Как сделать реально работающий магнитный двигатель. Магнитный вечный двигатель

Магнитные двигатели - это автономные устройства, которые способны вырабатывать электроэнергию. На сегодняшний день существуют различные модификации, все они отличаются между собой. Основное преимущество двигателей заключается в экономии топлива. Однако недостатки в данной ситуации также следует учитывать. В первую очередь важно отметить, что магнитное поле способно оказывать негативное влияние на человека.

Также проблема заключается в том, что для различных модификаций необходимо создать определенные условия для эксплуатации. Трудности еще могут возникнуть при подключении мотора к устройству. Чтобы разобраться в том, как сделать в домашних условиях вечный двигатель на магнитах, необходимо изучить его конструкцию.

Схема простого двигателя

Стандартный вечный двигатель на магнитах (схема показана выше) включает в себя диск, кожух, а также металлический обтекатель. Катушка во многих моделях используется электрическая. Магниты крепятся на специальных проводниках. Положительная обратная связь обеспечивается за счет работы преобразователя. Дополнительно в некоторых конструкциях встроены ревербераторы для усиления магнитного поля.

Модель на подвеске

Чтобы сделать с подвеской вечный двигатель на неодимовых магнитах своими руками, необходимо использовать два диска. Кожух для них лучше всего подбирать медный. При этом края необходимо тщательно заточить. Далее, важно подсоединить контакты. Всего магнитов на внешней стороне диска должно находиться четыре. Слой диэлектрика обязан проходить вдоль обтекателя. Чтобы исключить возможность появления отрицательной энергии, используются инерционные преобразователи.

В данном случае положительно заряженные ионы обязаны двигаться вдоль кожуха. У некоторых проблема часто заключается в малой холодной сфере. В такой ситуации магниты следует использовать довольно мощные. В конечном итоге выход подогретого агента должен осуществляться через обтекатель. Подвеска устанавливается между дисками на небольшом расстоянии. Источником самозаряда в устройстве является преобразователь.

Как сделать двигатель на кулере?

Как складывается вечный двигатель на постоянных магнитах своими руками? С использованием обычного кулера, который можно взять из персонального компьютера. Диски в данном случае важно подобрать небольшого диаметра. Кожух при этом закрепляется на их внешней стороне. Раму для конструкции можно изготовить из любой коробки. Обтекатели чаше всего используются толщиной 2,2 мм. Выход подогретого агента в данной ситуации осуществляется через преобразователь.

Высота кулоновских сил зависит исключительно от заряженности ионов. Чтобы повысить параметр охлажденного агента, многие специалисты советуют использовать изолированную обмотку. Проводники для магнитов целесообразнее подбирать медные. Толщина токопроводящего слоя зависит от типа обтекателя. Проблема данных двигателей часто заключается в малой отрицательной заряженности. В данном случае диски для модели лучше всего взять большего диаметра.

Модификация Перендева

При помощи статора большой мощности можно сложить данный вечный двигатель на магнитах своими руками (схема показа ниже). Сила электромагнитного поля в этой ситуации зависит от многих факторов. В первую очередь следует учитывать толщину обтекателя. Также важно заранее подобрать небольшой кожух. Пластину для двигателя необходимо использовать толщиной не более 2,4 мм. Преобразователь на это устройство устанавливается низкочастотный.

Дополнительно следует учитывать, что ротор подбирается только последовательного типа. Контакты на нем установлены чаще всего алюминиевые. Пластины для магнитов необходимо предварительно прочистить. Сила резонансных частот будет зависеть исключительно от мощности преобразователя.

Чтобы усилить положительную обратную связь, многие специалисты рекомендуют воспользоваться усилителем промежуточной частоты. Устанавливается он на внешнюю сторону пластины возле преобразователя. Для усиления волновой индукции применяются спицы небольшого диаметра, которые закрепляются на диске. Отклонение фактической индуктивности происходит при вращении пластины.

Устройство с линейным ротором

Линейные роторы обладают довольно высоким образцовым напряжением. Пластину для них целесообразнее подбирать большую. Стабилизация проводящего направления может осуществляться за счет установки проводника (чертежи вечного двигателя на магнитах показаны ниже). Спицы для диска следует использовать стальные. На инерционный усилитель желательно устанавливать преобразователь.

Усилить магнитное поле в данном случае можно только за счет увеличения количества магнитов на сетке. В среднем их там устанавливается около шести. В этой ситуации многое зависит от скорости аберрации первого порядка. Если наблюдается в начале работы некоторая прерывистость вращения диска, то необходимо заменить конденсатор и установить новую модель с конвекционным элементом.

Сборка двигателя Шконлина

Вечный двигатель данного типа собрать довольно сложно. В первую очередь следует заготовить четыре мощных магнита. Патина для данного устройства подбирается металлическая, а диаметр ее должен составлять 12 см. Далее необходимо использовать проводники для закрепления магнитов. Перед применением их необходимо полностью обезжирить. С этой целью можно воспользоваться этиловым спиртом.

Следующим шагом пластины устанавливаются на специальную подвеску. Лучше всего ее подбирать с затупленным концом. Некоторые в данном случае используют кронштейны с подшипниками для увеличения скорости вращения. Сеточный тетрод в вечный двигатель на мощных магнитах крепится напрямую через усилитель. Увеличить мощность магнитного поля можно за счет установки преобразователя. Ротор в этой ситуации необходим только конвекционный. Термооптические свойства у данного типа довольно хорошие. Справиться с волновой аберрацией в устройстве позволяет усилитель.

Антигравитационная модификация двигателя

Антигравитационный вечный двигатель на магнитах является наиболее сложным устройством среди всех представленных выше. Всего пластин в нем используется четыре. На внешней их стороне закрепляются диски, на которых находятся магниты. Все устройство необходимо уложить в корпус для того, чтобы выровнять пластины. Далее важно закрепить на модели проводник. Подсоединение к мотору осуществляется через него. Волновая индукция в данном случае обеспечивается за счет нехроматического резистора.

Преобразователи у этого устройства используются исключительно низкого напряжения. Скорость фазового искажения может довольно сильно меняться. Если диски вращаются прерывисто, необходимо уменьшить диаметр пластин. В данном случае отсоединять проводники не обязательно. После установки преобразователя к внешней стороне диска прикладывается обмотка.

Модель Лоренца

Чтобы сделать вечный двигатель на магнитах Лоренца, необходимо использовать пять пластин. Расположить их следует параллельно друг другу. Затем по краям к ним припаиваются проводники. Магниты в данном случае крепятся на внешней стороне. Чтобы диск свободно вращался, для него необходимо установить подвеску. Далее к краям оси прикрепляется катушка.

Управляющий тиристор в данном случае устанавливается на ней. Чтобы увеличить силу магнитного поля, используется преобразователь. Вход охлажденного агента происходит вдоль кожуха. Объем сферы диэлектрика зависит от плотности диска. Параметр кулоновской силы, в свою очередь, тесно связан с температурой окружающей среды. В последнюю очередь важно установить статор над обмоткой.

Как сделать двигатель Тесла?

Работа данного двигателя основывается на изменении положения магнитов. Происходит это за счет вращения диска. Для того чтобы увеличить кулоновскую силу, многие специалисты рекомендуют пользоваться медными проводниками. В таком случае вокруг магнитов образуется инерционное поле. Нехроматические резисторы в данной ситуации используются довольно редко. Преобразователь в устройстве крепится над обтекателем и соединяется с усилителем. Если движения диска в конечном счете являются прерывистыми, значит, необходимо катушку использовать более мощную. Проблемы с волновой индукцией, в свою очередь, решаются за счет установки дополнительной пары магнитов.

Реактивная модификация двигателя

Для того чтобы сложить реактивный вечный двигатель на магнитах, необходимо использовать две катушки индуктивности. Пластины в данном случае следует подбирать диаметром около 13 см. Далее необходимо использовать преобразователь низкой частоты. Все это в конечном счете значительно увеличит силу магнитного поля. Усилители в двигателях устанавливаются довольно редко. Аберрация первого порядка происходит за счет использования стабилитронов. Для того чтобы надежно закрепить пластину, необходимо использовать клей.

Перед установкой магнитов контакты тщательно зачищаются. Генератор для данного устройства необходимо подбирать индивидуально. В данном случае многое зависит от параметра порогового напряжения. Если устанавливать конденсаторы перекрытия, то они значительно снижают порог чувствительности. Таким образом, ускорение пластины может быть прерывистым. Диски для указанного устройства необходимо по краям зачищать.

Модель при помощи генератора на 12 В

Применение генератора на 12 В позволяет довольно просто собрать вечный двигатель на неодимовых магнитах. Преобразователь для него необходимо использовать хроматический. Сила магнитного поля в данном случае зависит от массы пластин. Для увеличения фактической индуктивности многие специалисты советуют применять специальные операционные усилители.

Подсоединяются они напрямую к преобразователям. Пластину необходимо использовать только с медными проводниками. Проблемы с волновой индукцией в данной ситуации решить довольно сложно. Как правило, проблема чаще всего заключается в слабом скольжении диска. Некоторые в сложившейся ситуации советуют устанавливать подшипники в вечный двигатель на неодимовых магнитах, которые крепятся к подвеске. Однако сделать это порой невозможно.

Использование генератора на 20 В

Сделать при помощи генератора на 20 В вечный двигатель на магнитах своими руками можно, имея мощную катушку индуктивности. Пластины для данного устройства целесообразнее подбирать небольшого диаметра. При этом диск важно надежно закрепить на спицы. Чтобы увеличить силу магнитного поля, многие специалисты рекомендуют устанавливать в вечный двигатель на постоянных магнитах низкочастотные преобразователи.

В этой ситуации можно надеяться на быстрый выход охлажденного агента. Дополнительно следует отметить, что добиться большой кулоновской силы у многих получается за счет установки плотного обтекателя. Температура окружающей среды на скорость вращения влияет, однако незначительно. Магниты на пластине следует устанавливать на расстоянии 2 см от края. Спицы в данном случае необходимо крепить с промежутком 1,1 см.

Все это в конечном счете позволит уменьшить отрицательное сопротивление. Операционные усилители в двигателях устанавливаются довольно часто. Однако для них необходимо подбирать отдельные проводники. Лучше всего их устанавливать от преобразователя. Чтобы не произошла волновая индукция, прокладки следует использовать прорезиненные.

Применение низкочастотных преобразователей

Низкочастотные преобразователи в двигателях способны эксплуатироваться только вместе с хроматическими резисторами. Приобрести их можно в любом магазине электроники. Пластину для них следует подбирать толщиной не более 1,2 мм. Также важно учитывать, что низкочастотные преобразователи довольно требовательны к температуре окружающей среды.

Увеличить кулоновские силы в сложившейся ситуации получится за счет установки стабилитрона. Крепить его следует за диском, чтобы не произошла волновая индукция. Дополнительно важно позаботиться об изоляции преобразователя. В некоторых случаях он приводит к инерционным сбоям. Все это происходит за счет изменения внешней холодной среды.

В истории попыток изобрести «вечный» двигатель магнит сыграл не последнюю роль. Неудачники-изобретатели на разные лады старались использовать магнит, чтобы устроить механизм, который вечно двигался бы сам собой. Вот один из проектов подобного «механизма» (описанный в XVII веке англичанином Джоном Вилькенсом, епископом в Честере).


Мнимый вечный двигатель.

Сильный магнит А помещается на колонке. К ней прислонены два наклонных желоба М и N , один под другим, причем верхний М имеет небольшое отверстие С в верхней части, а нижний N изогнут. Если, – рассуждал изобретатель, – на верхний желоб положить небольшой железный шарик В , то вследствие притяжения магнитом А шарик покатится вверх; однако, дойдя до отверстия, он провалится в нижний желоб N , покатится по нему вниз, взбежит по закруглению D этого желоба и попадет на верхний желоб М ; отсюда, притягиваемый магнитом, он снова покатится вверх, снова провалится через отверстие, вновь покатится вниз и опять очутится на верхнем желобе, чтобы начать движение сначала. Таким образом, шарик безостановочно будет бегать взад и вперед, осуществляя «вечное движение».

В чем абсурдность этого изобретения? Указать ее не трудно. Почему изобретатель думал, что шарик, скатившись по желобу N до его нижнего конца, будет еще обладать скоростью, достаточной для поднятия его вверх по закруглению D ? Так было бы, если бы шарик катился под действием одной лишь силы тяжести: тогда он катился бы ускоренно. Но наш шарик находится под действием двух сил: тяжести и магнитного притяжения. Последнее по предположению настолько значительно, что может заставить шарик подняться от положения В до С . Поэтому по желобу N шарик будет скатываться не ускоренно, а замедленно, и если даже достигнет нижнего конца, то во всяком случае не накопит скорости, необходимой для поднятия по закруглению D .

Описанный проект много раз вновь всплывал впоследствии во всевозможных видоизменениях. Один из подобных проектов был даже, как ни странно, патентован в Германии в 1878 г., т. е. тридцать лет спустя после провозглашения закона сохранения энергии! Изобретатель так замаскировал нелепую основную идею своего «вечного магнитного двигателя», что ввел в заблуждение техническую комиссию, выдающую патенты. И хотя, согласно уставу, патенты на изобретения, идея которых противоречит законам природы, не должны выдаваться, изобретение на этот раз было формально запатентовано. Вероятно, счастливый обладатель этого единственного в своем роде патента скоро разочаровался в своем детище, так как уже через два года перестал вносить пошлину, и курьезный патент потерял законную силу; «изобретение» стало всеобщим достоянием. Однако оно никому не нужно.

Эта статья посвящена рассмотрению моторов, работающих на постоянных магнитах, с помощью которых предпринимаются попытки получить КПД>1 путем изменения конфигурации схемы соединений, схем электронных переключателей и магнитных конфигураций. Представлено несколько конструкций, которые можно рассматривать в качестве традиционных, а также несколько конструкций, которые представляются перспективными. Надеемся, что эта статья поможет читателю разобраться в сущности данных устройств перед началом инвестирования подобных изобретений или получением инвестиций на их производство. Информацию о патентах США можно найти на сайте http://www.uspto.gov .

Введение

Статья, посвященная моторам, работающим на постоянных магнитах, не может считаться полной без предварительного обзора основных конструкций, которые представлены на современном рынке. Промышленные моторы, работающие на постоянных магнитах, обязательно являются двигателями постоянного тока, так как используемые в них магниты постоянно поляризуются перед сборкой. Многие щеточные моторы, работающие на постоянных магнитах, подключаются к бесщеточным электродвигателям, что способно снизить силу трения и изнашиваемость механизма. Бесщеточные моторы включают в себя электронную коммутацию или шаговые электромоторы. Шаговый электромотор, часто применяемый в автомобильной промышленности, содержит более длительный рабочий вращающий момент на единицу объема, по сравнению с другими электромоторами. Однако обычно скорость подобных моторов значительно ниже. Конструкция электронного переключателя может быть использована в переключаемом реактивном синхронном электродвигателе. В наружном статоре подобного электродвигателя вместо дорогостоящих постоянных магнитов используется мягкий металл, в результате чего получается внутренний постоянный электромагнитный ротор.

По закону Фарадея, вращающий момент в основном возникает из-за тока в обкладках бесщеточных двигателей. В идеальном моторе, работающем на постоянных магнитах, линейный вращающий момент противопоставлен кривой частоты вращения. В моторе на постоянных магнитах конструкции как внешнего, так и внутреннего ротора являются стандартными.

Чтобы обратить внимание на многие проблемы, связанные с рассматриваемыми моторами, в справочнике говорится о существовании «очень важной взаимосвязи между моментом вращения и обратной электродвижущей силой (эдс), чему иногда не придается значения». Это явление связано с электродвижущей силой (эдс), которая создается путем применения изменяющегося магнитного поля (dB/dt). Пользуясь технической терминологией, можно сказать, что «постоянная вращающего момента» (N-m/amp) равняется «постоянной обратной эдс» (V/рад/сек). Напряжение на зажимах двигателя равняется разности обратной эдс и активного (омического) падения напряжения, что обусловлено наличием внутреннего сопротивления. (Например, V=8,3 V, обратная эдс=7,5V, активное (омическое) падение напряжения=0,8V). Этот физический принцип, заставляет нас обратиться к закону Ленца, который был открыт в 1834г., через три года после того, как Фарадеем был изобретен униполярный генератор. Противоречивая структура закона Ленца, также как используемое в нем понятие «обратной эдс», являются частью так называемого физического закона Фарадея, на основе которого действует вращающийся электропривод. Обратная эдс - это реакция переменного тока в цепи. Другими словами, изменяющееся магнитное поле естественно порождает обратную эдс, так как они эквивалентны.

Таким образом, прежде чем приступать к изготовлению подобных конструкций, необходимо тщательно проанализировать закон Фарадея. Многие научные статьи, такие как «Закон Фарадея - Количественные эксперименты» способны убедить экспериментатора, занимающегося новой энергетикой, в том, что изменение, происходящее в потоке и вызывающее обратную электродвижущую силу (эдс), по существу равно самой обратной эдс. Этого нельзя избежать при получении избыточной энергии, до тех пор, пока количество изменений магнитного потока во времени остается непостоянным. Это две стороны одной медали. Входная энергия, вырабатываемая в двигателе, конструкция которого содержит катушку индуктивности, естественным образом будет равна выходной энергии. Кроме того, по отношению к «электрической индукции» изменяемый поток «индуцирует» обратную эдс.

Двигатели с переключаемым магнитным сопротивлением

При исследовании альтернативного метода индуцированного движения в преобразователе постоянного магнитного движения Эклина (патент № 3,879,622) используются вращающиеся клапаны для переменного экранирования полюсов подковообразного магнита. В патенте Эклина №4,567,407 («Экранирующий унифицированный мотор- генератор переменного тока, обладающий постоянной обкладкой и полем») повторно высказывается идея о переключении магнитного поля путем «переключения магнитного потока». Эта идея является общей для моторов подобного рода. В качестве иллюстрации этого принципа Эклин приводит следующую мысль: «Роторы большинства современных генераторов отталкиваются по мере их приближения к статору и снова притягиваются статором, как только минуют его, в соответствии с законом Ленца. Таким образом, большинство роторов сталкиваются с постоянными неконсервативными рабочими силами, и поэтому современные генераторы требуют наличия постоянного входного вращающего момента». Однако «стальной ротор унифицированного генератора переменного тока с переключением потока фактически способствует входному вращающему моменту для половины каждого поворота, так как ротор всегда притягивается, но никогда не отталкивается. Подобная конструкция позволяет некоторой части тока, подведенного к обкладкам двигателя, подавать питание через сплошную линию магнитной индукции к выходным обмоткам переменного тока…» К сожалению, Эклину пока не удалось сконструировать самозапускающуюся машину.

В связи с рассматриваемой проблемой стоит упомянуть патент Ричардсона №4,077,001, в котором раскрывается сущность движения якоря с низким магнитным сопротивлением как в контакте, так и вне его на концах магнита (стр.8, строка 35). Наконец, можно привести патент Монро №3,670,189, где рассматривается схожий принцип, в котором, однако, пропускание магнитного потока игается с помощью прохождения полюсов ротора между постоянными магнитами полюсов статора. Требование 1, заявленное в этом патенте, по своему объему и детальности кажется удовлетворительным для доказательства патентоспособности, однако, его эффективность остается под вопросом.

Кажется неправдоподобным, что, являясь замкнутой системой, мотор с переключаемым магнитным сопротивлением способен стать самозапускающимся. Многие примеры доказывают, что небольшой электромагнит необходим для приведения работы якоря в синхронизированный ритм. Магнитный двигатель Ванкеля в своих общих чертах может быть приведен для сравнения с представленным типом изобретения. Патент Джаффе №3,567,979 также может использоваться для сравнения. Патент Минато №5,594,289, подобный магнитному двигателю Ванкеля, является достаточно интригующим для многих исследователей.

Изобретения, подобные мотору Ньюмана (патентная заявка США №06/179,474), позволили обнаружить тот факт, что нелинейный эффект, такой как импульсное напряжение, благоприятен для преодоления эффекта сохранения силы Лоренца по закону Ленца. Кроме того, сходным является механический аналог инерциального двигателя Торнсона, в котором используется нелинейная ударная сила для передачи импульса вдоль оси перпендикулярно плоскости вращения. Магнитное поле содержит момент импульса, который становится очевидным при определенных условиях, например, при парадоксе диска Фейнмана, где он сохраняется. Импульсный способ может быть выгодно использован в данном моторе с магнитным переключаемым сопротивлением, при условии, если переключение поля будет производиться достаточно быстро при стремительном нарастания мощности. Тем не менее, необходимы дополнительные исследования по этой проблеме.

Наиболее удачным вариантом переключаемого реактивного электромотора является устройство Гарольда Аспдена (патент №4,975,608), который оптимизирует пропускную способность входного устройства катушки и работу над изломом B-H кривой. Переключаемые реактивные двигатели также объясняются в .

Мотор Адамса получил широкое признание. Например, в журнале Nexus был опубликован одобрительный отзыв, в котором это изобретение называется первым из когда-либо наблюдавшихся двигателей свободной энергии. Однако работа этой машины может быть полностью объяснена законом Фарадея. Генерация импульсов в смежных катушках, приводящих в движение намагниченный ротор, фактически происходит по той же схеме, что и в стандартном переключаемом реактивном моторе.

Замедление, о котором Адамс говорит в одном из своих Интернет сообщений, посвященных обсуждению изобретения, может объясняться экспонентным напряжением (L di/dt) обратной эдс. Одним из последних добавлений к этой категории изобретений, которые подтверждают успешность работы мотора Адамса, является международная патентная заявка №00/28656, присужденная в мае 2000г. изобретателям Бритс и Кристи, (генератор LUTEC). Простота этого двигателя легко объясняется наличием переключаемых катушек и постоянного магнита на роторе. Кроме того, в патенте содержится пояснение о том, что «постоянный ток, подводимый к катушкам статора, производит силу магнитного отталкивания и является единственным током, подводимым снаружи ко всей системе для создания совокупного движения…» Хорошо известным является тот факт, что все моторы работают по этому принципу. На странице 21 указанного патента содержится объяснение конструкции, где изобретатели выражают желание «максимизировать воздействие обратной эдс, которое способствует поддержанию вращения ротора/якоря электромагнита в одном направлении». Работа всех моторов данной категории с переключаемым полем направлена на получение этого эффекта. Рисунок 4А, представленный в патенте Бритс и Кристи, раскрывает источники напряжения «VA, VB и VC». Затем на странице 10 приводится следующее утверждение: «В это время ток подводится от источника питания VA и продолжает подводиться, пока щетка 18 не перестает взаимодействовать с контактами с 14 по 17». Нет ничего необычного в том, что эту конструкцию можно сравнить с более сложными попытками, ранее упомянутыми в настоящей статье. Все эти моторы требуют наличия электрического источника питания, и ни один из них не является самозапускающимся.

Подтверждает заявление о том, что была получена свободна энергия то, что работающая катушка (в импульсном режиме) при прохождении мимо постоянного магнитного поля (магнита) не использует для создания тока аккумуляторную батарейку. Вместо этого было предложено использовать проводники Вейганда , а это вызовет колоссальный Баркгаузеновский скачок при выравнивании магнитного домена, а импульс приобретет очень четкую форму. Если применить к катушке проводник Вейганда, то он создаст для нее достаточно большой импульс в несколько вольт, когда она будет проходить изменяющееся внешнее магнитное поле порога определенной высоты. Таким образом, для этого импульсного генератора входная электрическая энергия не нужна вовсе.

Тороидальный мотор

По сравнению с существующими на современном рынке двигателями, необычную конструкцию тороидального мотора можно сравнить с устройством, описанным в патенте Лангли (№4,547,713). Данный мотор содержит двухполюсный ротор, расположенный в центре тороида. Если выбрана однополюсная конструкция (например, с северными полюсами на каждом конце ротора), то полученное устройство будет напоминать радиальное магнитное поле для ротора, использованного в патенте Ван Гила (№5,600,189). В патенте Брауна №4,438,362, права на который принадлежат компании Ротрон, для изготовления ротора в тороидальном разряднике используются разнообразные намагничивающиеся сегменты. Наиболее ярким примером вращающегося тороидального мотора является устройство, описанное в патенте Юинга (№5,625,241), который также напоминает уже упомянутое изобретение Лангли. На основе процесса магнитного отталкивания в изобретении Юинга используется поворотный механизм с микропроцессорным управлением в основном для того, чтобы воспользоваться преимуществом, предоставляемым законом Ленца, а также с тем, чтобы преодолеть обратную эдс. Демонстрацию работы изобретения Юинга можно увидеть на коммерческом видео «Free Energy: The Race to Zero Point». Является ли это изобретение наиболее высокоэффективным из всех двигателей, в настоящее время представленных на рынке, остается под вопросом. Как утверждается в патенте: «функционирование устройства в качестве двигателя также возможно при использовании импульсного источника постоянного тока». Конструкция также содержит программируемое логическое устройство управления и схему управления мощностью, которые по предположению изобретателей должны сделать его более эффективным, чем 100%.

Даже если модели мотора докажут свою эффективность в получении вращающегося момента или преобразования силы, то из-за движущихся внутри них магнитов эти устройства могут остаться без практического применения. Коммерческая реализация этих типов моторов может быть невыгодной, так как на современном рынке существует множество конкурентоспособных конструкций.

Линейные моторы

Тема линейных индукционных моторов широко освещена в литературе. В издании объясняется, что эти моторы являются подобными стандартным асинхронным двигателям, в которых ротор и статор демонтированы и помещены вне плоскости. Автор книги «Движение без колес» Лэйтвайт известен созданием монорельсовых конструкций, предназначенных для поездов Англии и разработанных на основе линейных асинхронных моторов.

Патент Хартмана №4,215,330 представляет собой пример одного из устройств, в котором с помощью линейного мотора достигнуто перемещение стального шара вверх по намагниченной плоскости приблизительно на 10 уровней. Другое изобретение из этой категории описано в патенте Джонсона (№5,402,021), в котором использован постоянный дуговой магнит, установленный на четырехколесной тележке. Этот магнит подвергается воздействию со стороны параллельного конвейера с зафиксированными переменными магнитами. Еще одним не менее удивительным изобретением является устройство, описанное в другом патенте Джонсона (№4,877,983) и успешная работа которого наблюдалась в замкнутом контуре в течение нескольких часов. Необходимо отметить, что генераторная катушка может быть размещена в непосредственной близости от движущегося элемента, так чтобы каждый его пробег сопровождался электрическим импульсом для зарядки батареи. Устройство Хартмана также может быть сконструировано как круговой конвейер, что позволяет продемонстрировать вечное движение первого порядка.

Патент Хартмана основывается на том же принципе, что и известный эксперимент с электронным спином, который в физике принято называть экспериментом Стерна-Герлаха. В неоднородном магнитном поле воздействие на некий объект с помощью магнитного момента вращения происходит за счет градиента потенциальной энергии. В любом учебнике физики можно найти указание на то, что этот тип поля, сильный на одном конце и слабый на другом, способствует возникновению однонаправленной силы, обращенной в сторону магнитного объекта и равного dB/dx. Таким образом, сила, толкающая шар по намагниченной плоскости на 10 уровней вверх в направлении, полностью согласуется с законами физики.

Используя промышленые качественные магниты (включая сверхпроводящие магниты, при температуре окружающей среды, разработка которых в настоящее время находится на завершающей стадии), будет возможна демонстрация перевозки грузов, обладающих статочно большой массой, без затрат электричества на техническое обслуживание. Сверхпроводящие магниты обладают необычной способностью годами сохранять исходное намагниченное поле, не требуя периодической подачи питания для восстановления напряженности исходного поля. Примеры того положения, которое сложилось на современном рынке в области разработки сверхпроводниковых магнитов, приведены в патенте Охниши №5,350,958 (недостаток мощности, производимой криогенной техникой и системами освещения), а также в переизданной статье, посвященной магнитной левитации .

Статический электромагнитный момент импульса

В провокационном эксперименте с использованием цилиндрического конденсатора исследователи Грэм и Лахоз развивают идею, опубликованную Эйнштейном и Лаубом в 1908 году, в которой говорится о необходимости наличия дополнительного периода времени для сохранения принципа действия и противодействия. Цитируемая исследователями статья была переведена и опубликована в моей книге , представленной ниже. Грэм и Лахоз подчеркивают, что существует «реальная плотность момента импульса», и предлагают способ наблюдения этого энергетического эффекта в постоянных магнитах и электретах.

Эта работа является вдохновляющим и впечатляющим исследованием, использующим данные, основанные на работах Эйнштейна и Минковского. Это исследование может иметь непосредственное применение при создании, как униполярного генератора, так и магнитного преобразователя энергии, описанного ниже. Данная возможность обусловлена тем, что оба устройства обладают аксиальным магнитным и радиальным электрическим полями, подобно цилиндрическому конденсатору, использовавшемуся в эксперименте Грэма и Лахоза.

Униполярный мотор

В книге подробно описываются экспериментальные исследования и история изобретения, сделанного Фарадеем. Кроме того, уделяется внимание тому вкладу, которое привнес в данное исследование Тесла. Однако в недавнем времени был предложен ряд новых конструкторских решений униполярного двигателя с несколькими роторами, который можно сравнить с изобретением Дж. Р.Р. Серла.

Возобновление интереса к устройству Серла также должно привлечь внимание к униполярным двигателям. Предварительный анализ позволяет обнаружить существование двух различных явлений, происходящих одновременно в униполярном двигателе. Одно из явлений можно назвать эффектом «вращения» (№1), а второй - эффектом «свертывания» (№2). Первый эффект может быть представлен в качестве намагниченных сегментов некоего воображаемого сплошного кольца, которые вращаются вокруг общего центра. Примерные варианты конструкций, позволяющих произвести сегментацию ротора униполярного генератора, представлены в .

С учетом предложенной модели может быть рассчитан эффект №1 для силовых магнитов Тесла, которые намагничиваются по оси и распологаются вблизи одиночного кольца с диаметром 1 метр. При этом эдс, образующаяся вдоль каждого ролика, составляет более 2V (электрическое поле, направленное радиально из внешнего диаметра роликов к внешнему диаметру смежного кольца) при частоте вращения роликов 500 оборотов в минуту. Стоит отметить, что эффект №1 не зависит от вращения магнита. Магнитное поле в униполярном генераторе связано с пространством, а не с магнитом, поэтому вращение не будет оказывать влияния на эффект силы Лоренца, имеющий место при работе этого универсального униполярного генератора .

Эффект №2, имеющий место внутри каждого роликового магнита, описан в , где каждый ролик рассматривается как небольшой униполярный генератор. Этот эффект признается чем-то более слабым, так как электричество вырабатывается от центра каждого ролика к периферии. Эта конструкция напоминает униполярный генератор Тесла , в котором вращающийся приводной ремень связывает внешний край кольцевого магнита. При вращении роликов, имеющих диаметр, приблизительно равный одной десятой метра, которое осуществляется вокруг кольца с диаметром 1 метр и при отсутствии буксировки роликов, вырабатываемое напряжение будет равно 0,5 Вольт. Конструкция кольцевого магнетика, предложенная Серлом, будет способствовать усилению B-поля ролика.

Необходимо отметить, что принцип наложения применим к обоим этим эффектам. Эффект №1 представляет собой однородное электронное поле, существующее по диаметру ролика. Эффект №2 - это радиальный эффект, что уже было отмечено выше . Однако фактически только эдс, действующая в сегменте ролика между двумя контактами, то есть между центром ролика и его краем, который соприкасается с кольцом, будет способствовать возникновению электрического тока в любой внешней цепи. Понимание данного факта означает, что эффективное напряжение, возникающее при эффекте №1 составит половину существующей эдс, или чуть больше 1 Вольт, что примерно в два раза больше, чем вырабатываемое при эффекте №2. При применении наложения в ограниченном пространстве мы также обнаружим, что два эффекта противостоят друг другу, и две эдс должны вычитаться. Результатом этого анализа является то, что примерно 0,5 Вольт регулируемой эдс будет представлено для выработки электричества в отдельной установке, содержащей ролики и кольцо с диаметром 1 метр. При получении тока возникает эффект шарикоподшипникового двигателя , который фактически толкает ролики, допуская приобретение роликовыми магнитами значительной электропроводности. (Автор благодарит за данное замечание Пола Ла Виолетте).

В связанной с данной темой работе исследователями Рощиным и Годиным были опубликованы результаты экспериментов с изобретенным ими однокольцевым устройством, названным «Преобразователем магнитной энергии» и имеющим вращающиеся магниты на подшипниках. Устройство было сконструировано как усовершенствование изобретения Серла. Анализ автора этой статьи, приведенный выше, не зависит от того, какие металлы использовались для изготовления колец в конструкции Рощина и Година. Их открытия достаточно убедительны и детальны, что позволит возобновить интерес многих исследователей к этому типу моторов.

Заключение

Итак, существует несколько моторов на постоянных магнитах, которые могут способствовать появлению вечного двигателя с кпд, превышающим 100%. Естественно, необходимо принимать во внимание концепции сохранения энергии, а также должен исследоваться источник предполагаемой дополнительной энергии. Если градиенты постоянного магнитного поля претендуют на появление однонаправленной силы, как это утверждается в учебниках, то наступит момент, когда они будут приняты для выработки полезной энергии. Конфигурация роликового магнита, который в настоящее время принято называть «преобразователем магнитной энергии», также представляет собой уникальную конструкцию магнитного мотора. Проиллюстрированное Рощиным и Годиным в Российском патенте №2155435 устройство является магнитным электродвигателем-генератором, который демонстрирует возможность выработки дополнительной энергии. Так как работа устройства основана на циркулировании цилиндрических магнитов, вращающихся вокруг кольца, то конструкция фактически представляет собой скорее генератор, чем мотор. Однако это устройство является действующим мотором, так как для запуска отдельного электрогенератора используется вращающий момент, вырабатываемый самоподдерживающимся движением магнитов.

Литература

1. Motion Control Handbook (Designfax, May, 1989, p.33)

2. «Faraday’s Law - Quantitative Experiments», Amer. Jour. Phys.,

3. Popular Science, June, 1979

4. IEEE Spectrum 1/97

5. Popular Science (Популярная наука), May, 1979

6. Schaum’s Outline Series, Theory and Problems of Electric

Machines andElectromechanics (Теория и проблемы электрических

машин и электромеханики) (McGraw Hill, 1981)

7. IEEE Spectrum, July, 1997

9. Thomas Valone, The Homopolar Handbook

10. Ibidem, p. 10

11. Electric Spacecraft Journal, Issue 12, 1994

12. Thomas Valone, The Homopolar Handbook, p. 81

13. Ibidem, p. 81

14. Ibidem, p. 54

Tech. Phys. Lett., V. 26, #12, 2000, p.1105-07

Томас Валон Integrity Research Institute, www.integrityresearchinstitute.org

1220 L St. NW, Suite 100-232, Washington, DC 20005

То, что генератор на неодимовых магнитах, например ветрогенератор, является полезным, уже ни у кого не вызывает сомнений. Если даже все приборы в доме и не удастся обеспечить энергией таким способом, то все-таки при длительном использовании он покажет себя с выигрышной стороны. Изготовление прибора своими руками сделает эксплуатацию еще экономичнее и приятнее.

Характеристики неодимовых магнитов

Но давайте сначала выясним, что собой представляют магниты. Они появились не так давно. Приобрести в магазине магниты можно было с девяностых годов прошлого века. Изготовлены они из неодима, бора и железа. Основным элементом, конечно, является неодим. Это металл лантоноидной группы, с помощью которого магниты приобретают огромную силу сцепления. Если взять две штуки большого размера и притянуть друг к другу, то расцепить их будет почти невозможно.

В продаже в основном, конечно, встречаются миниатюрные виды. В любом сувенирном магазине можно найти шарики (или другую форму) из этого металла. Высокая цена неодимовых магнитов объясняется сложностью добычи сырья и технологии его производства. Если шарик диаметром 3-5 миллиметров обойдется всего в несколько рублей, то за магнитик диаметром от 20 миллиметров и выше придется выложить 500 рублей и более.

Неодимовые магниты получают в специальных печах, где процесс происходит без доступа кислорода, в вакууме или атмосфере с инертным газом. Самые распространенные — это магниты с аксиальным намагничиванием, в которых вектор поля направлен вдоль одной из плоскостей, где измеряется толщина.

Характеристики неодимовых магнитов очень ценны, но их легко можно испортить без возможности восстановления. Так, сильный удар способен лишить их всех свойств. Поэтому нужно стараться избегать падений. Также у разных видов имеется свой температурный предел, который варьируется от восьмидесяти до двухсот пятидесяти градусов. При температуре выше предельной магнит теряет свои свойства.

Правильное и аккуратное использование служит залогом сохранения качеств в течение тридцати лет и более. Естественное размагничивание составляет всего один процент в год.

Применение неодимовых магнитов

Их часто используют в опытах в области физики и электротехники. Но и на практике эти магниты нашли уже широкое применение, например, в промышленности. Нередко их можно найти и в составе сувенирной продукции.

Высокая степень сцепления делает их очень полезными при поиске предметов из металла, находящихся под землей. Поэтому многие поисковики используют оборудование с применением неодимовых магнитов, чтобы находить технику, оставшуюся с военных времен.

Если старые акустические колонки еле работают, то иногда стоит к ферритовым магнитам приложить неодимовые, и аппаратура снова отлично зазвучит.

Так и на двигателе или генераторе можно попробовать заменить старые магниты. Тогда есть шанс, что техника заработает намного лучше. Потребление при этом даже снизится.

Человечество уже давно ищет На неодимовых магнитах, как некоторые считают, технология вполне может обрести реальные очертания.

Вертикально ориентированный ветрогенератор в готовом виде

К ветрогенераторам, особенно в последние годы, снова возобновился интерес. Появились новые модели, более удобные и практичные.

Еще недавно главным образом использовались горизонтальные ветрогенераторы, имеющие три лопасти. А вертикальные виды не распространялись из-за сильной нагрузки на подшипники ветроколеса, вследствие чего возникало увеличенное трение, поглощающее энергию.

Но благодаря использованию принципов ветрогенератор на неодимовых магнитах стал применяться именно вертикально-ориентированный, с выраженным свободным инерционным вращением. В настоящее время он доказал свою более высокую эффективность по сравнению с горизонтальным.

Легкий старт достигается благодаря принципу магнитной левитации. А благодаря многополюсности, которая дает номинальное напряжение на малых оборотах, удается отказаться от редукторов полностью.

Некоторые приборы способны начать работу, когда скорость ветра составляет всего полтора сантиметра в секунду, а при достижении всего трех—четырех метров в секунду, она может уже равняться вырабатываемой мощности прибора.

Область применения

Таким образом, ветрогенератор, в зависимости от своей мощности, способен обеспечить энергией разные строения.

    Городские квартиры.

    Частные дома, дачи, магазины, мойки.

    Детские сады, больницы, порты и другие городские учреждения.

    Преимущества

    Приборы приобретают в готовом виде или изготавливают самостоятельно. Купив ветрогенератор, его остается только установить. Все регулировки и центровки уже пройдены, проведены испытания при различных климатических условиях.

    Неодимовые магниты, которые используются вместо редуктора и подшипников, позволяют достичь следующих результатов:

    сокращается трение, и повышается срок эксплуатации всех деталей;

    исчезает вибрация и шум прибора при работе;

    себестоимость уменьшается;

    экономится электроэнергия;

    исчезает необходимость регулярно обслуживать прибор.

Ветрогенератор можно приобрести со встроенным инвертором, который заряжает батарею, а также с контроллером.

Наиболее распространенные модели

Генератор на неодимовых магнитах может быть изготовлен на одинарном или двойном креплении. Помимо основных неодимовых, в конструкции могут быть предусмотрены дополнительные ферритовые магниты. Высоту крыла делают разную, в основном от одного до трех метров.

Более мощные модели имеют двойное крепление. В них также устанавливаются дополнительные генераторы на ферритовых магнитах и имеется различная высота крыла и диаметр.

Самодельные конструкции

Учитывая то, что приобрести генератор на неодимовых магнитах, работающий от ветра, далеко не всем по карману, часто решаются на сооружение конструкции своими руками. Рассмотрим различные варианты устройств, которые без труда можно сделать самостоятельно.

Ветрогенератор своими руками

Имеющая вертикальную ось вращения, имеет обычно от трех до шести лопастей. В конструкцию входят статор, лопасти (неподвижные и вращающиеся) и ротор. Ветер влияет на лопасти, вход в турбину и выход из нее. В качестве опоры иногда используют автомобильные ступицы. Такой генератор на неодимовых магнитах является бесшумным, остается стабильным даже при сильном ветре. Ему не нужна высокая мачта. Движение начинается даже при очень слабом ветре.

Каким может быть устройство неподвижного генератора

Известно, что электродвижущая сила через провод генерируется посредством изменения магнитного поля. В сердечнике неподвижного генератора создается путем электронного управления, не механически. Генератор управляет потоком автоматически, действуя резонансно и потребляя очень малую мощность. Его колебания отклоняют в стороны магнитные потоки железных или ферритовых сердечников. Чем больше частота колебаний, тем сильнее мощность генератора. Запуск реализуется путем кратковременного импульса на генератор.

Как сделать вечный двигатель

На неодимовых магнитах в основном однотипны по принципу действия. Стандартным уже вариантом является аксиальный тип.

За его основу берется ступица из автомобиля с тормозными дисками. Такая база станет надежной и мощной.

При решении ее использовать ступицу следует полностью разобрать и проверить, достаточно ли там смазки, а при необходимости очистить ржавчину. Тогда готовый прибор будет приятно покрасить, и он приобретет «домашний», ухоженный вид.

В однофазном приборе полюсы должны иметь равное количество с количеством магнитов. В трехфазном должно соблюдаться соотношение двух к трем или четырех к трем. Магниты размещают с чередованием полюсов. Они должны быть точно расположены. Для этого можно начертить на бумаге шаблон, вырезать его и точно перенести на диск.

Чтобы полюсы не перепутать, маркером делают пометки. Для этого магниты подносят одной стороной: ту, что притягивает, обозначают знаком «+», а ту, что отталкивает, - «-». Магниты должны притягиваться, то есть те, что расположены друг напротив друга, должны иметь разные полюсы.

Обычно используется суперклей или подобный ему, а после наклейки заливают еще эпоксидной смолой для увеличения прочности, предварительно сделав «бордюрчики», чтобы она не вытекла.

Трех- или однофазный

Генератор на неодимовых магнитах обычно делают конструкция при нагрузке будет работать с вибрацией, так как не обеспечится постоянная отдача тока, из-за чего получится скачкообразная амплитуда.

Зато при трехфазной системе в любое время гарантируется постоянная мощность благодаря компенсации фаз. Поэтому ни вибрации не будет возникать, ни гудения. А эффективность работы станет на пятьдесят процентов выше, чем с одной фазой.

Намотка катушки и остальная сборка

Расчет генератора на неодимовых магнитах в основном делается на глаз. Но лучше, конечно, добиваться точности. Например, для тихоходного устройства, где зарядка аккумулятора начинала бы функционировать при 100—150 оборотах в минуту, потребуется от 1000 до 1200 витков. Общее количество делится на количество катушек. Столько потребуется витков в каждую из них. Катушки наматывают по возможности наиболее толстым проводом, так как при меньшем сопротивлении ток будет больше (при большом напряжении сопротивлением весь ток заберется).

Обычно используют круглые, но лучше мотать катушки вытянутой формы. Внутреннее отверстие должно равняться диаметру магнита или быть больше него. Кроме того, оптимальный магнит получится в виде прямоугольника, а не шайбы, так как у первых магнитное поле растянуто по длине, а у последних — сосредоточено в центре.

Толщину статора делают равной толщине магнитов. Для формы можно использовать фанеру. На ее дне и поверх катушек размещают стеклоткань для прочности. Катушки соединяют между собой, и каждую фазу выводят наружу для соединения затем треугольником или звездой.

Остается сделать мачту и надежное основание.

Конечно, это не вечный двигатель на неодимовых магнитах. Однако экономия при использовании ветрогенератора будет обеспечена.

Проблемой вечного двигателя до сих пор занимаются очень многие энтузиасты из числа ученых и изобретателей. Эта тема особенно актуальна в свете возможного топливно- энергетического кризиса, с которым может столкнуться наша цивилизация.

Одним из наиболее перспективных вариантов считается вечный двигатель на постоянных магнитах, работающий, благодаря уникальным свойствам этого материала. Здесь скрывается большое количество энергии, которой обладает магнитное поле. Основная задача состоит в том, чтобы выделить и преобразовать ее в механическую, электрическую и другие виды энергии. Постепенно, магнит теряет свою силу, однако, она вполне восстанавливаться под действием сильного .

Общее устройство магнитного двигателя

В стандартную конструкцию устройства входят три основные составные части. Прежде всего, это сам двигатель, статор с установленным электромагнитом и ротор с постоянным магнитом. На один вал, совместно с двигателем, устанавливается электромеханический генератор.

В состав магнитного двигателя входит статический электромагнит, представляющий собой кольцевой магнитопроводс вырезанным сегментом или дугой. В электромагните имеется индуктивная катушка, к которой подключается электронный коммутатор, обеспечивающий реверс тока. Сюда же подключается и постоянный магнит. Для регулировки используется простой электронный коммутатор, схема которого представляет собой автономный .

Как работает магнитный двигатель

Запуск магнитного двигателя осуществляется с помощью электротока, подаваемого в катушку из блока питания. Магнитные полюса в постоянном магните располагаются перпендикулярно электромагнитному зазору. В результате возникающей полярности, постоянный магнит, установленный на роторе, начинает вращаться вокруг своей оси. Происходит притяжение магнитных полюсов к противоположным полюсам электромагнита.

Когда разноименные магнитные полюса и зазоры совпадают, в катушке выключается ток и тяжелый ротор проходит по инерции эту мертвую точку совпадения, вместе с постоянным магнитом. После этого, в катушке происходит изменение направления тока и в очередном рабочем зазоре значения полюсов на всех магнитах становятся одноименными. Дополнительное ускорение ротора, в этом случае, происходит за счет отталкивания, возникающего под действием полюсов одноименного значения. Получается так называемый вечный двигатель на магнитах, который обеспечивает постоянное вращение вала. Весь рабочий цикл повторяется после того, как ротор сделает полный круг вращения. Действие электромагнита на постоянный магнит, практически не прерывается, что и обеспечивает вращение ротора с необходимой скоростью.