Кто такой мехатроник? Что такое мехатроник дсг Связь с робототехникой.

], область науки и техники, основанная на синергетическом объединении узлов точной механики с электронными, электротехническими и компьютерными компонентами, обеспечивающая проектирование и производство качественно новых модулей, систем и машин с интеллектуальным управлением их функциональными движениями. Термин «Мехатроника» (англ. «Mechatronics», нем. «Mechatronik») был введён японской фирмой « Yaskawa Electric Corp. » в 1969 году и зарегистрирован как торговая марка в 1972 году. Отметим, что в отечественной технической литературе ещё в 1950-х гг. использовался подобным же образом образованный термин – «механотроны» (электронные лампы с подвижными электродами, которые применялись в качестве датчиков вибраций и т. п.). Мехатронные технологии включают проектно-конструкторские, производственные, информационные и организационно-экономические процессы, которые обеспечивают полный жизненный цикл мехатронных изделий.

Предмет и метод мехатроники

Главная задача мехатроники как направления современной науки и техники состоит в создании конкурентоспособных систем управления движением разнообразных механических объектов и интеллектуальных машин, которые обладают качественно новыми функциями и свойствами. Метод мехатроники заключается (при построении мехатронных систем) в системной интеграции и использовании знаний из ранее обособленных научных и инженерных областей. К их числу относятся прецизионная механика, электротехника, гидравлика, пневматика, информатика, микроэлектроника и компьютерное управление. Мехатронные системы строятся путём синергетической интеграции конструктивных модулей, технологий, энергетических и информационных процессов, начиная со стадии их проектирования и заканчивая производством и эксплуатацией.

В 1970–80-х гг. три базисных направления – оси мехатроники (точная механика, электроника и информатика) интегрировались попарно, образовав три гибридных направления (на рис. 1 показаны боковыми гранями пирамиды). Это электромеханика (объединение механических узлов с электротехническими изделиями и электронными блоками), компьютерные системы управления (аппаратно–программное объединение электронных и управляющих устройств), а также системы автоматизированного проектирования (САПР) механических систем. Затем – уже на стыке гибридных направлений – возникает мехатроника, становление которой как нового научно-технического направления начинается с 1990-х гг.

Элементы мехатронных модулей и машин имеют различную физическую природу (механические преобразователи движений, двигатели, информационные и электронные блоки, управляющие устройства), что определяет междисциплинарную научно-техническую проблематику мехатроники. Междисциплинарные задачи определяют и содержание образовательных программ по подготовке и повышению квалификации специалистов, которые ориентированы на системную интеграцию устройств и процессов в мехатронных системах.

Принципы построения и тенденции развития

Развитие мехатроники является приоритетным направлением современной науки и техники во всём мире. В нашей стране мехатронные технологии как основа построения роботов нового поколения включены в число критических технологий РФ.

К числу актуальных требований к мехатронным модулям и системам нового поколения следует отнести: выполнение качественно новых служебных и функциональных задач; интеллектуальное поведение в изменяющихся и неопределённых внешних средах на основе новых методов управления сложными системами; сверхвысокие скорости для достижения нового уровня производительности технологических комплексов; высокоточные движения с целью реализации новых прецизионных технологий, вплоть до микро- и нанотехнологий; компактность и миниатюризация конструкций на основе применения микромашин; повышение эффективности многокоординатных мехатронных систем на базе новых кинематических структур и конструктивных компоновок.

Построение мехатронных модулей и систем основывается на принципах параллельного проектирования (англ. – concurrent engineering), исключения многоступенчатых преобразований энергии и информации, конструктивного объединения механических узлов с цифровыми электронными блоками и управляющими контроллерами в единые модули.

Ключевым принципом проектирования является переход от сложных механических устройств к комбинированным решениям, основанным на тесном взаимодействии более простых механических элементов с электронными, компьютерными, информационными и интеллектуальными компонентами и технологиями. Компьютерные и интеллектуальные устройства придают мехатронной системе гибкость, поскольку их легко перепрограммировать под новую задачу, и они способны оптимизировать свойства системы при изменяющихся и неопределённых факторах, действующих со стороны внешней среды. Важно отметить, что за последние годы цена таких устройств постоянно снижается при одновременном расширении их функциональных возможностей.

Тенденции развития мехатроники связаны с появлением новых фундаментальных подходов и инженерных методов решения задач технической и технологической интеграции устройств различной физической природы. Компоновка нового поколения сложных мехатронных систем формируется из интеллектуальных модулей («кубиков мехатроники»), объединяющих в одном корпусе исполнительные и интеллектуальные элементы. Управление движением систем осуществляется с помощью информационных сред для поддержки решений мехатронных задач и специального программного обеспечения, реализующего методы компьютерного и интеллектуального управления.

Классификация мехатронных модулей по структурным признакам представлена на рис. 2.

Модуль движения – конструктивно и функционально самостоятельный электромеханический узел, включающий в себя механическую и электрическую (электротехническую) части, который можно использовать как сепаратный блок, так и в различных комбинациях с другими модулями. Главным отличием модуля движения от общепромышленного электропривода является использование вала двигателя в качестве одного из элементов механического преобразователя движения. Примерами модулей движения являются мотор-редуктор, мотор-колесо , мотор-барабан, электрошпиндель станка.

Мотор-редукторы являются исторически первыми по принципу своего построения мехатронными модулями, которые стали серийно выпускать, и до настоящего времени находят широкое применение в приводах различных машин и механизмов. В мотор-редукторе вал является конструктивно единым элементом для двигателя и преобразователя движения, что позволяет исключить традиционную соединительную муфту, добиваясь таким образом компактности; при этом существенно уменьшается количество присоединительных деталей, а также затраты на установку, отладку и запуск. В мотор-редукторах в качестве электродвигателей наиболее часто используют асинхронные двигатели с короткозамкнутым ротором и регулируемым преобразователем частоты вращения вала, однофазные двигатели и двигатели постоянного тока. В качестве преобразователей движения применяются зубчатые цилиндрические и конические, червячные, планетарные, волновые и винтовые передачи. Для защиты от действия внезапных перегрузок устанавливают ограничители вращающего момента.

Мехатронный модуль движения – конструктивно и функционально самостоятельное изделие, включающее в себя управляемый двигатель, механическое и информационное устройства (рис. 2). Как следует из данного определения, по сравнению с модулем движения, в состав мехатронного модуля движения дополнительно встроено информационное устройство. Информационное устройство включает датчики сигналов обратных связей, а также электронные блоки для обработки сигналов. Примерами таких датчиков могут служить фотоимпульсные датчики (энкодеры), оптические линейки, вращающиеся трансформаторы, датчики сил и моментов и т. д.

Важным этапом развития мехатронных модулей движения стали разработки модулей типа «двигатель-рабочий орган». Такие конструктивные модули имеют особое значение для технологических мехатронных систем, целью движения которых является реализация целенаправленного воздействия рабочего органа на объект работ. Мехатронные модули движения типа «двигатель-рабочий орган» широко применяют в станках под названием мотор-шпиндели.

Интеллектуальный мехатронный модуль (ИММ) – конструктивно и функционально самостоятельное изделие, построенное путём синергетической интеграции двигательной, механической, информационной, электронной и управляющей частей.

Таким образом, по сравнению с мехатронными модулями движения, в конструкцию ИММ дополнительно встраиваются управляющие и силовые электронные устройства, что придаёт этим модулям интеллектуальные свойства (рис. 2). К группе таких устройств можно отнести цифровые вычислительные устройства (микропроцессоры, сигнальные процессоры и т. п.), электронные силовые преобразователи, устройства сопряжения и связи.

Применение интеллектуальных мехатронных модулей даёт мехатронным системам и комплексам ряд принципиальных преимуществ: способность ИММ выполнять сложные движения самостоятельно, без обращения к верхнему уровню управления, что повышает автономность модулей, гибкость и живучесть мехатронных систем, работающих в изменяющихся и неопределённых условиях внешней среды; упрощение коммуникаций между модулями и центральным устройством управления (вплоть до перехода к беспроводным коммуникациям), что позволяет добиваться повышенной помехозащищённости мехатронной системы и ее способности к быстрой реконфигурации; повышение надёжности и безопасности мехатронных систем благодаря компьютерной диагностике неисправностей и автоматической защите в аварийных и нештатных режимах работы; создание на основе ИММ распределённых систем управления с применением сетевых методов, аппаратно-программных платформ на базе персональных компьютеров и соответствующего программного обеспечения; использование современных методов теории управления (адаптивных, интеллектуальных, оптимальных) непосредственно на исполнительном уровне, что существенно повышает качество процессов управления в конкретных реализациях; интеллектуализация силовых преобразователей, входящих в состав ИММ, для реализации непосредственно в мехатронном модуле интеллектуальных функций по управлению движением, защите модуля в аварийных режимах и диагностики неисправностей; интеллектуализация сенсоров для мехатронных модулей позволяет добиться более высокой точности измерения, программным путём обеспечив в самом сенсорном модуле фильтрацию шумов, калибровку, линеаризацию характеристик вход/выход, компенсацию перекрёстных связей, гистерезиса и дрейфа нуля.

Мехатронные системы

Мехатронные системы и модули вошли как в профессиональную деятельность, так и в повседневную жизнь современного человека. Сегодня они находят широкое применение в самых различных областях: автомобилестроение (автоматические коробки передач, антиблокировочные устройства тормозов, приводные модули «мотор-колесо», системы автоматической парковки); промышленная и сервисная робототехника (мобильные, медицинские, домашние и другие роботы); периферийные устройства компьютеров и офисная техника: принтеры, сканеры, CD-дисководы, копировальные и факсимильные аппараты; производственное, технологическое и измерительное оборудование; домашняя бытовая техника: стиральные, швейные, посудомоечные машины и автономные пылесосы; медицинские системы (например, оборудование для робото-ассистированной хирургии, коляски и протезы для инвалидов) и спортивные тренажёры; авиационная, космическая и военная техника; микросистемы для медицины и биотехнологии; лифтовое и складское оборудование, автоматические двери в отелях аэропортах, вагонах метро и поездов; транспортные устройства (электромобили, электровелосипеды, инвалидные коляски); фото- и видеотехника (проигрыватели видеодисков, устройства фокусировки видеокамер); движущиеся устройства для шоу-индустрии.

Выбор кинематической структуры является важнейшей задачей при концептуальном проектировании машин нового поколения. Эффективность её решения во многом определяет главные технические характеристики системы, её динамические, скоростные и точностные параметры.

Именно мехатроника дала новые идеи и методы для проектирования движущихся систем с качественно новыми свойствами. Эффективным примером такого решения стало создание машин с параллельной кинематикой (МПК) (рис. 3).

В основе их конструктивной схемы лежит обычно платформа Гью-Стюарта (разновидность параллельного манипулятора, имеющая 6 степеней свободы; используется октаэдральная компоновка стоек). Машина состоит из неподвижного основания и подвижной платформы, которые соединены между собой несколькими стержнями с управляемой длиной. Стержни соединены с основанием и платформой кинематическими парами, которые имеют соответственно две и три степени подвижности. На подвижной платформе устанавливается рабочий орган (например, инструментальная или измерительная головка). Программно регулируя длины стержней с помощью приводов линейного перемещения, можно управлять перемещениями и ориентацией подвижной платформы и рабочего органа в пространстве. Для универсальных машин, где требуется перемещение рабочего органа как твёрдого тела по шести степеням свободы, необходимо иметь шесть стержней. В мировой литературе такие машины называются «гексаподы» (от греч. ἔ ξ – шесть).

Основными преимуществами машин с параллельной кинематикой являются: высокая точность исполнения движений; высокие скорости и ускорения рабочего органа; отсутствие традиционных направляющих и станины (в качестве несущих элементов конструкции используются приводные механизмы), отсюда и улучшенные массогабаритные параметры, и низкая материалоёмкость; высокая степень унификации мехатронных узлов, обеспечивающая технологичность изготовления и сборки машины и конструктивную гибкость.

Повышенные точностные показатели МПК обусловлены следующими ключевыми факторами:

в гексаподах, в отличие от кинематических схем с последовательной цепью звеньев, не происходит суперпозиции (наложения) погрешностей позиционирования звеньев при переходе от базы к рабочему органу;

стержневые механизмы обладают высокой жесткостью, так как стержни не подвержены изгибающим моментам и работают только на растяжение-сжатие;

применяются прецизионные датчики обратной связи и измерительные системы (например, лазерные), а также используются компьютерные методы коррекции перемещений рабочего органа.

Благодаря повышенной точности МПК могут применяться не только как обрабатывающее оборудование, но и в качестве измерительных машин. Высокая жёсткость МПК позволяет применять их на силовых технологических операциях. Так, на рис. 4 показан пример гексапода, выполняющего гибочные операции в составе технологического комплекса «HexaBend» для производства сложных профилей и труб.

Компьютерное и интеллектуальное управление в мехатронике

Применение ЭВМ и микроконтроллеров, реализующих компьютерное управление движением разнообразных объектов, является характерной особенностью мехатронных устройств и систем. Сигналы от разнообразных датчиков, несущие информацию о состоянии компонентов мехатронной системы и приложенных к этой системе воздействий, поступают в управляющую ЭВМ. Компьютер перерабатывает информацию в соответствии с заложенными в него алгоритмами цифрового управления и формирует управляющие воздействия на исполнительные элементы системы.

Компьютеру отводится ведущая роль в мехатронной системе, поскольку компьютерное управление даёт возможность достичь высокой точности и производительности, реализовать сложные и эффективные алгоритмы управления, учитывающие нелинейные характеристики объектов управления, изменения их параметров и влияние внешних факторов. Благодаря этому мехатронные системы приобретают новые качества при увеличении долговечности и снижении размеров, массы и стоимости таких систем. Достижение нового, более высокого уровня качества систем благодаря возможности реализации высокоэффективных и сложных законов компьютерного управления позволяет говорить о мехатронике как о возникающей компьютерной парадигме современного развития технической кибернетики.

Характерным примером мехатронной системы с компьютерным управлением является прецизионный следящий привод на основе бесконтактной многофазной электрической машины переменного тока с векторным управлением. Наличие группы датчиков, в том числе высокоточного датчика положения вала двигателя, цифровых методов обработки информации, компьютерной реализации законов управления, преобразований, основанных на использовании математической модели электрической машины, и быстродействующего контроллера позволяет построить прецизионный быстродействующий привод, обладающий сроком службы до 30–50 тысяч часов и более.

Компьютерное управление оказывается весьма эффективным при построении многокоординатных нелинейных мехатронных систем. В этом случае ЭВМ анализирует данные о состоянии всех компонентов и внешних воздействиях, производит вычисления и формирует управляющие воздействия на исполнительные компоненты системы с учётом особенностей её математической модели. В результате достигается высокое качество управления согласованным многокоординатным движением, например, рабочего органа мехатронной технологической машины или мобильного робота.

Особую роль в мехатронике играет интеллектуальное управление, которое является более высокой ступенью развития компьютерного управления и реализует различные технологии искусственного интеллекта. Они дают возможность мехатронной системе воспроизводить в той или иной мере интеллектуальные способности человека и на этой основе принимать решения о рациональных действиях для достижения цели управления. Наиболее эффективными технологиями интеллектуального управления в мехатронике являются технологии нечёткой логики, искусственных нейронных сетей и экспертных систем.

Применение интеллектуального управления даёт возможность обеспечить высокую эффективность функционирования мехатронных систем при отсутствии подробной математической модели объекта управления, при действии различных неопределённых факторов и при опасности возникновения непредвиденных ситуаций в работе системы.

Преимущество интеллектуального управления мехатронными системами состоит и в том, что часто для построения таких систем не требуются их подробная математическая модель и знание законов изменения действующих на них внешних воздействий, а управление строится на основе опыта действий высококвалифицированных специалистов-экспертов.

Это новая специальность в перечне рабочих профессий. Как правило, новые профессии – это потребность нового времени. Они с одной стороны возбуждают к ним интерес молодежи, а с другой – настороженность. Что является следствием недостаточной информированности о перспективах, которую отрывает новая специальность, как о возможности трудоустройства, так и о степени востребованности их на рынке, от чего собственно зависит заработная плата, а значит уровень жизни представителей этих новых профессий.

Работа мехатроником, как уже упоминалось, является такой новой сферой деятельности, которая связана с эксплуатацией машин, а также оборудования, которые оснащены компьютеризированным управлением в процессе их эксплуатации. Для того, чтобы получить профессию мехатроника необходимы знания в областях механики, электроники, техники, основанной на микропроцессорах, гидро-, пневмотехники, автоматики. Кроме этого необходимо получить знания, которые относятся к сфере компьютерного регулирования движением, как машин в целом, так и отдельных их агрегатов в виде обособленного оборудования.

Вот такая она, новая, довольно интересная, востребованная сегодня профессия мехатроник!

Где учится этой специальности, чтобы стать высококвалифицированным рабочим, имеющим среднее специальное образование? Для этого существуют как училища, так и колледжи профессионального технического обучения, где с недавнего времени (примерно с 2010-го года) появилась специальность «Мехатроника».

Мехатроник профессия

Квалификация мехатроник – это комплекс нескольких профессий, причем в каждой из них на уровне высококвалифицированного рабочего:

  • для технического сопровождения тех или иных технологических процессов, с умением определять актуальное состояние станочного оборудования с его паспортными параметрами;
  • осуществлять выбор и регулировку технологической оснастки, а также различных инструментов станков с ЧПУ. Знать, как составлять простейшие для них программы;
  • осуществлять диагностирование и ремонт систем типа «Станок ЧПУ – робот» при помощи программ тестирования и наладки и прочие, в том числе, также монтажные работы.

Из этого, даже беглого перечня видно, что в профессии мехатроник инструкция требует освоения немалого количества сопутствующих специальностей, как знаний, так и практических навыков или так называемого интегрированного профессионального образования. Заказчиками профессиональных рабочих кадров являются, как правило, крупные машиностроительные заводы и компании, а также другие отрасли производства, в том числе и такие высокотехнологичные как авио- и космическая промышленность, а также производство умных автомобилей и бытовых машин с компьютерной начинкой. Вот собственно, почему мехатроника является новой профессией, в которой заинтересованы современные производства.

Обязанности мехатроника

Мехатроники в своей профессиональной деятельности могут совмещать функции операторов станков с ЧПУ, слесарей по их ремонту, наладчиков этих станков, а также различных манипуляторов. Должностная инструкция мехатроника содержит требования по разработке, как программ управления, так и настройки параметров, так называемых мехатронных систем.

Кроме этого в обязанности должностные мехатроника, могут входить как диагностика, так и ремонтные, а также монтажные работы разнообразных систем:

  • механических, включая электромеханические системы;
  • гидро-, а также пневматических сетей;
  • компьютерных систем и программ управления, основанных как на аналоговых, так и на цифровых технологиях автоматики.

Мехатроник: обучение

Механики оборудования разнообразных сфер промышленности в совокупности со специальностями, связанными с электронными системами автоматизации, иначе говоря, мехатроники – это интересное, а главное успешное будущее на поприще профессиональной деятельности.

Что касается программы, а также продолжительности обучения, то помимо всего перечисленного она включает и обучение обработки металлов и различных материалов, как под давлением, так и резанием. Поэтому такие обширные знания, профессиональные навыки невозможно получить за короткое время обучение.

Полный курс обучения составляет не менее трех с половиной лет.

Относительно условий приема, то абитуриент должен обладать коммуникабельностью, умением работать в составе команды, при этом получать удовольствие от своей профессиональной деятельности. Впрочем, данные требования относятся ко всем без исключения профессиям.

После окончания училища или колледжа любой выпускник имеет возможность поступить в ВУЗ по специальности «Инженер мехатроник».

Мехатроник DSG или электронный блок управления трансмиссии – узел сложный и важный. Это электронное устройство, состоявшее из блока памяти, датчиков, принимающих входящий сигнал и собирающих всю актуальную информацию о работе двигателя и сцепления и сервоприводов, посылающих выходной сигнал. Мехатроник выполняет функцию управления переключением передач, считывая параметры двигателя, крутящий момент, и посылая сигналы по сервоприводам к блоку сцепления.

И как любое другое электронное устройство мехатроник имеет свойство ломаться. Если бы блок управления состоял из десятка транзисторов, проблема неисправности не стояла бы столь серьезно. Однако блоки управления и вместе с ними логика работы с каждым годом эволюционируют и становятся сложнее вместе с развитием автоматических КПП. Под логикой работы следует понимать группу алгоритмов мехатроника, которые и осуществляют процесс управления трансмиссией.

В первых моделях автоматических КП блоком памяти служило ПЗУ или постоянное запоминающих устройство. Главным и существенным недостатком ПЗУ являлось то, что записанная единожды информация алгоритмов работы трансмиссии не могла быть изменена в дальнейшем. Тем самым машина с автоматом, использующим ПЗУ была неподготовлена для условий эксплуатации, кроме тех, которые были прописаны в блок памяти раз и навсегда.

От этой системы стали отказываться в угоду перепрограммируемым запоминающим устройствам, которые в отличие от предшественника могли изменяться путем перепрошивки операционного обеспечения. Это позволило инженерам выпускать одну и ту же модель мехатроника, предназначенного для различных условий эксплуатации. В случае с DSG перепрошивание операционной системы стало популярной процедурой исправления недочетов, допущенных в более ранних выпусках трансмиссии.

У каждого типа DSG свой тип мехатроника. Мехатроники от различных типов DSG не взаимозаменяемы. Более того, для некоторых типов DSG существуют несколько поколений мехатроников, которые также отличаются друг от друга. И для каждого типа и поколения мехатроников существует множество версий программного обеспечения, рассчитанного на различные двигатели и разные передаточные соотношения в КП. В некоторых случаях мехатроники одного типа можно перепрограммировать для установки на разные автомобили.

Возможности ремонта DSG

Процессор мехатроника, по сути, является самым сложным узлом в самом сложном устройстве. Это и есть «мозги» всего автомата и выход процессорной части из строя подразумевает под собой полную блочную замену мехатроника.

В случае с мехатроником на преселективной коробки автоконцерна Volkswagen такая замена в нынешний момент обойдется в среднем в 50 000 рублей. Российский авторынок насыщен продукцией VAG (Volkswagen Audi Group), и, как следствие, нет недостатка и в различных деталях для автомобилей концерна. Это касается и блоков управления, как новых, так и б/у. Хотя еще несколько лет мехатроник считался узлом не ремонтируемым и даже у официальных дилеров подлежал замене на новый узел. Но, как обычно бывает, с расширением вторичного рынка и автомобилей, ушедших с официальной гарантии, частным сервисным центрам пришлось включится в ремонт автомобилей, эксплуатирующих DSG.

Еще одной возможностью, доступной в частных сервисных центрах стала перепрошивка мехатроников для установки на «неродных» автомобилях. Автосервисы, к примеру, предлагают установку перепрограммированного мехатроника 0AM от Scoda Octavia на Audi 1,4 TFSI или Volkswagen Touran. Различные виды прошивок позволяют установить один и тот же блока на разные автомобили. Ремонтники предлагают порядка 700 вариантов прошивок для DQ200, 500 вариантов для DQ250, и 50 вариантов для DQ500.

Перепрограммирование мехатроников позволяет устанавливать б/у блоки от других машин даже в отсутствии подходящего блока, не дожидаясь «родной» детали. К тому же перепрошивку могут сделать дистанционно по интернету. И все это удовольствие обойдется порядка 10000 рублей.

Риск тут, конечно, велик, что ваш автомобиль попадет не в те руки. Но, как уже сказано выше, сторонними сервисами пользуется владельцы автомобилей, которые свой гарантийный срок уже отъездили. Хотя наиболее ответственные автомастерские предлагают на замененную или отремонтированную деталь свой гарантийный срок.

В любом случае мехатроник DSG из таинственного агрегата, который не подлежал ремонту, превратился во вполне обслуживаемый узел. Узел дороговатый, но здесь следует учитывать и его сложность и важность в роботизированном преселективе VAG.

Как определить неисправность в мехатронике DSG

Главным признаком поломки мехатроника DSG являются рывки во время разгона, не во время переключения передач, а именно при разгоне. Если у вас появилась такая ситуация, то дело на 99% в мехатронике. Хотя и другие «классические» поломки DSG могут быть связаны с неисправностью блока управления. Пропадают передачи – виноват, скорее всего, мехатроник. Рывки при переключении передач – также в большом проценте случаев вину можно возложить на блок управления. Хотя в случае с рывками на второй передачи у «сухой» DSG7, причина, как правило, кроется в конструкторской ошибки инженеров, которые оставили шестерню второй передачи без демпфера.

В любом случае, неисправности DSG, связанные с мехатроником, диагностируются сейчас достаточно быстро, а любой уважающий себя владелец автомобиля концерна VW давно обзавелся диагностическим кабелем VAG COM.

Диагностика мехатроника DSG своими руками

В сервисах за компьютерную диагностику автомобилей автоконцерна Volkswagen в зависимости от региона берут около 1000 рублей, но для каждого водителя есть возможность провести диагностику самостоятельно. На данный момент кабели для компьютерной диагностики любой марки автомобиля можно приобрести без труда и в случае с автомобилями VAG, кабель для их диагностики будет стоить ту же самую тысячу рублей.

Никакого сложного оборудования не требуется. Достаточно этого самого кабеля, подключенного к компьютеру, и программного обеспечения, которое поставляется также вместе с кабелем.

К программе диагностики прилагается подробная инструкция и большая база данных заводских настроек, по которой можно сверить данные диагностики вашего автомобиля. Причем вся диагностика займет около получаса.

Научившись самостоятельно делать диагностику, в том числе диагностику DSG и мехатроника, вам будет гораздо проще ориентироваться в машине. Элементарно, разобравшись в кодах ошибок, которые выдает мехатроник, вы сможете самостоятельно оценить возможные траты на ремонт и не сесть в лужу, когда какой-нибудь особенно «умный» механик будет предлагать вам полную замену блока управления, как единственную возможность спасти автомобиль всего за 50000 рублей.

Мы живем в мире, в котором технологии развиваются каждый день, и нашей задачей становится не отстать от них. К счастью, сейчас даже самое сложное технологическое изделие возможно правильно эксплуатировать и ремонтировать самостоятельно. Достаточно приложить побольше усилий и включить мозг.

Вопрос 001:
Q: Что такое DSG? Какие бывают DSG? Чем отличаются? На какие автомобили устанавливаются?

A: DSG (от нем. DirektSchaltGetriebe или англ. Direct Shift Gearbox ) - семейство преселективных роботизированных трансмиссий со сдвоенными сцеплениями, устанавливаемых на автомобили концерна VAG (Audi, Volkswagen, Skoda, Seat).
Тип Сцепления Расположение двигателя Объемы двигателей Привод Момент На какие модели автомобилей устанавливается
DSG7 0AM (DQ200) "сухие" поперечное 1.2 -1.8 передний 250Нм Audi: A1, A3(8P - до 2013г), TT;
VW: Golf6, Jetta, Polo, Passat, Passat CC, Scirocco, Touran, Ameo;
Skoda: Octavia(1Z - до 2013г), Yeti, Superb, Fabia, Roomster, Rapid;
Seat: Altea, Leon(1P - до 2013г), Toledo.
DSG6 02E (DQ250) "мокрые" поперечное 1.4 - 3.2 передний/полный 350Нм Audi: A3(8P - до 2013г), TT, Q3;
VW: Golf, Passat, Touran, Scirocco, Sharan, Tiguan;
Skoda: Octavia(1Z - до 2013г), Yeti, Superb;
Seat: Altea, Leon(1P - до 2013г), Toledo, Alhambra.
DSG7 0B5 (DL501) "мокрые" продольное 2.0 - 4.2 полный 550Нм Audi: A4(до 2015г), A5, A6, A7, Q5, RS4, RS5.
DSG7 0BT/0BH (DQ500) "мокрые" поперечное 2.0 - 2.5 передний/полный 600Нм Audi: Q3, RS3, TTRS;
VW: Transporter/Multivan/Caravelle, Tiguan.
DSG7 0CW (DQ200) "сухие" поперечное 1.2 - 1.8 передний 250Нм Audi: A3(8V - с 2013г), Q2;
VW: Golf7, Passat (с 2015г), Touran (с 2016г); T-Roc.
Skoda: Octavia(5E - c 2013г), Rapid(с 2013г), Karoq, Scala (с 2019г);
Seat: Leon (5F - с 2013г).
DSG6 0D9 (DQ250) "мокрые" поперечное 1.4 - 2.0 передний/полный 350Нм Audi: A3(8V - с 2013г), Q2;
VW: Golf7, Passat (с 2015г), Touran (с 2016г) ;
Skoda: Octavia(5E - c 2013г), Kodiaq;
Seat: Leon (5F - с 2013г), Ateca.
DSG7 0DL (DQ500) "мокрые" поперечное 2.0 передний/полный 600Нм VW: Arteon, Passat (c 2017г), Tiguan (с 2016г) ;
Skoda: Kodiaq.
DSG7 0GC (DQ381) "мокрые" поперечное 2.0 передний/полный 420Нм Audi: A3 (c 2017г), Q2;
VW: Arteon, Golf (с 2017г), Passat (c 2017г); T-Roc.
Skoda: Karoq;
Seat: Ateca.
DSG7 0CK (DL382-7F) "мокрые" продольное 1.4 - 3.0 передний 400Нм Audi: A4(8W - c 2016г), A6(c 2011г), A7(с 2016г), Q5(с 2013г).
DSG7 0CL (DL382-7Q) "мокрые" продольное 2.0 - 3.0 полный 400Нм Audi: A4(8W - с 2016г).
DSG7 0СJ "мокрые" продольное 2.0 полный
(Ulta Quattro, c электромеханической муфтой)
400Нм
Audi: A4(8W - с 2016г).
Взглянув на таблицу можно сделать некоторые нехитрые выводы:
1. DSG c "сухими" сцеплениями, как правило, устанавливаются на менее мощные двигатели, т.к. способны "переварить" меньший момент.
2. Если у вас полный привод, то у вас "мокрые" сцепления.
3. Если у вас DSG и мотор "вдоль", то у вас Audi:-)
4. Судя по всему, век легендарного полного привода Audi Quattro со знаменитым дифференциалом Torsen, подходит к концу .
Вопрос 002:
Q: Как узнать какая коробка установлена на моём автомобиле?
A: Вариант 1: Подключиться диагностическим прибором к автомобилю, зайти в блок 02 - Электроника КП и считать идентификационные данные. Первые три символа идентификаторов коробки и мехатроника обозначают вашу коробку.
Например: 0AM 300049H - семиступенчатая DSG с "сухими" сцеплениями типа 0AM. Или 02E 300051R - шестиступенчатая DSG с "мокрыми" сцеплениями типа 02E и т.п.
Вариант 2: Посмотреть по VIN-коду автомобиля в электронном каталоге запчастей ETKA.
Вариант 3: Отправить VIN-код автомобиля на наш адрес , мы проверим и пришлем вам ответ.

Вопрос 003:
Q: Чем S-tronic для ауди отличается от DSG для фольксваген/шкода/сеат?
A:
Ничем. За исключением коробок 0B5, 0CK/0CL и 0СJ которые устанавливаются только на ауди.

Вопрос 004:
Q: Какое масло заливается в DSG?
A: Для удобства мы сформулировали ответ в виде таблицы:

Тип Масло Интервал замены (рекомендуемый производителем)
DSG7 0AM (DQ200)
на весь срок службы
DSG6 02E (DQ250)
Объемы заправки:
до 6.9л - полная заправка
до 5.5л - замена масла
Фильтрующий элемент: 02E 305 051 C
60 000
DSG7 0B5 Масло для КП DSG G 052 529
до 7.5л - полная заправка
до 6.7л - замена масла
Фильтрующий элемент: 0B5 325 330 A
60 000
DSG7 0BT/0BH (DQ500) Масло для КП DSG G 052 182
до 7.6 - полная заправка
до 6.0л - замена масла
Фильтрующий элемент: 0BH 325 183 B
60 000
DSG7 0CW (DQ200) В коробке: Масло КП G 052 512 - 1.9л
В мехатронике: Гидравлическое масло G 004 000 - 1л
на весь срок службы
DSG7 0D9 (DQ250) В коробке: Масло для КП DSG G 052 182
Объемы заправки:
до 6.9л - полная заправка
до 5.5л - замена масла
Фильтрующий элемент: 02E 305 051 C

В раздатке: G 052 145 - 0.9л

60 000
DSG7 0DL (DQ500) В коробке: Масло для КП DSG G 052 182
Фильтрующий элемент: 0BH 325 183 B

В раздатке: G 052 145
60 000
DSG7 0GC (DQ381) Масло ATF: G 055 529 60 000
DSG7 0CK (DL382-7F) Масло ATF: G 055 549 A2
4.35л - полная заправка
3.5л - замена масла
60 000
DSG7 0CL (DL382-7Q) Масло ATF: G 055 549 A2
4.35л - полная заправка
3.5л - замена масла
Масло MTF: G 055 529 A2 - 3.8л
60 000
Вопрос 005:
Q: Что такое мехатроник?
A: Мехатроник (mechatronik, мехатрон, гидроблок, мозг) - электронно-гидравлический блок управления КП. Пожалуй самый важный, но в то же время самый ненадежный узел во всей трансмиссии.

Вопрос 006:
Q: Чем отличаются мехатроники?
A:
У каждого типа DSG свой тип мехатроника. Мехатроники от различных типов DSG не взаимозаменяемы. Более того, для некоторых типов DSG существуют несколько поколений мехатроников, которые также отличаются друг от друга. И для каждого типа и поколения мехатроников существует множество версий программного обеспечения, рассчитанного на различные двигатели и разные передаточные соотношения в КП. В некоторых случаях мехатроники одного типа можно перепрограммировать (перепрошить) для установки на разные автомобили. Подробнее о прошивке можно прочитать .

Вопрос 007:
Q: Какая DSG лучше/надежнее?
A:
Однозначного ответа на этот вопрос не существует. У каждого типа DSG есть свои преимущества и недостатки. А продолжительность "жизни" любой DSG в большей части зависит от условий её эксплуатации, как то:
- Температура окружающей среды. Все DSG не любят перегревы, особенно это касается DSG с "сухими" сцеплениями, в которых мехатроник имеет отдельный масляный контур и отсутствует какое-либо охлаждение
;
- Режим движения. У тех кто каждый день по нескольку часов проводит в пробках, шансов приехать на замену мехатроника больше чем у тех кто в основном ездит по трассе на дальние расстояния;
- Стиль вождения. У любителей "дать угла" и "зажечь на светофоре", вероятность попасть на замену сцепления и дифференциала, сильно выше чем у тех кто предпочитает спокойную езду.

Вопрос 008:
Q: У меня DSG7 0AM. Нужно ли переключать селектор в нейтраль когда стоишь на светофоре или в пробке?
A: Не нужно.
В отличие от обычных механических КП, в DSG7 0AM сцепление является нормально разомкнутым. И замыкается только когда мехатроник начинает выдвигать штоки выжима сцеплений. Когда вы (или автохолд) нажав тормоз удерживаете машину на месте, штоки сцеплений мехатроника убраны и сцепления разомкнуты. Соответственно никакой нагрузки на КП или сцепление не передается. В каком положении при этом находится ручка селектора - не важно.

Вопрос 009:
Q: Со временем появились рывки при переключении передач. Раньше машина ездила нормально, переключения были плавными, но в последнее время появились рывки и удары при переключении передач. Можно ли это исправить перепрограммированием ЭБУ коробки (обновлением программного обеспечения)?
A: Нет нельзя. Программное обеспечение не может со временем "испортиться" и послужить причиной неправильной работы КП. Если автомобиль ранее ездил корректно, а потом перестал, то проблема кроется в аппаратной части, а не в программной.
Перепрограммирование мехатроника может помочь только в том случае, если меняли мехатроник и установили блок с неверным программным обеспечением. Подробнее о перепрограммировании можно прочитать .

Вопрос 010:
Q: Как узнать версию программного обеспечения в мехатронике?
Вопрос 011:
Q: Ручка переключения передач DSG7 заблокирована в положении P, как её разблокировать, для того чтобы переключить коробку в нейтраль?
A: Краткая инструкция по разблокировке селектора DSG7 0AM .


Вопрос 012:
Q: Поможет ли замена масла в мехатронике DSG7 0AM(0CW) убрать "пинки" на переключениях передач?
A: Нет, не поможет. Подобные неисправности устраняются ремонтом гидравлической части мехатроника. В начальных стадиях может помочь проведение адаптации (базовой установки), но скорее как исключение, нежели правило.




Вопрос 014:
Q: После замены мехатроника DSG7 0AM, в регистраторе событий висят ошибки "06247 P1867 - Шина данных Привод отсутствие сообщений от электроники рулевой колонки - J527" и "06227 P1853 Шина данных Привод недостоверное сообщение от блока управления ABS". Как их удалить?
A: Нужно сбросить информацию об установленных компонентах (подрулевые переключатели, электрический стояночный тормоз, и т.п.). Для этого нужно сделать базовую установку по каналу 69. После выполнения базовой установки ошибки перейдут из состояния "постоянно" в состояние "спорадически" и их можно будет удалить.

При использовании ПО VCDS (VAG-COM, ВАСЯ-Диагност и т.п.):
"02-Электроника КП" -> "Базов. параметры - 04" -> В поле "Группа" ввести значение 69 -> Нажать "Прочитать".

При использовании ПО VAS-PC:
"Самодиагностика" ->
"02-Электроника КП" -> "006-Базовая установка" -> В поле "Группа" ввести значение 69 -> Нажать "Q" .

При использовании ПО ODIS:
"Самодиагностика" -> "02-Электроника КП" -> "Базовая установка" -> Ввести значение 69 -> Нажать "Выбор канала".

После проведения базовой установки следует очистить регистратор событий.


Вопрос 015:
Q: Коструктивно DSG7 0AM м DSG7 0CW - практически одинаковые трансмиссии (семейство DQ200), есть ли какая-то разница между устанавливаемыми на них мехатрониками?
A:
Основным отличием являются физические и программные изменения электронной платы управления. В частности, платы 0CW имеют приязку к системе иммобилайзера автомобиля. Более подробно об отличиях в мехатрониках 0AM и 0CW можно прочитать .



Мехатроника

Мехатроника - это название для частных случаев построения электрических приводов (см. электрический привод), где основной упор делается на обеспечение требуемого движения, прежде всего, высокоточного, а не на его энергетические характеристики. Для мехатроники характерно стремление к полной интеграции механики, электрических машин, силовой электроники, микропроцессорной техники и программного обеспечения.

О термине

Термин состоит из двух частей - «меха», от слова механика, и «троника», от слова электроника. Сначала данный термин был торговой маркой (зарегистрирована в 1972 году), но после его широкого распространения компания отказалась от его использования в качестве зарегистрированного торгового знака.

Из Японии мехатроника распространилась по всему миру. Из иностранных изданий термин "мехатроника" попал в Россию и стал широкоизвестен.

Сейчас под мехатроникой понимают системы электропривода с исполнительными органами относительно небольшой мощности, обеспечивающие прецизионные движения и имеющие развитую систему управления. Сам термин "мехатроника" используется, прежде всего, для отделения от общепромышленных систем электропривода и подчеркивания особых требований к мехатронным системам. Именно в таком смысле мехатроника как область техники известна в мире.

Связанные понятия

Стандартное определение (1995):

Мехатронный модуль - это функционально и конструктивно самостоятельное изделие для реализации движений с взаимопроникновением и синергетической аппаратно-программной интеграцией составляющих его элементов, имеющих различную физическую природу.

К элементам различной физической природы относят механические, электротехнические, электронные, цифровые, пневматические, гидравлические, информационные и т. д. компоненты.

Мехатронная система - совокупность нескольких мехатронных модулей и узлов, синергетически связанных между собой, для выполнения конкретной функциональной задачи.

Обычно мехатронная система является объединением собственно электромеханических компонентов с силовой электроникой, которые управляются с помощью различных микроконтроллеров , ПК или других вычислительных устройств. При этом система в истинно мехатронном подходе, несмотря на использование стандартных компонентов, строится как можно более монолитно, конструкторы стараются объединить все части системы воедино без использования лишних интерфейсов между модулями. В частности, применяя встроенные непосредственно в микроконтроллеры АЦП , интеллектуальные силовые преобразователи и т. п. Это уменьшает массу и размеры системы, повышает ее надёжность и дает некоторые другие преимущества. Любая система, управляющая группой приводов может считаться мехатронной.

Иногда система содержит принципиально новые с конструкторской точки зрения узлы, такие как электромагнитные подвесы, заменяющие обычные подшипниковые узлы . К сожалению, такие подвесы дороги и сложны в управлении и в нашей стране применяются редко (на г.). Одной из областей применения электромагнитных подвесов являются турбины, перекачивающие газ по трубопроводам. Обычные подшипники здесь плохи тем, что в смазку проникают газы - она теряет свои свойства.

Мехатроника сегодня

Многие современные системы являются мехатронными или используют элементы мехатроники, поэтому постепенно мехатроника становится «наукой обо всём». Мехатроника применяется во многих отраслях и направлениях, например: робототехника , автомобильная, авиационная и космическая техника , медицинское и спортивное оборудование, бытовая техника .

Примеры мехатронных систем

Типичная мехатронная система - тормозная система автомобиля с АБС (антиблокировочной системой).

Персональный компьютер также является мехатронной системой: ЭВМ содержит много мехатронных составляющих: жёсткие диски, оптические приводы.

См. также

Литература

  • Мехатроника: Пер с япон. / Исии Х., Иноуэ Х., Симояма И. и др. - М.: Мир, 1988. - С. 318. - ISBN 5-03-000059-3
  • Подураев Ю. В. Мехатроника. Основы, методы, применение. - 2-е изд., перераб и доп. - М.: Машиностроение, 2007. - 256 с. - ISBN 978-5-217-03388-1
  • Введение в мехатронику: В 2-х кн. Учебное пособие / А. К. Тугенгольд, И. В. Богуславский, Е. А. Лукьянов и др. Под ред. А. К. Тугенгольда. - Ростов н/Д : Издательский центр ДГТУ, 2004. - ISBN 5-7890-0294-3
  • Карнаухов Н. Ф. Электромеханические и мехатронные системы. - Ростов н/Д : Феникс, 2006. - 320 с. - (Высшее образование). - 3000 экз. - ISBN 5-222-08228-8
  • Егоров О. Д., Подураев Ю. В. Конструирование мехатронных модулей. - М.: Издательство МГТУ «Станкин», 2004. - 368 с.

Ссылки

  • «Теоретические и практические проблемы развития мехатроники»

Wikimedia Foundation . 2010 .

  • Грозозащита
  • Гесс, Виктор Франц

Смотреть что такое "Мехатроника" в других словарях:

    Мехатроника - область науки и техники, основанная на системном объединении узлов точной механики, датчиков состояния внешней среды и самого объекта, источников энергии, исполнительных механизмов, усилителей, вычислительных устройств (ЭВМ и микропроцессоры).… … Официальная терминология

    мехатроника - [Интент] Тематики роботы промышленные EN mechatronics … Справочник технического переводчика

    мехатроника - mechatronika statusas T sritis automatika atitikmenys: angl. mechatronics vok. Mechatronik, f rus. мехатроника, f pranc. mécatronique, f … Automatikos terminų žodynas

    Лукьянов, Евгений Анатольевич - В Википедии есть статьи о других людях с фамилией Лукьянов. Евгений Анатольевич Лукьянов Дата рождения: 1958 год(1958) Место рождения: Ростов на Дону Страна … Википедия

    Тугенгольд, Андрей Кириллович - Андрей Кириллович Тугенгольд Дата рождения: 1937 год(1937) Место рождения: Москва Страна … Википедия

    Уральский государственный университет путей сообщения - У этого термина существуют и другие значения, см. Уральский государственный университет (значения). Уральский государственный университет путей сообщения (УрГУПС) … Википедия

    МИРЭА

    Московский государственный институт радиотехники, электроники и автоматики (технический университет) (МИРЭА) Девиз Лучший среди равных равный среди лучших! Optimus inter pares par inter optimos! Год основания … Википедия

    Московский государственный технический университет радиотехники, электроники и автоматики - Московский государственный институт радиотехники, электроники и автоматики (технический университет) (МИРЭА) Девиз Лучший среди равных равный среди лучших! Optimus inter pares par inter optimos! Год основания … Википедия

    Московский государственный институт радиотехники, электроники и автоматики (технический университет) (МИРЭА) Девиз Лучший среди равных равный среди лучших! Optimus inter pares par inter optimos! Год основания … Википедия