Разъем obd2 распиновка. Виды разъемов с распиновкой OBD2

Это, вероятно, случалось с каждым из нас: вы едете в своем автомобиле и вдруг желтая лампочка «Check Engine» загорается на приборной панели как тревожное предупреждение о том, что возникли какие-то проблемы с двигателем. К сожалению, это оно само по себе не дает каких-либо намеков на то, что именно является причиной неполадки и может означать все что угодно, начиная от неплотно закрытой крышки топливного бака до проблем с каталитическим конвертером. Я помню, как Honda Integra 94-го года имела ЭБУ под креслом водителя и красный светодиод начинал мигать, если возникали какие-то проблемы с двигателем.

Подсчитав количество «блинков», можно было определить код ошибки. По мере того, как ЭБУ автомобилей становятся все более и более сложными, количество кодов ошибок возрастает экспоненциально. Использование бортовой диагностики автомобиля On-Board Diagnostic (OBD-II) позволяет решить эту проблему. Данный адаптер позволяет использовать персональный компьютер для OBD диагностики. Адаптер AllPro функционально совместим с ELM327 и поддерживает все существующие OBD-II протоколы обмена данными:

ISO 9141-2
ISO 14230-4 (KWP2000)
SAE PWM J1850 (Pulse Width Modulation)
SAE VPW J1850 (Variable Pulse Width)
ISO 15765-4 Controlled Area Network (CAN)

VPW, PWM и CAN
Первых два протокола ISO описаны в указанной выше предыдущей публикации. Детальное описание OBD протоколов выходит за рамки данной статьи, я лишь их кратко перечислю.J1850 VPW (Variable Pulse Width) — протокол автомобилей General Motors и некоторых моделей Chrysler со скоростью передачи 10.4 кбит/с по одному проводу.

Напряжение на шине VPW изменяется от 0 до 8 В, данные по шине передаются чередованием коротких (64 мкс) и длинных (128 мкс) импульсов. Реальная же скорость передачи данных по шине изменяется в зависимости от битовой маски данных и находится в пределах от 976 до 1953 байт/с. Это самый медленный из OBD протоколов.

J1850 PWM (Pulse With Modulation) используется в автомобилях корпорации Ford. Скорость передачи здесь 41.6 кбит/ с с использованием дифференциального сигнала по двум проводам. Напряжение на шине изменяется от 0 до 5 В, a длительность импульса составляет 24 мкс. Работа с этим протоколом требует аккуратности в программировании микропроцессора, так как скорость выполнения инструкций языка «C» на PIC микропроцессоре даже с улучшенной PIC18 архитектурой становится сопоставимой с длиной короткой посылки PWM протокола (7 мкс).

CAN (Controlled Area Network) протокол разработан Robert Bosch в 1983 году и окончательно стандартизирован в ISO 11898. Использование CAN шины данных в автомобиле позволяет различным устройствам общаться друг с другом, минуя центральный процессор, так называемый multi-master режим.

Плюсами является также повышенная скорость передачи, до 1 Мбит/с и лучшая помехоустойчивость. Изначально протокол предназначался для использования в автомобилях, но теперь применяется и в других областях. Чтобы повысить надежность передачи данных, в шинах CAN применяется способ дифференциальной передачи сигналов по двум проводам. Образующие эту пару провода называются CAN_High и CAN_Low.

В исходном состоянии шины на обоих проводах поддерживается постоянное напряжение на определенном базовом уровне, приблизительно 2.5 В, называемым рецессивным состоянием. При переходе в активное (доминантное) состояние напряжение на проводе CAN_High повышается, а на проводе CAN_Low снижается, рис.1.


Существует также два формата сообщений или фреймов — стандартный с 11 битным адресным полем (CAN 2.0A) и расширенный с 29 битным полем (CAN 2.0B). Стандартом ISO 15765-4 определяется использование для целей OBD как CAN 2.0A, так и CAN 2.0B. Вместе со скоростями передачи по шине 250 и 500 кбит/с это создает 4 различных CAN протокола.

Поддерживает ли ваш автомобиль OBD-II?
OBD является обязательным только в Северной Америке и Европе. Если в Америке это правило действует с 1996 года, то Евросоюз принял EOBD вариант автодиагностики, основанный на OBD-II, сравнительно недавно. В Европе OBD стал обязательным, начиная с 2001 года, а для дизельных двигателей даже с 2004. Если ваш автомобиль выпущен до 2001 года, то он может вообще не поддерживать OBD даже при наличии соответствующего разъема.

Например, Renault Kangoo 99 года не поддерживает EOBD (хотя редакционная Kangoo dcI60 2004 года с CAN протоколом прошла успешную стыковку с описанным адаптером, а Renault Twingo поддерживает! Те же самые автомобили, сделанные для других рынков, например Турции, могут тоже не быть совместимыми с OBD протоколом. Как определить, какой протокол поддерживается электронным блоком управления автомобиля?

Первое — можно поискать информацию в интернете, хотя там много неточной и непроверенной информации. К тому же, многие автомобили выпускаются для разных рынков с различными протоколами диагностики. Второй более надежный способ — найти разъем и посмотреть, какие контакты в нем присутствуют. Разъем обычно находится под приборной панелью со стороны водителя. Протокол ISO 914-2 или ISO 14230-4 определяется наличием контакта 7, как показано в таблице 1.



Большинство автомобилей последних лет выпуска поддерживает только CAN протокол с контактами 6 и 14 соответственно. В Европе и Северной Америке все новые автомобили, начиная с 2007/ 2008 года, должны использовать OBD только на основе CAN. Замечу, однако, что, как правильно отмечено в комментарии, «Если марка присутствует в таблице, то это не дает гарантии поддержки OBD-II».

Использование L-line в ISO 9141/14230… Отдельно хочется сказать по поводу L-линии в ISO 9141-2/ 14230-4 протоколах. Сейчас она практически нигде не используется, так как для процедуры инициализации связи вполне достаточно только K-линии. В стандарте же, однако, сказано, что сигнал инициализации должен передаваться по двум линиям одновременно, K и L. Владимир Гурский из www.wgsoft.de, автор программы «ScanMaster ELM», собрал большую коллекцию различных ЭБУ.

В качестве примера необходимости L-линии он приводит Renault Twingo 1.2л 2005 года выпуска. Использование здесь при иницилиазации только K-линии приводит к неверному адресу двигателя в ответах ЭБУ. Если же инициализация производится по K и L одновременно, то тогда все работает правильно.

Рис 2

AllPro адаптер на PIC18F2455
Схема моего всепротокольного OBD-II адаптера показана на рис.2 . Основой является микроконтроллер Microchip PIC18F2455, имеющий модуль USB интерфейса. Устройство использует напряжение питания 5 В от шины USB. Конденсатор C6 служит фильтром внутреннего стабилизатора 3.3 В для обеспечения работы USB шины. Светодиоды D2 и D3 являются индикаторами приема/передачи, а светодиод D1 использован для контроля статуса USB шины.

Выход ISO 9141/14230 интерфейса управляется половинкой драйвера IC2-2, а входной сигнал подается через делитель R12/R13 на вход RX (вывод 18), который является триггером Шмидта, как и большинство входов PIC18F2455, что обеспечивает достаточно надежное срабатывание. Для контроля L-линии используется IC3-1 и R10.

Шина J1850 VPW требует напряжения питания 8 В, получаемого от стабилизатора L78L08 IC4. Сигнал на выход VPW подается через инвертор IC3-2 и буферный полевой транзистор Q1. Делитель R7/R8 и внутренний триггер Шмидта на входе RA1 составляют входной интерфейс J1850 PWM протокола. Внутренний компаратор (входы RA0 и RA3) PIC18F2455 вместе с резисторами R4, R5 выделяет дифференциальный сигнал PWM. Для контроля выхода PWM шины используются IC2-1 и полевой транзистор Q2.

Отдельно хочется сказать по поводу поддержки CAN. Microchip не выпускает контроллеры, содержащие и CAN, и USB. Можно использовать контроллер с CAN модулем и внешний USB чип типа FT232R. Или наоборот, подключить внешний CAN контроллер, как сделано в этом адаптере. CAN интерфейс здесь образуют контроллер MCP2515 (IC5) и трансивер MPC2551 (IC6). MCP2515 подключен через SPI шину к PIC18F2455 и программируется каждый раз при подаче питания адаптера.

Согласующие (bus termination) RC цепочки R14/ C10 и R15/C11 предназначены для уменьшения отражений на CAN шине согласно стандарту ISO 15765-4. Использование их не обязательно, при относительно коротком кабеле отражениями можно пренебречь. Вместо PIC18F2455 можно использовать PIC18F2550 с той же самой прошивкой, см. варианты замены в таблице 2.



таблица 2

Внешний вид устройства показан на рис.3 и обложке, а печатная плата на рис.4.



Программирование PIC18F2455

Для программирования PIC18 можно использовать несложный JDM программатор , схема показана на рис.5.

рис 5

Он очень прост и может бы собран за час на макетной плате. Недостатком является то, что программатор требует наличия последовательного (Com) интерфейса в компьютере и не работает с виртуальными USB/Com адаптерами. Использование ноутбуков также не рекомендуется, так как они не обеспечивают необходимого напряжения на выходе Com порта.

рис 6

Разводка программатора показана на рис.6 и сделана с использованием так называемой «stripboard» технологии, достаточно популярного подхода к макетированию. Типичная stripboard имеет матрицу отверстий с шагом 2.54 мм для монтажа электронных компонентов, соединенных полосками меди на обратной стороне, отсюда и название — stripboard.

Разрезав полоски на обратной стороне и установив сверху проволочные перемычки, можно быстро собрать относительно несложные конструкции. Полоски легко перерезаются зенковкой отверстий обычным сверлом. Существует даже специальная программа — «LochMaster» для проектирования конструкций таким способом. При использовании программатора следует обратить внимание, что корпус персонального компьютера (контакт 5 DB9 разъема) не соответствует корпусу программатора.

Другим условием является использование «полноценного» последовательно кабеля со всеми проводами, необходимыми для работы схемы. Программатор надежно работает с WinPic , единственная проблема заключается в том, что требуется отдельно загрузить файл-дескриптор PIC18F2455.dev (или PIC18F2550.dev) из дистрибуции Microchip IDE после того, как установлен собственно WinPic.

Другой программой, работающей с JDM программатором, является PICPgm , никаких дополнительных файлов здесь не требуется, хотя автору следует поработать над английской грамматикой, рис.7 . Прошивка адаптера доступна.

OBD-II кабель
Для подключения к бортовому компьютеру адаптер использует «стандартный» DB-9/OBD-II кабель. Разводка кабеля показана в таблице 3.

Подключение и тестирование устройства. Правильно собранный адаптер в налаживании не нуждается и распознается Windows как USB устройство. Микропроцессор PIC18F2455 не имеет собственного драйвера и использует Windows 2000/XP/Vista CDC (Communication Device Class) драйвер usbser.sys виртуального Com порта.



По поводу использования драйвера хочется, однако, добавить, что согласно информации www.usb.org исправил баги в usbser.sys только начиная с Windows XP SP2 и использование адаптера с Windows 2000 может быть проблематично. После того, как адаптер распознался как USB устройство и драйвер установлен, можно приступать к тестированию.

Для этого требуется подключить источник стабилизованного напряжения 12 вольт на выводы 1 и 9 разъема J2 и подключить адаптер к персональному компьютеру через USB кабель. Проверяется наличие напряжения 8 В на выходе стабилизатора IC4. Следующим шагом является запуск Windows приложения HyperTerm и подсоединения к Com порту адаптера.

Устройство имеет процедуру самодиагностики с проверкой прохождения сигнала со выхода на вход по всем протоколам. Для этого используется команда «AT@3», рис.8.

Прохождение проверяется по следующим цепям:

IC2-1, R4 для отрицательной шины PWM
Q2, D6, R5 для положительной шины PWM
IC3-2, IC4, R11, Q1, D5, R7, R8 для VPW
IC2-2, R9, R12, R13 для ISO 9141/14230
Ответ контроллера MCP2515 по шине SPI

Например, отсутствие IC2 приведет сразу к двум ошибкам, рис.9 .

Процедура самодиагностики не включает проверку CAN трансивера MCP2551, здесь можно просто замерить напряжение на выводах 6 и 7. Оно должно быть в пределах 2.5 В.

Работа с Адаптером
Адаптер совместим по системе команд с ELM327 и может использоваться с приложениями, работающими с ELM327. Я предпочитаю использовать «ScanMaster ELM» Владимира Гурского , рис.10.



ScanTool.net for Windows v1.13
Digimoto
PCMSCAN
EasyObdII Pro
В качестве примера приведу ситуацию, которая случилась с VW Passat моего знакомого. В автомобиле загорелась лампочка «Check Engine», подключение ANPro адаптера определило ошибку Р0118 -«engine coolant temperature circuit high input», т.е. высокий уровень сигнала с датчика температуры охлаждающей жидкости, рис. 11 . Дальнейшее расследование выявило неисправный датчик. После замены датчика ошибка была стерта с помощью «Clear Trouble codes» кнопки, см. рис.12. Ошибка исчезла и больше не появлялась, рис.13.

Не подключается K - Line адаптер (VAG COM )

При изготовлении K-Line адаптера самостоятельно или приобретении его в магазине, пользователи в отдельных случаях сталкиваются с проблемой в подключении адаптера.

Данная проблема имеет два подвида:

Проблема при подключении адаптера к ПК (с нашим адаптером K-Line 409 , в комплекте идет видео инструкция по работе с прибором, рекомендуем ознакомится с ней если у Вас возникают вопросы)

Проблема подключения адаптера K Line 409 (VAG COM) к автомобилю

Для решения первой проблемы необходимо установить драйвер для устройства находящийся на диске, после чего перейти в диспетчер устройств, и посмотреть корректно ли отображается Ваш адаптер. Если в диспетчере устройств Вы видите в разделе COM порты и LPT Ваш адаптер без каких-либо знаков вопросов и т.п. то можете быть спокойны, драйвера установлены правильно. Для большей уверенности можно два раза кликнув по нему найти надпись о том, что устройство работает нормально.

В случае если Ваш адаптер обозначается со знаком вопроса или находится в разделе другие устройства, видимо Вы не установили драйвер и Вам необходимо его переустановить.

Выбираем наше устройство, выбираем, обновить драйвер и указываем папку с драйверами, после чего жмем далее и видим процесс установки, в противном случае выбираем другую папку и повторяем операцию пока не достигнем успеха.

В случае если драйвер Вы установили корректно, но при подключении к автомобилю соединение с ним не происходит, для начала проверьте кабель на работоспособность, для этого установите программу васядиагност, после чего в разделе настройки выберете номер порта на котором расположен Ваш адаптер и нажмите кнопку тест (двигатель автомобиля должен быть заведен или включено зажигание).

Если Вы получили сообщение об успешном обнаружении адаптера, следующим шагом будет подборка программы для Вашего автомобиля с диска идущего с адаптером и его диагностика.

Если Вы получили сообщение о том, что адаптер не найден или порт закрыт, то еще раз проверьте номер порта в диспетчере устройств и корректность установки драйвера устройства. Если все сделано верно, проверьте работоспособность кабеля на другом автомобиле и другом ПК.

В случае если при подключении через другой ПК на другом автомобиле адаптер заработает и при этом отказывается работать на Вашем ПК, то возможно проблема в установленной ОС, антивирусе, комплектующих компьютера. Чаще всего, если на Вашем ПК кабель работает на другом автомобиле, но отказывается работать на Вашем автомобиле, проблема заключается в обрыве провода К-линии. Возможно провод просто немного отошел из колодки (колодки АПС иммобилизатора) и нормальный контакт отсутствует. Если Вы проверили контакты на автомобиле и все в порядке, а кабель по-прежнему не заработал, то Вам необходимо выполнить следующие действия:

- Проверить напряжение на К-линии . Для этого, выставите на мультиметре режим для измерения постоянного напряжения, после чего красный щуп подключите к проводу К-линии, а черный щуп подсоединяем на "массу" к любой точке кузова. Посмотрите на показания прибора, прибор должен отобразить напряжениеоколо 12+В плюс минус 2В . Обратите внимание, что выполнять проверку нужно именно мультиметром, а не лампочкой или прочими подручными средствами. В случае если напряжение отсутствует, переходите к следующему пункту.

Распиновка колодки OBD 2 Распиновка колодки GM 12 Pin OBD 1


2) Если на Вашем автомобиле ВАЗ разъем с АПС отключен, Вам необходимо проверить наличия перемычки в колодке АПС между 9 и 18 контактами колодки.


4) Если Вы используете переходник на GM 12 pin для старого разъема OBD1 используемого на автомобилях ВАЗ по 2004 г.в., а так же nexia n100 и matiz, у Вас может быть, не разведено питание с бензонасоса, в этом случае Вам необходимо доработать Вашу проводку на разъеме. Обязательно проверьте, чтобы в Вашем переходнике была разведена к линия, питание и масса, согласно приведенного фото. L-линия может отсутствовать, т.к. в настоящее время, не используется в автомобилях.


3) Проблема может быть в иммобилайзере (сигнал К-линии приходит, но после иммобилайзера пропадает). Проверьте наличие сигнала К-линии на 18 контакте колодки АПС. Этим же способом можно проверить, есть ли обрыв между колодкой АПС разъемом диагностической колодки. (при некорректном отключении иммо, к линия до диагностической колодки может не доходить.)

При использовании адаптера так же не забудьте о базовых правилах:

Подключение и выключение адаптера в диагностический разъем необходимо выполнять при отключенном зажигании.

Диагностировать автомобиль необходимо на включенном зажигании или заведенном двигателе (отдельные модели вроде Январь 5.1 диагностируются только на заведенном двигателе)

При использовании самодельных переходников на другие колодки или использование навесного монтажа, внимательно ознакомьтесь с распиновкой разъема и убедитесь, что не выполняете подключение по зеркальной схеме.

- не допускается совместное использование встроенного БК автомобиля и K-line адаптера т.к. связь по одному проводу для двух устройств, как правило, вызывает ошибки подключения, отключите БК на время тестирования автомобиля K-Line адаптером после чего подключите вновь.

Эти правила сохранят работоспособность Вашего ЭБУ и K Line адаптера.

В настоящее время подавляющее число иномарок, а так же автомобилей отечественного производства имеют OBD2 диагностический разъем . Через данный разъем Вы можете подключать диагностическое оборудование для диагностики Вашего автомобиля, а так же подключать бортовые компьютеры и прочие устройства, работающие через диагностическую колодку. Иногда у пользователей возникает вопрос по распиновке диагностических колодок тех или иных марок автомобилей. Для Вашего удобства мы предлагаем готовые переходники для работы с различными диагностическими колодками автомобилей. Однако если Вы забыли приобрести переходник для Вашего автомобиля либо Вам понадобилось в экстренных условиях его изготовить, либо подключить адаптер напрямую, то в данной статье Вы найдете информацию о распиновке колодок стандарта OBD 2, а так же автомобилей Российского и импортного производства.

Распиновка колодки OBD 2 (наиболее распостраненный вариант в иномарках с 2002 года, а так же устанавливается во все автомобили ВАЗ после 2002 г.в.):



Обозначения контактов:

7-K-линия диагностики
4/5 - GND выступающие контакты
16 - питание адаптера +12В

Распиновка колодки ВАЗ до 2002 года:


Обозначения контактов:
M - k-линия диагностики
H или G - питание адаптера +12В
При подключении адаптера без колодки напрямую к проводам, питание лучше брать от прикуривателя, так как изображенный на рисунке H контакт в зависимости от модели, может быть не разведен, а при использовании G контакта бензонасос дает очень большие импульсы которые могут повредить адаптер.
(В 99% случаях Вы можете использовать и указанные контакты т.к. повреждение адаптеров от бензонасоса практически не встречается.)
Разъем ГАЗ (Газель) УАЗ

Обозначения контактов:
2 - Питание адаптера +12В
12 - масса
10 - L-линия диагностики (может быть не разведена, как правило не используется)
11 - K-линия диагностики
Если Вас интересует расположение диагностической колодки в Вашем автомобиле, а так же распиновка диагностических колодок автомобилей других марок. То Вы можете ознакомиться с ними через систематизированный каталог диагностических адаптеров.

Современный автомобиль представляет сложный электронно-механический комплекс. Определение неисправного узла или механизма в таком комплексе без помощи специального диагностического оборудования требует больших трудозатрат, а во многих случаях и вовсе невозможно.

Поэтому практически все производимые транспортные средства оборудуются интерфейсами для подключения к диагностическим устройствам. К наиболее распространенным элементам таких интерфейсов относится разъем OBD2.

Что такое диагностический разъем по стандарту OBD2

Немного истории

Впервые производители серьезно задумались об автоматизации диагностики автомобиля в 70-х годах. Именно тогда появились электронные блоки управления двигателей. Они стали оснащаться системами самодиагностики и диагностическими разъемами. Замыкая контакты разъема, можно произвести с помощью блинк-кодов диагностику неисправности блоков управления двигателя. По мере внедрения персональной компьютерной техники были разработаны диагностические устройства для сопряжения разъемов с компьютерами.

Появление на рынке автомобилей новых производителей, расширяющаяся конкуренция предопределили необходимость унификации диагностических устройств. Первым производителем, который всерьез подошел к решению этой задачи, был General Motors, который ввел в 1980 году универсальный протокол обмена информации по интерфейсу ALDL Assembly Line Diagnostic Link.

В 86-м году протокол немного усовершенствовали, увеличив объем и скорость передачи информации. Уже в 1991 году в американском штате Калифорния ввели регламент, согласно которому все продаваемые здесь авто следовали протоколу OBD1. Это была аббревиатура On-Board Diagnostic, то есть бортовая диагностика. Она значительно упростила жизнь фирмам, обслуживающим транспортные средства. Этот протокол еще не регламентировал вид разъема, его расположение, протоколы ошибок.

В 1996 году действие обновленного протокола OBD2 уже распространилось на всю Америку. Поэтому производители, желающие освоить американский рынок, были просто вынуждены ему соответствовать.

Увидев явное преимущество процесса унификации ремонта и обслуживания авто, стандарт OBD2 был распространен на все транспортные средства с бензиновыми двигателями, продаваемые в Европе с 2000 года. В 2004 году обязательный стандарт OBD2 распространен на дизельные авто. Одновременно он был дополнен стандартами Controller Area Network для шин обмена данными.

Интерфейс

Неправильно полагать, что интерфейс и разъем OBD2 есть одно и то же. В понятие интерфейса входит:

  • непосредственно сам разъем, включая все электрические подключения;
  • система команд и протоколов обмена информации между блоками управления и программно-диагностическими комплексами;
  • стандарты выполнения и расположения разъемов.

Не обязательно разъем OBD2 должен быть выполнен в 16-ти пиновом трапециевидном исполнении. На многих грузовых и коммерческих авто они имеют другую конструкцию, но основные шины передачи в них также унифицированы.

В легковых автомобилях до 2000 года выпуска производитель мог самостоятельно определять форму OBD-разъема. Например, на некоторых автомобилях MAZDA нестандартизированный разъем применялся вплоть до 2003 года выпуска.

Четкое место установки разъема также не регламентировано. Стандарт указывает: в пределах досягаемости водителя. Более конкретно: не далее 1 метра от руля.

Это часто доставляет трудность для неопытных автоэлектриков. Наиболее частые расположения разъема:

  • около левого колена водителя под приборной панелью;
  • под пепельницей;
  • под одной из заглушек на консоли или под приборной панелью (в некоторых моделях VW);
  • под рычагом ручника (часто у ранних OPEL);
  • в подлокотнике (бывает у Рено).

Точное расположение диагностического разъема для своего автомобиля можно найти в справочниках или просто «погуглить».

В практике автоэлектрика имеются случаи, когда разъем в процессе ремонтов после аварий либо модификации кузова или салона был просто отрезан или перенесен в иное место. В таком случае требуется его восстановление, руководствуясь электрической схемой.

Распиновка (схема подключения) OBD2 разъема

Схема подключения выводов стандартного OBD2 16-ти пинового разъема, используемого в большинстве современных легковых автомобилей, представлена на рисунке:

Назначение выводов:

  1. шина J1850;
  2. устанавливается производителем;
  3. масса авто;
  4. сигнальная земля;
  5. CAN-шина высокий уровень;
  6. K-Line шина;
  7. устанавливается производителем;
  8. устанавливается производителем;
  9. шина J1850;
  10. устанавливается производителем;
  11. устанавливается производителем;
  12. устанавливается производителем;
  13. шина CAN J2284;
  14. L-Line шина;
  15. плюс с АКБ.

Основные при диагностировании это CAN и K-L-Line шины. В процессе проведения диагностических работ они путем обмена информации по соответствующим протоколам опрашивают блоки управления автомобиля, получая информацию об ошибках в виде унифицированных кодов.

В некоторых случаях диагностическое устройство не может связаться с блоками управления. Это чаще всего связано с неисправностью CAN-шины: коротким замыканием или обрывом. Часто CAN-шину замыкают неисправности в блоках управления, например, ABS. Эту проблему можно решить отключением отдельных блоков.

Если потеряна связь по OBD-диагностике, сначала проверяют, родная ли магнитола установлена на авто. Иногда нештатная автомагнитола закорачивает К-Line шину.

Для большей верности при этом необходимо отключить магнитолу.

К выводам, назначение которых определяет производитель, обычно напрямую подключаются диагностические сигналы конкретных блоков управления (ABS, подушек безопасности SRS, кузовом и др.)

Подключение через переходники

В случае, если на автомобиль установлен нестандартный разъем (выпуск авто до 2000 года либо грузовой или коммерческий автотранспорт), можно воспользоваться специальными переходниками или изготовить их самостоятельно.

В интернете можно найти схему перекоммутации выводов разъема подобно показанной на рисунке:

Если автомобиль находится в постоянной эксплуатации или для профессиональной работы в качестве автоэлектрика проще приобрести переходник (комплект переходников).

Для диагностического сканера AUTOCOM они имеют вид:

В минимальный стандартный набор для легковых авто входит восемь переходников. Один разъем переходника подключается к OBD разъему автомобиля, другой – к OBD диагностическому кабелю либо напрямую к BLUETOOTH ELM 327 сканеру.

Не во всех случаях использование переходников обеспечивает диагностирование автомобиля. Некоторые автомобили не обеспечивают сопряжение по OBD-протоколу, несмотря на то, что могут быть подключены к OBD-разъему. Это больше относится к пожилым авто.

Общий алгоритм диагностики автомобиля

Для диагностики потребуется автосканер, устройство отображения информации (ноутбук, смартфон) и соответствующее программное обеспечение.

Порядок проведения диагностических работ:

  1. Производится подключение OBD-кабеля к диагностическому разъему автомобиля и автосканеру. На сканере при подключении должен загореться сигнальный светодиод, свидетельствующий о подаче напряжения +12 Вольт на сканер. Если вывод +12 Вольт на разъеме не подключен, диагностирование невозможно. Следует искать причину отсутствия напряжения на 16 выводе диагностического разъема. Возможной причиной может быть неисправность предохранителя. Сканер (если это не самостоятельное устройство) подключается к ноутбуку. На компьютере загружается программное обеспечение для диагностических работ.
  2. В интерфейсной программе выбирается марка авто, двигателя, год выпуска.
  3. Включается зажигание, ожидается окончание самодиагностических работ авто (пока моргают лампочки на приборной панели).
  4. Производится запуск статического сканирования ошибок. В процессе диагностирования на сканере будет сигнализироваться морганием светодиодов процесс диагностики. Если этого не происходит, скорее всего, диагностика будет неуспешной.
  5. По окончании сканирования программа выдает коды ошибок. Во многих программах они сопровождаются русифицированной расшифровкой, иногда не следует им полностью доверять.
  6. Следует записать все коды ошибок до их удаления. Они могут удалиться, через некоторое время появиться вновь. Так часто случается в системе ABS.
  7. Удалить (точнее потереть) ошибки. Такая опция есть во всех сканерах. После этой операции неактивные ошибки удалятся.
  8. Выключить зажигание. Через пару минут вновь включить зажигание. Произвести запуск двигателя, дать поработать минут пять, лучше произвести контрольный заезд метров на пятьсот с обязательным произведением поворотов вправо-влево и торможением, движением задним ходом, включением световых сигналов и прочих опций для максимального опроса всех систем.
  9. Произвести повторное сканирование. Сравнить вновь «набитые» ошибки с предыдущими. Оставшиеся ошибки будут активными, их необходимо устранять.
  10. Заглушить авто.
  11. Произвести повторное дешифрование ошибок с помощью специальных программ или интернета.
  12. Включить зажигание, запустить двигатель, выполнить динамическую диагностику двигателя. Большинство сканеров позволяют в динамическом режиме (на запущенном двигателе, изменении положения педалей акселератора, тормоза, других органов управления) измерять параметры впрыска, угла зажигания и другие. Эти сведения более полно описывают работу автомобиля. Для расшифровки полученных диаграмм требуются навыки автоэлектрика и моториста.

Видео — процесс проверки автомобиля через диагностический разъем ОБД 2 с помощью Launch X431:

Как расшифровать коды ошибок

Большинство кодов ошибок OBD унифицировано, то есть определенному коду ошибки соответствует одна и та же расшифровка.

Общая структура кода ошибки имеет вид:

В некоторых автомобилях запись ошибки имеет специфический вид. Надежнее скачать коды ошибок в интернете. Но делать это для всех ошибок в большинстве случаев будет лишним. Можно воспользоваться специальными программами типа AUTODATA 4.45 либо аналогичными. В них помимо расшифровки указываются возможные причины, правда, лаконично, и на английском языке.

Проще, надежнее и информативнее ввести в поисковике, например, «ошибка P1504 Opel Verctra 1998 1,9 Б», то есть указать сокращенно все сведения об авто и код ошибки. Результатом поиска будут отрывочные сведения на различных форумах, других сайтах. Не следует сразу слепо следовать всем рекомендациям. Но, подобно мнению зала на известной программе, многие из них будут правдоподобными. К тому же, вы можете получить видео- и графическую информацию, иногда крайне полезную.

Идея не новая, но вопросов много. С одной стороны, можно снять практически любые данные, а с другой стороны, OBDII похож на лоскутное одеяло, т.к. общее количество физических интерфейсов и протоколов напугает любого. А объясняется всё тем, что к моменту появления первых версий спецификаций OBD большинство автопроизводителей уже успели разработать что-то своё. Появление стандарта хоть и навело некоторый порядок, но потребовало включения в спецификацию всех интерфейсов и протоколов, которые на тот момент существовали, ну, или почти всех.

В OBDII разъёме по стандарту J1962M присутствуют три стандартных интерфейса: MS_CAN, K/L-Line, 1850, там же плюс аккумулятора и две земли (сигнальная и просто масса). Это по стандарту, остальные 7 из 16 выводов – ОЕМ, то есть каждый производитель эти выводы использует как ему заблагорассудится. Но и стандартизованные выводы зачастую имеют расширенные, продвинутые функции. Например, MS_CAN может быть HS_CAN, HS_CAN может быть на других пинах (неоговоренных стандартом) наряду со стандартным MS_CAN., Пин №1 может быть: у форда – SW_CAN, у WAGов – IGN_ON, у КИА – check_engene. И т.д. Все интерфейсы также не были стационарны в своём развитии: тот же интерфейс K –Line изначально был однонаправленным, сейчас он двунаправленный., Бодрейт CAN интерфейса также растёт. Вообще, подавляющее большинство европейских автомобилей 90-х и начала нулевых вполне себе можно было продиагностировать имея только K –Line, а большинство американских – только SAE1850. В настоящее время общий вектор развития – это всё более широкое применение CAN, повышение скорости обмена., всё чаще видим и однопроводный SW_CAN.

Существует мнение, что англоязычный программист сидя на профильных(англоязычных же) форумах, закопавшись в тексты стандартов, может за “максимум 4-5 месяцев” построить универсальный движок, который со всем этим разнообразием справится. На практике это не так. Всё равно возникает потребность сниферить каждую новую машину., иногда даже одну и ту же машину, но в разных комплектациях. И получается, что заявляют о 800-900 типах поддерживаемых автомобилей, а на практике 10-20 реально оттестированных. И это система, –в РФ автору известны, по-крайней мере, 3 команды разработчиков, пошедших по этому тернистому пути и все с одинаково плачевным результатом: нужно сниферить/кастомизировать каждую модель автомобиля, а ресурсов/средств на это нет. И причина этого вот в чем: стандарт-стандартом, а каждый производитель когда вынужденно, а когда и преднамеренно вносит в свою реализацию что-то своё, стандартом не описанное. Кроме того, не все данные по-умолчанию присутствуют на разъёме. Есть данные, появление которых нужно инициировать (дать тому или иному блоку автомобиля команду передать нужные данные).

И вот тут на сцену выходят интерпретаторы шины OBDII. Это микроконтроллер, с набором интерфейсов, соответствующих стандарту J1962M, переводящий всё многообразие данных на разных интерфейсах диагностических разъёмов в язык, более удобный для приложений, например для приложений диагностики. Иными словами, всё многообразие протоколов расшифровывается теперь приложением, не важно, на чём работающим – на компьютере с Windows или на планшете/смартфоне. Первым массовым интерпретатором OBDII с открытым протоколом стал ELM327. Это 8-ми битный микроконтроллер MicroChip PIC18F2580. Пусть читателя не удивляет тот факт, что этот микроконтроллер является массовым прибором общего применения. Прошивка как раз проприентарная и реальная стоимость “PIC18F2580+FirmWare” составляет внушительные 19-24$. То есть сканер, выполненный на “честном” чипе ELM327 не может стоить меньше, чем 50 вечнозелёных президентов. Откуда же на рынке такое разнообразие сканеров/адаптеров с ценами “от 1000рублей”, спросите Вы? А это наши китайские друзья постарались! Уж как они клонировали этот чип, травили кристалл послойно или сниферили денно и ночно – оставим за кадром. Но факт остаётся: на рынке появились клоны (для справки: 8-ми битный контроллер MicroChip в оптовых закупках ныне стоит меньше доллара). Другое дело, насколько правильно эти клоны работают. Есть мнение, что “пока народ покупает дешёвые адаптеры, автоэлектрики без работы не останутся”. То есть покупает человек адаптер с мыслью “чего-нибудь там перезалить или настроить”., а результат получает иной, ну, то есть, не тот, на который рассчитывал. Ну например, вдруг начинает всеми своими огоньками мультимедиа-система моргать, или выскакивает ошибка, или вообще коробка в аварийный режим переходит. И хорошо, если без серьезных последствий – в большинстве случаев специалист с профессиональным оборудованием вылечит железного коня. Но случается и иначе. Здесь могут смешаться сразу несколько факторов: неправильный адаптер(клон), неправильный софт, неправильная связка адаптер+софт, ну и “кривые” руки тоже свою роль сыграть могут. Замечу, что адаптер на честном чипе от производителя с правильным софтом к плачевным результатам не приведёт, по крайней мере, автору о таких случаях не известно.
А что можно сделать с помощью такого адаптера? Ну наверное, самый частый случай, положить в бардачок “на всякий случай”. Посмотреть и сбросить ошибку, коль скоро та появится. Одометр сбросить перед продажей авто, или наоборот, “накрутить” если ты наёмный водитель. Включить какую-либо опцию в автомобиле, которая по-умолчанию выключена, а у официального дилера эта услуга платная. Обновление прошивок и переконфигурирование электронных блоков, всё-таки оставим специалистам, но большинство адаптеров позволяют и это. Кому-то понравится просто иметь больше информации о параметрах работы двигателя и других систем в виде красивой графики на планшете или смартфоне. Часто встречаются на дороге, почему-то таксисты, у которых андроид-планшет установлен перед приборной панелью и полностью её перекрывает, так вот: планшет этот скорее всего подключен к такому адаптеру по блютузу или по Wi-Fi. Есть и ещё целый ряд применений, это использование такого адаптера совместно с телематическим прибором (трекером) или сигнализацией. Подключение к диагностическому разъёму посредством такого адаптера позволяет малой кровью снимать данные, необходимые для мониторинга. В большинстве случаев такой метод обходится разработчику дешевле, да и сама установка проще, ведь исчезает необходимость в установке различных датчиков, всё (ну или почти всё) можно снять с OBDII.
Другое дело, что возможности чипа в настоящее время уже недостаточны и для использования в современных автомобилях. Где-то в середине нулевых годов пошли вверх скорости обмена по шине CAN, появился SW_CAN. Но самое главное: возросла длина (количество символов) в кодовых словах. И если аппаратно можно, через реле или банальный тумблер, приляпать к ELM327 костыли, которые позволят работать и с MS и с HS да и с SW релизами CAN, то на длинные кодовые слова вычислительной мощности PIC18F2580 с его 4 MIPS явно недостаточно. К слову, последняя версия ELM327 (V1.4) датируется 2009 годом. И использовать этот чип без “костылей” можно только для автомобилей выпуска до середины нулевых. Так что же делать. Выход, как ни странно есть, причём не один.
CAN-LOG, тоже интерпретатор, но не полного набора интерфейсов OBDII, а двух CAN шин. Оказывается, этого достаточно, чтобы в большинстве случаев снять всю необходимую информацию. Правда, далеко не у всех автомобилей обе CAN шины выведены на диагностический разъём. Значит, придётся подключаться под панелью приборов. А это не всегда приемлемо из соображений сохранения гарантии, правда есть вариант беспроводного съёма информации с шины, но это ещё дороже, да и достоверность снятых данных не 100%. Можно использовать как готовый прибор, подключив его посредством УАРТа или RS232, так и просто чип, интегрировав его на плату устройства с небольшим количеством дискретных компонентов. Стоимость прибора – конечно выше, чем стоимость аутентичного ELM327, но это компенсируется огромным списком поддерживаемых автомобилей и функций. Причём в список поддерживаемых автомобилей включены не только легковые автомобили, но и также грузовики, строительная, дорожная и сельскохозяйственная техника. CAN-LOG работает несколько иначе, чем ELM327 и его клоны. При подключении к шинам автомобиля необходимо выбрать и установить номер программы, соответствующей автомобилю. И это удобно, т.к. разработчику не нужно вникать во всё многообразие протоколов. (В ELM327 выбор автомобиля и тонкая настройка чипа отданы на откуп приложению).
Существуют и иные решения, позволяющие легко и изящно снимать данные с диагностического разъёма. Ну а вопрос о том, можно ли приручить штатный диагностический разъём, и как, каждый разработчик решит сам. Для парка автомобилей одной марки, можно попытаться написать свой софт, если конечно производитель не закрывает протоколы. А если телематическое устройство будет устанавливаться на разные модели, то разумнее использовать какой-либо из OBDII интерпретаторов.