинами, препятствующими его применению на транспорте.

Перспективы

Как топливо водород уже применяется в ракетной технике. В настоящее время исследуются возможности его применения в авиации и на автомобильном транспорте. Уже известно, каким должен быть оптимальный водородный двигатель. Он должен иметь: степень сжатия 10-12, частоту вращения коленвала - не менее 3000 об/мин внутреннюю систему смесеобразования и работать при коэффициенте избытка воздуха α≥1,5. Но для реализации. такого двигателя нужно улучшить смесеобразование в цилиндре двигателя и выдать надежные рекомендации по конструированию.

Ученые прогнозируют начало широкого применения водородных двигателей на автомобилях не раньше 2000 г. До этого времени возможно применение добавок водорода к бензину; это позволит улучшить экономичность и снизить количество вредных выбросов в окружающую среду.

Представляет интерес перевод на водород роторно-поршневого двигателя, так как он не имеет картера и, следовательно, не взрывоопасен.

В настоящее время водород производят из природного газа. Использовать такой водород в качестве топлива невыгодно, дешевле сжигать в двигателях газ. Получение водорода разложением воды также экономически невыгодно из-за больших затрат энергии на расщепление молекулы воды Однако проводятся исследования и в этом направлении. Уже есть экспериментальные автомобили, снабженные собственной электролизной установкой, которая может подключаться к общей электросети; вырабатываемый водород накапливается в гидридном аккумуляторе.

На сегодняшний день стоимость электролитического водорода в 2,5 раза выше, чем получаемого из природного газа. Ученые объясняют это техническим несовершенством электролизеров и считают, что их КПД может быть увеличен в скором времени до 70-80%, в частности, за счет применения высокотемпературной технологии. По существующей технологии итоговый КПД электролитического производства водорода не превышает 30%.

Для прямого термического разложения воды требуется высокая температура порядка 5000 °С. Поэтому прямое разложение воды пока не осуществимо даже в термоядерном реакторе - трудно найти материалы, способные работать при такой температуре. Японским ученым Т. Накимурой для солнечных печей предложен двухступенчатый цикл разложения воды, не требующий столь высоких температур. Может быть, придет время, когда по двухступенчатому циклу водород будет вырабатываться гелиоводородными станциями, расположенными в океане, и ядерно-водородными станциями, вырабатывающими водорода больше, чем электроэнергии.

Как и природный газ, водород можно транспортировать по трубопроводам. Вследствие меньшей плотности и вязкости по одному и тому же трубопроводу при одинаковом давлении водорода можно перекачать в 2,7 раза больше, чем газа, однако затраты на транспортировку будут выше. Расходы энергии на транспортировку водорода по трубопроводам составят приблизительно 1% на 1000 кгс, что недостижимо для линий электропередач.

Водород можно хранить в газгольдерах с жидким затвором и в резервуарах. Во Франции уже есть опыт хранения под землей газа, содержащего 50% водорода. Жидкий водород можно хранить в криогенных емкостях, в гидридах металлов и в растворах.

Гидриды могут быть нечувствительны к загрязняющим примесям и способны селективно поглощать водород из газовой смеси. Это открывает возможность заправляться в ночное время от бытовой газовой сети, питаемой продуктами газификации угля.

Литература

  • 1. Владимиров А. Топливо больших скоростей. - Химия и жизнь. 1974, №12, с. 47-50.
  • 2. Воронов Г. Термоядерный реактор - источник водородного топлива. - Химия и жизнь, 1979, № 8, с. 17.
  • 3. Использование альтернативных топлив на автомобильном транспорте за рубежом. Обзорная информация. Серия 5. Экономика, управление и организация производства. ЦБНТИ Минавтотранса РСФСР, 1S82, вып. 2.
  • 4. Струминский В. В. Водород как топливо. - За рулем, 1980, Ко 8, с. 10-11.
  • 5. Xмыров В. И., Лавров Б. Е. Водородный двигатель. Алма-Ата, Наука, 1981.

Примечания

1. Редакция продолжает публикацию серии статей, посвященных перспективным видам топлива и проблемам экономии горючего (см. «КЯ» , ).