Возраст шины: читаем по резине. Как сберечь шины автомобиля от износа и старения Основные причины повреждения и износа автомобильных шин

РТИ или резино-технические изделия имеют особые показатели, благодаря которым остаются очень востребованными. Особенно современные. Они имеют улучшенные показатели упругости, непроницаемости для иных материалов и веществ. Также обладают высокими показателями электроизоляционных и иных качеств. Не удивительно, что именно РТИ все чаще применяются не только в автомобилестроении, но и авиации.

Когда средство передвижения эксплуатируется активно и имеет большой пробег, техническое состояние РТИ значительно снижается.

Немного об особенностях износа РТИ

Старение каучука и некоторых видов полимеров происходит в условиях, на которые влияет:

  • тепло;
  • свет;
  • кислород;
  • озон;
  • напряжения/сжатия/растяжения;
  • трения;
  • рабочая среда;
  • эксплуатационный срок.

Резкий перепад условий, особенно климатических, имеет непосредственное влияние на состояние РТИ. Их качество ухудшается. Поэтому все чаще используются полимерные сплавы, которые не боятся понижений градусов и их повышения.

При снижении качества резино-технических изделий, они быстро выходят из строя. Часто именно весенне-летний период, после зимнего холода, является переломным. При повышении температуры на градуснике, скорость старения РТИ увеличивается в 2 раза.

Чтобы обеспечить потерю эластичности, для резино-технических изделий достаточно пережить значительное и резкое похолодание. Но если накладки и втулки изменяют свои геометрические формы, появляются мелкие порывы и трещины, это приведет к отсутствию герметичности, что, в свою очередь, влечет к поломкам систем и соединений в авто. Минимум, что может проявиться – это течь.

Если сравнивать каучуковые изделия, лучше неопрен. Более подвержены изменениям каучуковые РТИ. Если не защищать и те, и другие от солнца, ГСМ, кислотных или агрессивных жидкостей, механических повреждений, они не смогут пройти даже минимальный, определенный производителем, эксплуатационный срок.

Особенности разных РТИ

Свойства полиуретановых и каучуковых резино-технических изделий – совершенно разные. Поэтому и условия для хранения будут отличаться.

Полиуретан отличается тем, что он:

  • пластичен;
  • эластичен;
  • не подвержен крошению (в отличие от резиновых изделий);
  • не застывает, как каучук, при понижениях температуры;
  • не теряет геометрических форм;
  • при упругости, достаточно тверд;
  • устойчив к абразивным веществам и агрессивным средам.

Полученный путем жидкого смешивания, этот материал получил широкое распространение в автомобилестроении. Синтетический полимер сильнее каучука. При однородном составе полиуретан оставляет свои свойства в разных условиях, что упрощает условия и характеристики его применения.

Как видно из выше изложенного материала, полиуретан выигрывает по свойствам у резинотехнических изделий. Но он не применяется повсеместно. Кроме того, появляются силиконовые сплавы. И что лучше – понимает далеко не каждый водитель.

Полиуретан технологически изготавливается дольше. 20 минут уходит на выпуск резинового РТИ. И 32 часа – на полиуретан. Но резина – материал, рожденный путем механического смешивания. Это влияет на ее неоднородность состава. А также влечет потерю эластичности и однородность компонентов. Именно резиновые шланги и герметичные накладки при хранении застывают и становятся жестче, растрескиваются на поверхности и становятся мягкими внутри. Их срок – всего 2 – 3 года.

Уход и хранение

От состояния и качества РТИ зависит очень важный процесс – контроль над управлением. Чтобы понимать важность резино-технических изделий, надо знать, что нарушения в их структуре ведут у следующим последствиям:

  • повышенному износу шин при большой нагрузке по причине неправильной работы некоторых систем и соединений;
  • неравномерности в пути торможения;
  • ощутимым нарушениям в обратной связи с управлением через руль;
  • разрушениям деталей-соседей или в близлежащих узлах.

РТИ необходимо хранить:

  1. Складывать свободно, чтобы не было чрезмерной нагрузки или уплотнения;
  2. Контролировать необходимый температурный режим в пределах от нуля до плюс 25 градусов по Цельсию;
  3. В условиях, где нет повышенной влажности, выше 65%;
  4. В помещениях, где нет люминисцентных ламп (лучше их заменить на приборы освещения накаливания);
  5. В условиях, где нет поступления озона в большом количестве или аппаратов, вырабатывающих его;
  6. Обращая внимание на наличие/отсутствие прямых лучей солнца (никакого попадания УФ напрямую не может быть также, как условий, создающих тепловой перегрев для резино-технических изделий).

При колебаниях температуры в холодный период и жаркое время года, необходимо понимать, что гарантийный срок хранения РТИ сужается до цифры, равной 2 месяца.

Московский Авиационный Институт

(Технический Университет)

Кафедра материаловедения

Курсовая работа

по материаловедению

на тему:

"Резины, стойкие к старению"

Проверил: Вишневский Г.Е.

Выполнил: Павлюк Д.В.

    Введение

    Атмосферное старение резин

    Защита резин от атмосферного старения

    Изменение механических свойств резин при термическом старении

    Термическое старение резин при сжатии

    Защита резин от радиационного старения

    Список используемой литературы

ВВЕДЕНИЕ.

Резиной называется продукт специальной обработки (вулканизации) каучука и серы с различными добавками.

Резина отличается от других материалов высокими эластическими свойствами, которые присущи каучуку - главному исходному материалу резины. Для резиновых материалов характерна высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.

По условиям эксплуатации к резине предъявляются раз­личные требования. Резиновая обкладка транспортерных лент, пе­редающих руду или каменный уголь, при низкой температуре должна быть морозостойкой и хорошо противостоять истиранию;

резиновая камера в рукавах для нефтепродуктов должна быть стойкой к набуханию; резиновая обкладка железнодорожных ци­стерн для перевозки соляной кислоты-стойкой к ее химическому действию и т. д.

Особые требования предъявляются к резиновым изделиям, при­меняемым в самолетах, в конструкциях которых имеются сотни разнообразных резиновых деталей. Такие изделия, наряду с ком­пактностью и малым весом, должны быть эластичны и прочны. Очень важно сохранение деталями их свойств в широких пределах температур и в ряде случаев при воздействии различных жидких и газовых сред. При полете со скоростью 3600 км/ч даже на высоте 5000 м температура нагрева обшивки доходит до +400 °С; детали же находящиеся в узлах двигателей, должны сохранять свои свой­ства при температуре, доходящей до +500 ˚С. В то же время ряд деталей подвергается воздействию температур порядка минус 60 °С и ниже. Поскольку габариты деталей самолетов оставаться практически постоянными в продолжение всего срока службы, малые остаточные деформации сжатия являются необхо­димым качеством таких резин. Еще большие требования предъ­являются к резинам для ракетостроения.

Наряду с широко применяемыми в резиновом производстве каучуками об­щего назначения - натуральным (НК) и бутадиен-стирольными (СКС-ЗОА, СКС-30, СКМС-30 и др.) используются и специальные:

хлоропреновые каучуки (А, Б, С, НТ), бутадиен-нитрильные (СКН-18, СКН-26, СКН-40, СКН-40Т), бутилкаучук, химически стойкие фторкаучуки (СКФ-32-12, СКФ-62-13), теплостойкие кремнийорганические полимеры (СКТ). Осваиваются стереорегулярные каучуки: полибутадиеновый (СКД) и изопреновые (СКИ). Ведутся поиски новых каучуков на основе соединений, содержащих бор, фосфор, азот и другие элементы.

Резина как конструкционный материал в ряде ее свойств суще­ственно отлична от металлов и других материалов. Важнейшая особенность ее состоит в способности к перенесению под действием внешней нагрузки значительных деформаций без разрушения. К ос­новным особенностям резины также относятся: малые величины модулей при сдвиге, растяжении и сжатии; большое влияние дли­тельности действия приложенной нагрузки и температурного фак­тора на зависимость напряжение-деформация; практически по­стоянный объем при деформации; почти полная обратимость де­формации; значительные механические потери при циклических деформациях.

Вулканизаты мягкой резины под влиянием ряда складских или эксплуатационных факторов, действующих изолированно или чаще комплексно, изменяют свои технически ценные свойства. Измене­ние сводится к снижению эластичности и прочности, к появлению затвердения, хрупкости, трещин, изменению окраски, увеличению газопроницаемости, т. е. к большей или меньшей потере изделиями их технической ценности. Влияние кислорода воздуха, и в особен­ности озона, ведет к старению и утомлению резины. Этому способствуют: тепло и свет, напряжения, возникающие при динамическом или статическом нагружении, включая и нерациональное складирование, влияние агрессивных сред или каталитическое действие солей металлов.

Низкие температуры ведут к снижению эластичности резины, к повышению ее хрупкости. Эти изменения углубляются с длитель­ностью охлаждения. Однако с возвращением к нормальным температурам первоначальные свойства восстанавливаются. Влияние размеров и особенностей формы изделия в резине сказывается зна­чительно больше, чем в других конструкционных материалах. Ста­билизация в резине ее технически ценных свойств, борьба с явле­ниями старения, утомления и замерзания представляют в настоя­щее время одну из важных задач современной технологии резины.

АТМОСФЕРНОЕ СТАРЕНИЕ И ЗАЩИТА РЕЗИН

Проблема увеличения долговечности резиновых изделий непос­редственно связана с повышением сопротивления резни различным видам старения. Одним из наиболее распространенных и разруши­тельных видов старения является атмосферное старение резин кото­рому подвержены практически все изделия, контактирующие при эксплуатации или хранении с воздухом.

Атмосферное старение представляет собой комплекс физических и химических превращений резни, протекающих под воздействием атмосферного озона и кислорода, солнечной радиации и тепла.

Изменение физико-механических свойств резин

В атмосферных условиях так же, как и при тепловом старении, резины постепенно теряют свои эластические свойства независимо от того, находятся ли они в напряженном или ненапряженном состоя­нии. Особенно интенсивно старятся резины на основе НК со светлы­ми наполнителями. Быстро (через 1-2 года) наступает заметное изменение свойств у резин из бутаднен-ннтрильного, бутадиенстирнльного каучуков и из наирита. Наиболее стойкими являют­ся резины на основе СКФ-26, СКЭП, СКТВ и бутилкаучука.

Существенно влияет на скорость изменения свойств резин в атмос­ферных условиях солнечная радиация, ускоряя в некоторых случаях процесс в пять и более раз.

В саженаполненных резинах такая разница в скорости старения является в первую очередь результатом сильного нагревания поверх­ности резин под действием прямых солнечных лучей. Поскольку тем­пература оказывается важнейшим параметром, влияющим на все протекающие процессы, представлялось необходимым создать на­дежный метод ее экспериментального определения.

Исследование температуры резин на открытом воздухе показало, что суточное изменение ее, так же как и изменение температуры воздуха (при отсутствии облачности), приближенно описывается синусоидальными кривыми. Перегрев по сравнению с воздухом (при температуре воздуха 26 °С) достигает 22 °С у черной и 13 ° С у белой резины.

Ход изменения температуры резины в течение суток следует за ходом изменения величины солнечной радиации, и перегрев резины является функцией последней. Наряду, с этим перегрев зависит от теплообмена между резиной и воздухом. Это позволяет, исходя из потока солнечной радиации и используя уравнение теплообмена для системы плоская пластина - газ, определять температуру поверх­ности резин расчетным путем. В частности, зная абсолютные макси­мумы температуры в разных географических точках, можно рассчи­тать максимальную температуру, до которой в этих местах будет нагреваться поверхность резины. Для Москвы эта температура рав­на 60 °С (абсолютная максимальная 37 °С), для Ташкента 81 °С (абсо­лютная максимальная 45°С).

Повышение температуры поверхности резины даже на 20-25 °С может вызвать резкое изменение скорости старения. Таким образом, этот параметр необходимо принимать во внимание при оценке сроков старения резин в атмосферных условиях.

Определение температуры резин, находящихся на воздухе под различными светофильтрами, показало, что нагрев резины происхо­дит практически полностью за счет инфракрасной части солнечной радиации, оказывающей решающее влияние на скорость старения саженаполненных резин. Так, за 140 суток экспозиции резин из НК в г. Батуми сопротивление разрыву падает в среднем (в %): на открытом воздухе - на 34, под фильтром, пропускающим 70% инфра­красных и не пропускающим ультрафиолетовых лучей,-на 32, под фильтром, пропускающим 40% инфракрасных лучей, а также не­большое количество ультрафиолетовых,- на 24, под фольгой - на 20.

На основании изложенного можно заключить, что изменение физико-механических свойств ре­зин в условиях атмосферного ста­рения обусловлено главным обра­зом процессом теплового старения, протекающим под действием тепла и атмосферного кислорода. В соответствии с этим эффективное снижение скорости изменения фи­зико-механических свойств резин при атмосферном старении также, как и при тепловом старении, может быть достигнуто с помощью противостарителей главным обра­зом у резин на основе НК.

Изменение физико-механичес­ких свойств резин в атмосферных условиях может оказывать влияние на долговечность резиновых изделий в случае их длительного пребывания на воздухе в ненапря­женном состоянии или при достаточно малых напряжениях. Сущест­вен этот процесс также для деформированных резин, хорошо защи­щенных от действия озона или изготовленных из озоностойких каучуков, длительно эксплуатирующихся на воздухе.

Изменение поверхности резин

В атмосферных условиях значительные изменения претерпевает поверхность резин, и в первую очередь поверхность светлых резин из НК. Помимо сравнительно быстрого изменения цвета поверхност­ный слой сначала размягчается, а затем постепенно становится жест­ким и приобретает вид тисненой кожи. Одновременно поверхность покрывается сеткой трещин.

Процесс разрушения поверхности протекает главным образом под влиянием фотохимических реакций, вызываемых действием ультрафиолетовых лучей. Это доказывается, в частности, сравнением изменения поверхности резин в атмосферных условиях под разными светофильтрами: при отсутствии УФ лучей (отрезаются лучи с λ < < 0,39 мк) изменение поверхности оказывается несравненно мень­шим, чем под действием лучей с длинами волн до 0,32 мк.

Такое явление характерно для резин со светлыми наполнителями, потому что последние (окиси цинка, титана, магния, литопон и др.) в отличие от углеродных саж способны поглощать УФ лучи и являют­ся вследствие этого сенсибилизаторами химических реакции в резине.

Растрескивание и разрушение резин

Растрескивание резин в атмосферных условиях протекает с отно­сительно большой скоростью и является вследствие этого наиболее опасным видом старения.

Основным условием образования трещин на резине является одно­временное воздействие на нее озона и растягивающих усилий. Прак­тически такие условия в той или иной степени создаются при эксплу­атации почти всех резиновых изделий. Согласно современным пред­ставлениям, образование зародышевых озонных трещин на поверх­ности резин связывается или с одновременным разрывом под действи­ем озона нескольких ориентированных в одном направлении макро­молекул, или с разрывом структурированной хрупкой пленки озонида под влиянием напряжений. Проникновение озона в глубь микро­трещин ведет к дальнейшему их разрастанию и разрыву резин.

Исследование кинетики растрескивания резин на открытом воз­духе при постоянной деформации растяжения (интенсивность рас­трескивания оценивалась в условных единицах по девятибалльной системе) показывает, что различные резины отличаются между собой не только по времени появления видимых трещин τ у и време­ни разрыва τ р, но и по отношению скоростей процессов образования и разрастания трещин.

Важнейшими факторами, определяющими атмосферостойкость резин, а также весь ход процесса растрескивания, являются:

 реакционная способность резин по отношению к озону;

 величина растягивающих напряжений;

 воздействие солнечной радиации.

Защита резин от растрескивания

Для предохранения резин от растрескивания применяются два вида защитных средств: антиозонанты и воски.

В отличие от анткоксидантов, оказывающих умеренное защитное действие на тепловое старение резин, эффективность влияния антиозонантов и восков на озонное старение весьма велика.

Антиозонанты.

К числу типичных и наиболее эффективных антиозонантов относятся соединения класса N,N"-замещенных-n-фени-лендиамина и производных дигидрохинолина. Защита от действия озона осуществляется также некоторыми дитиокарбаматами, произ­водными мочевины и тиомочевины, n-алкокси-N-алкиланилином и др.

Механизм действия антиозонантов в последние годы привлекает внимание многих ученых. В результате исследования влияния анти­озонантов на кинетические закономерности озонирования и растрескивания каучуков и резин. сложилось несколько разных представлений по этому вопросу.

Широко обсуждается образование сплошного защитного слоя на поверхности резин за счет мигрирующего антиозонанта, продуктов его реакции с озоном и продуктов реакции озона с каучуком, в которой участвует антиозонант.

Предполагается, что последний тип реакций приводит или к устра­нению разрыва макромолекул, или к сшиванию их обрывков.

Образование поверхностного слоя антиозонанта или продуктов его взаимодействия с озоном, обеспечивающего эффективную защи­ту резин, можно ожидать лишь в случае, если они находятся в смолообразном состоянии и могут создавать при миграции сплошной равномерный слой. Действительно, согласно опытам, озоностойкость резины из НК, содержащей кристаллический антиозонант N-фенил-N"-изопропил-n-фенилендиамин (ФПФД), в ряде случаев оказывает­ся до начала миграции антиозонанта на поверхность даже несколько выше, чем после образования слоя выцветшего ФПФД. Это связано, по-видимому, с тем, что, хотя отдельные кристаллические образования антиозонанта и могут оказывать некоторое защитное действий на резины, в промежутках между такими образованиями на резине должны появляться «слабые» места, обусловленные обедне­нием поверхностного слоя резины антиозонантом за счет его выцве­тания и отсутствием чисто механической защиты за счет кристаллов антиозонанта.

Решающее значение миграции антиозонантов кристаллической структуры на поверхность с точки зрения эффективности их защит­ного действия может быть поставлено под сомнение, так как защит­ное действие антиозонантов обычно проявляется уже при дозиров­ках, не превышающих предела их растворимости в резине. Так, N-фенил-.N"-изопропил-n-фенилендиамин является эффективным в ре­зинах из НК и других неполярных каучуков при концентрации 1- 2 вес. ч. на каучук. Вероятно, основную роль в защите резин играет антиозонант, растворенный в поверхностном слое резины.

Механизм защитного дейст­вия, основанный на сшивании обрывков макромолекул или на устранении их распада, пред­ставляется вероятным, однако требует дальнейших экспери­ментальных подтверждений.

Весьма распространенной является концепция, согласно которой антиозонанты на по­верхности резин связывают озон, препятствуя его взаимо­действию с резиной.

Проведенные нами исследо­вания действия антиозонантов на реакцию каучука с озоном (в растворе ССl4) показали, что антиозонанты не влияют на характер кинетической кривой озонирования каучука и прак­тически не изменяют энергии активации процесса. В присутствии антиозонанта уве­личивается лишь общее количе­ство поглощенного озона. Однако, как следует из данных о накопле­нии кислородсодержащих групп, скорость реакции самого каучука с озоном при этом снижается. Одновременно снижается также скорость деструкции макромолекул. В этих условиях происходит одновременное озонирование каучука и антиозонанта.

Исследования кинетики озонирования самого антиозонанта (в рас­творе) показало, что энергия активации этой реакции для ФПФД несколько выше, чем для каучука (1,4 ккал/моль), и скорость взаи­модействия этого антиозонанта с озоном во всей интересующей облас­ти температур превышает скорость озонирования каучука (при весо­вом соотношении каучука и антиозонанта 100: 5).

Все это дает основание полагать, что реакция антиозонанта с озо­ном на поверхности резин играет определенную роль в защите резин от озонного старения. Однако скорость реакции для разных антиозонантов не коррелируется с их эффективностью при растрескивании резин, поэтому процесс не является определяющим в защитном действии разных соединений.

Изложенное позволяет заключить, что в настоящее время нет общепризнанной и в достаточной мере обоснованной точки зрения на механизм действия антиозонантов. Этот вопрос требует серьезно­го изучения. Однако этот механизм, надо полагать, различен для разных типов соединений, и, вероятно, один тип антиозонантов дей­ствует не по одному, а по разным механизмам.

Защитное действие антиозонантов растет с увеличением их концентрации. Однако практически применение антиозонантов в кон­центрациях, значительно превышающих предел их растворимости, не представляется возможным, поэтому используются комбинации, состоящие из. двух антиозонантов преимущественно разной химичес­кой структуры. Наиболее эффективные системы антиозонантов, состо­ящие из ФПФД, параоксинеозона (ПОН), ацетонанила и ряда других.продуктов, увеличивают τ u в атмосферных условиях в несколько раз.

Воски.

Некоторые смеси углеводородов парафинового, изопарафинового и нафтенового ряда, представляющие собой продукты, по свойствам подобные воскам, осуществляют физическую защиту резин от атмосферного старения. Оптимальными защитными свойствами обладают воски с длиной молекулярной цепи в 20-50 углеродных атомов. Эффективны воски в основном только в статически напря­женных резинах. Защитное действие восков основано на их способ­ности образовывать на поверхности резин сплошную пленку, пре­пятствующую взаимодействию резины с озоном. Сущность явления образования пленки сводится к следующему: при охлаждении резин после процесса вулканизации введенный в резиновую смесь воск об­разует в резине пересыщенный раствор, из которого в дальнейшем происходит его кристаллизация. Кристаллизация вещества из пересыщенного раствора в полимере может осуществляться как в объеме, так и на его поверхности («выцветание»). Последнее приводит к обра­зованию защитной пленки.

Эффективность защитного действия восков связана в первую очередь с озонопроницаемостью этой пленки, определяемой толщи­ной пленки и основными физико-химическими характеристиками воска. Наряду с этим эффективность воска в большой степени зави­сит от температуры эксплуатации резин; обычно с повы­шением температуры эксплуатации защитное действие воска ухуд­шается. Чем выше температура плавления воска (в определен­ных пределах), тем в большем интервале температур при прочих равных условиях он может работать. При повышении температуры эксплуатации резин необходимо применение восков с более высокой температурой плавления. Имеются данные, свидетельствующие о том, что эффективная защита осуществляется при условии, если температура эксплуатации резин на 15-20 °С ниже температуры плавления воска. Эта величина уменьшается при повышении дози­ровок воска и применении смешанных восков.

С учетом того, что температура плавления не может служить однозначной характеристикой специфического воскообразного состо­яния вещества с широким температурным интервалом размягчения, были предложены новые характеристики восков-температура начала и температура полного размягчения, определяющиеся при изучении термомеханических свойств восков. Использование этих параметров позволило установить, что в отличие от вышеуказанного, по данным ускоренных лабораторных испытаний, защитное действие ряда восков с увеличением температуры (от 25 до 57 °С) возрастает.

Зависимость эффективности защитного действия ряда восков от их дозировки при атмосферном старении статически напряженных резин описывается или кривой насыщения, или экстремальной кри­вой.

Предел эффективной концентрации воска связан, по-видимому, с большой степенью пересыщения раствора воска в резине, способствующей интен­сивной кристаллизации воска в объеме, что может оказывать лишь отрицательное влияние на однородность и, следовательно, на стойкость резин к атмос­ферному растрескиванию. С учетом данных об эффективно­сти защитных восков, а также их отрицательного влияния на ряд технологических свойств резин рекомендуется применять воски в количествах, не превы­шающих трех весовых частей. Наибольший эффект зашиты резин достигается совместным применением антиозонантов и восков, причем действие таких компози­ций больше аддитивного действия обоих компонентов. Это можно объяснить тем, что при наличии пленки воска на поверхности рези­ны антиозонант диффундирует в нее при любом содержании его в в резине. Количество перешедшего в пленку антиозонанта будет определяться законом распределения. Расчет показывает, что при введении в резину 2 вес. ч. ФПФД (меньше предела растворимости) содержание его в мономолекулярном поверхностном слое резины бу­дет на два порядка меньше, чем в образовавшейся на резине пленке воска толщиной 10 мк (растворимость этого антиозонанта в парафине около 0,1 %). Таким образом, воск способствует резкому увеличению содержания на поверхности резины антиозонанта, равномерно рас­пределенного в сплошной пленке.

Особенности старения резин в тропиках

Основными особенностями тропического климата, характерного для низких географических широт (от 0 до 30°), являются:

высокий общий уровень солнечной радиации, мало изменяющий­ся в течение года. Большое количество прямой солнечной радиации и большое содержание ультрафиолетовых лучей в солнечном спектре; более высокая по сравнению с другими климатическими зонами среднегодовая температура. Особенно характерно большое колебание суточных температур. В связи с этим в сухих тропиках наблюдается и более высокая среднемаксимальная годовая темпера­тура (средняя из максимальных температур в каждом месяце); высокое значение относительной влажности (во влажных тропи­ках), что играет роль главным образом для резин из полярных каучуков. Следствием высокой влажности является наличие различных микроорганизмов, вызывающих в некоторых случаях появление пле­сени на резинах.

Хотя концентрация озона в тропиках меньше, чем в других кли­матических зонах, в результате его сочетания с интенсивной солнечной радиацией и высокой температурой воздуха старение резин в тропиках протекает значительно быстрее, чем в умеренном кли­мате. Резины из нестойких каучуков, не содержащие специальных защитных агентов растрескиваются в условиях тропического кли­мата в течение 2-3 месяцев, а иногда и через несколько суток Те же резины, защищенные эффективными антиозонантами и восками не претерпевают изменений в течение нескольких лет. Сопоставление скоростей старения резин в некоторых климатических зонах показывает, что скорость старения последовательно возрастает при экспозиции в следующих пунктах: Москве, Батуми, Ташкенте Индонезии. Ускорение процесса зависит от типа резины и колеблется в больших пределах, так, в Индонезии по сравнению с Батуми старение ускоряется в 2,7-8 раз, а по сравнению с Москвой в 25 раз.

ИЗМЕНЕНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ РЕЗИН ПРИ ТЕРМИЧЕСКОМ СТАРЕНИИ

Термостойкость - способность резин сохранять свойства при действии повышенной температуры. Обычно этим термином обозначают сопротивление термическому старению, в процессе которого происходит изменение химической структуры эластомера. Изменение свойств резин при термическом старении необратимо.

Температурная зависимость скорости старения часто формально подчиняется уравнению Аррениуса, что позволяет прогнозировать степень изменения показателей свойств. Максимально допустимая температура длительного(более 1000 ч) и кратковременного (168 ч) использования резин на основе различных каучуков на воздухе (снижение прочности при растяжении до 3,5 МПа или относительного удлинения при разрыве-до 70%) составляет (°С): АК-более 149 и 177, ФК (аминная вулканизация)-177 и более 177, БНК (пероксидная вулканизация)- более 107 и 149, БНК («кадматная» вулканизация)-135 и 149, ЭХГК-121 и 149, ББК-121 и 149, БК (смоляная вулканизация)-135 и 149, ЭПТ (пероксидная вулканизация)-149 и более 149 соответственно.

Ниже рассмотрены особенности термического старения и влияние состава резиновой смеси на изменение механических свойств резин на основе различных каучуков при статическом нагружении. Для характеристики сопротивления термическому старению можно воспользоваться соотношениями (в %):

,
,

где f 0 ε и f ε условное напряжение при заданном удлинении в процессе растяжении образца с заданной скоростью; f 0 p и f p прочность при растяжении; ε 0 р и ε р  относительное удлинение при разрыве до и после старения.

Резины на основе изопренового каучука. (ПИ)

При одинаковой вулканизующей системе минимальным сопротивлением термическому старению обладают резины на основе ПИ. При 80-140°С обычно протекают в основном реакции деструкции пространственной сетки вулканизата, а при 160 °С - реакции сшивания макромолекул каучука. Изменение механических свойств в большей степени обусловлено деструкцией макромолекул, интенсивность которой возрастает на воздухе. При этом значение f p и В снижается в большей степени чем ε p . Энергия активации, рассчитанная по скорости снижения f p , ε p и В тиурамного вулканизата НК, содержащего технический углерод, составляет 98-103 кДж/моль.

Проблема увеличения долговечности резиновых изделий непосредственно связана с повышением сопротивления резни различным видам старения. Одним из наиболее распространенных и разрушительных видов старения является атмосферное старение резин, которому подвержены практически все изделия, контактирующие при эксплуатации или хранении с воздухом.

Атмосферное старение представляет собой комплекс физических и химических превращений резни, протекающих под воздействием атмосферного озона и кислорода, солнечной радиации и тепла.

В атмосферных условиях так же, как и при тепловом старении, резины постепенно теряют свои эластические свойства независимо от того, находятся ли они в напряженном или ненапряженном состоянии.

Особенно интенсивно старятся резины на основе НК со светлыми наполнителями. Быстро (через 1-2 года) наступает заметное изменение свойств у резин из бутадиен-нитрильного, бутадиенстирольного каучуков и из наирита. Помимо сравнительно быстрого изменения цвета поверхностный слой сначала размягчается, а затем постепенно становится жестким и приобретает вид тисненой кожи. Одновременно поверхность покрывается сеткой трещин из-за одновременного воздействия на нее озона и растягивающих усилий. Растрескивание резин в атмосферных условиях протекает с относительно большой скоростью и является вследствие этого наиболее опасным видом старения.

Для предохранения резин от растрескивания применяются два вида защитных средств:

· антиозонанты;

Эффективное снижение скорости изменения физико-механических свойств резин при атмосферном старении так же, как и при тепловом старении, может быть достигнуто с помощью противостарителей главным образом у резин на основе НК.

Термостойкость – способность резин сохранять свойства при действии повышенной температуры. Обычно этим термином обозначают сопротивление термическому старению, в процессе которого происходит изменение химической структуры эластомера. Изменение свойств резин при термическом старении необратимо.

При одинаковой вулканизующей системе минимальным сопротивлением термическому старению обладают резины на основе изопренового каучука. При 80-140°С обычно протекают в основном реакции деструкции пространственной сетки вулканизата, а при 160 °С - реакции сшивания макромолекул каучука. Изменение механических свойств в большей степени обусловлено деструкцией макромолекул, интенсивность которой возрастает на воздухе.

Резины на основе бутадиен-стирольного каучука (БСК ) более термостойки (причём термостойкость значительно возрастает при повышении продолжительности вулканизации) и в меньшей степени подвержены окислению, чем резины на основе изопренового каучука. Степень сшивания возрастает при повышении температуры и продолжительности старения.

Обычно минеральные наполнители обеспечивают более высокое сопротивление термическому старению резин на основе БСК по сравнению с техническим углеродом. Степень влияния наполнителей зависит от состава резиновой смеси и условий старения.

У резин на основе бутадиен-нитрильного каучука (БНК ) сопротивление термическому старению возрастает при повышении содержания акрилонитрила (АН) в каучуке. Минимальное сопротивление термическому старению имеют резины, вулканизованные серой.

При термическом старении резин на основе хлоропренового каучука происходит сшивание макромолекул. В качестве наполнителей применяют технический углерод, диоксид кремния, минеральные наполнители. В качестве мягчителей применяют полиэфиры, сульфоэфиры, рубракс, кумарон-инденовую и нефтеполимерную смолы.

Термостойкость может повышаться при добавлении в резиновую смесь парафинового масла, дифениламина, алкилированных диаминов и фенольных антиоксидантов, а также смесей различных антиоксидантов.

Термическое старение при сжатии наиболее важно для резин, используемых в качестве уплотнительных материалов. В этом случае сопротивление старению оценивают по результатам измерения релаксации напряжения при сжатии и остаточной деформации при сжатии (ОДС). Термостойкость резин при сжатии характеризуют также показателями: τ (Т; 50%) и τ (Т; 80%)-продолжительность старения при температуре Т до достижения значения ОДС, равного 50 и 80% соответственно; Т (τ , 50%) и Т (τ , 80%)-температура старения в течение времени τ , при которой значение ОДС достигает 50 и 80% соответственно.

Значение ОДС резко возрастает, а контактное напряжение снижается в первый период старения, затем эти величины изменяются со значительно меньшей скоростью. Повышение температуры также приводит к существенному ускорению релаксации напряжения и увеличению ОДС. Поэтому небольшие отклонения температуры или продолжительности старения могут существенно изменить эти показатели в начальный период старения.

Сопротивление резин термическому старению при сжатии в основном зависит от типа каучука, структуры и плотности пространственной сетки, условий испытаний.

Повышение продолжительности вулканизации всегда приводит к снижению ОДС, так как при этом обычно возрастает плотность сетки, а в серных вулканизатах снижается степень сульфидности поперечных связей.

Наличие влаги и следов щелочи в резиновой смеси снижает термостойкость при сжатии. Скорость релаксации напряжения повышается при увеличении влажности в инертной среде или на воздухе.

Для создания резин с новыми свойствами весьма перспективным является использование в резиновых смесях новых химических добавок полифункционального действия. При смешении каучуков с такими добавками образуются композиции, применение которых позволяет в сильной степени изменить свойства, как резиновых смесей, так и полученных из них резин.

Возможность использования полифункциональных добавок связана с их химическим строением, агрегатным состоянием и влиянием на структуру эластомерных композиций. Правильный подбор и введение добавок в резиновую смесь может облегчать ее переработку (эффект пластификации), изменять клейкость, когезионную прочность, параметры вулканизации и многие другие характеристики.

В зависимости от химического строения и количества полифункциональных добавок существенно изменяются и свойства резин, полученных из таких композиций (эластичность, морозостойкость и теплостойкость, прочность, динамические и усталостные характеристики, твердость и сопротивление истиранию и т.д.).

Достоинством полифункциональных добавок является их доступность. В связи с этим в настоящее время в резиновых смесях применяются или испытываются самые разнообразные продукты природного и синтетического происхождения. Например, олиоэфиракрилаты являются пластификаторами при переработке и усиливающими наполнителями в вулканизационной композиции; парафины (олеоэтилены) облегчают переработку смесей и защищают резины от озонного растрескивания; жирные кислоты (олеоэтиленкарбоновые кислоты) не только понижают вязкость резиновых смесей, но и воздействуют на сшивание каучука, повышая эффективность использования вулканизующих систем.

Технологические добавки – целевые добавки, которые при добавлении к резиновым смесям в небольших количествах, улучшают их технологические свойства.

К ингредиентам, улучшающим перерабатываемость резиновых смесей и давно использующимся в резиновой промышленности, относят в основном жидкие и термопластичные пластификаторы. Однако, оказывая положительное действие на технологические свойства смесей, они отрицательно влияют на эксплуатационные характеристики резин.

По химической природе технологические добавки классифицируются на:

1.Жирные кислоты и их производные (соли и эфиры).

2.Эмульсионные пластификаторы.

3.Высококипящие полигликоли.

4.Смолы (смоляные кислоты и их производные).

11.Свойства и виды стекол

Стеклом называется твердый аморфный термопластичный мате­риал, получаемый переохлаждением расплава различных оксидов. В состав стекла входят стеклообразующие кислотные оксиды (SiO 2 , А 12 О 3 , В 2 О 3 и др.), а также основные оксиды (К 2 О, СаО, Na 2 О и др.), придающие ему специальные свойства и окраску. Оксид кремния SiO 2 является основой практически всех стекол и входит в их состав в количестве 50 … 100 %. По назначению стекла подразделяются на строительные (оконные, витринные и др.), бытовые (стеклотара, посуда, зеркала и др.) и технические (оптические, свето- и элект­ротехнические, химико-лабораторные, приборные и др.).

Важными свойствами стекла являются оптические. Обычное стекло пропускает около 90 %, отражает - 8 % и поглощает - 1 % видимого света. Механические свойства стекла характеризуются высоким со­противлением сжатию и низким - растяжению.

Термостойкость стекла определяется разностью температур, которую оно может выдержать без разрушения при резком охлаждении в воде. Для большинства сте­кол термостойкость колеблется от 90 до 170°С, а для кварцевого стекла, состоящего из чистого SiO 2, - 1000 °С. Основной недостаток стекла - высокая хрупкость.

Вокруг возраста или "старения" шин всегда ходили споры и разногласия. В некоторых странах даже были требования к производителям, чтобы они печатали на резине крайнюю дату использования, как на продуктах питания. В некоторых штатах Америки, при покупке дается брошюра с описанием возможных проблем, если шины долго не менять.

Химический процесс, который вызывает старение старение резины, называется оксидизация. При постоянном контакте с кислородом, резина начинает сохнуть, и становится более жесткой, что выражается в трещинах на поверхности. Что самое интересное, стареть шина начинает с внутренних слоев каркаса, а не снаружи. Вследствие затвердения элементов состава, начинается процесс деламинации, когда фрагменты резины отслаиваются от кордовых слоев.

Скорость старения определяется четырьмя основными факторами.

Качество изоляционного слоя. Тонкий слой изнутри шины, сделан из бутил-каучука, и предназначен для того чтобы воздух закаченный в колеса, не выходил наружу. Но все равно какой то процент кислорода будет просачиваться через этот слой, вызывая химическую реакцию с внутренними слоями.

Давление воздуха. Воздействие оксидизации усиливается, пропорционально давлению воздуха, чем больше, тем быстрее. То есть, накаченная резина будет стареть гораздо быстрее чем сдутая.

Температура. Высокая температура усиливает реактивность кислорда, тем самым ему легче просачиваться через уплотнительный слой резины и легче взаимодействовать с внутренними слоями протектора.

Частота использования. Во время движения, под давлением центробежной силы, смазочный материал внутри шины обращается через систему микропор, то есть приходит в движение. Таким образом, "промасливая" резину. Когда колеса простаивают, этого не происходит и они начинают сохнуть быстрее.

Немецкий ADAC рекомендует менять шины каждые 6 лет, несмотря на внешний вид. В 1990 году группа производителей BMW, Volkswagen, Mercedes-Benz, General Motors сделали совместное заявление о том что шины старше 6 лет не рекомендуются к использованию. В 2005 году Daimler/Chrysler заявил, что рекомендует внимательно инспектировать шины через 5 лет, и производить замену через 10. Позже, рекомендацию поддержали компании Michelin и Continental.

Американцы изучили автомобильные страховые иски, касательно проблем с колесами, и вывели одну интересную закономерность. 77% всех страховых обращений были сделаны в пяти самых южных штатах, и в 87% из всех этих случаев, шины были старше 6 лет. Что косвенно подтверждает негативное воздействие высоких температур в течение долгого времени.

Так же была отслежена тенденция, что шины с высоким индексом скорости теряют свои кондиции медленнее. Стоит также сказать, что старые шины больше подвержены неравномерному износу , особенно это касается летних шин для легковых автомобилей.


Выводы:

Если шины на вашем авто старше 6 лет, это не значит что их обязательно следует менять. Просто внимательно осмотрите их на предмет трещин на боковинах, если таковые появились это сигнал к тому, что пора искать новые или б у шины. По информации сайта Шинкомплект , в последнее время, продажи подержанных колес в мире растут, в связи с плохой экономической ситуацией.

Особенно быстро стареют и высыхают запасные колеса для джипов, которые висят на двери багажника в накаченном состоянии и под прямыми солнечными лучами летом. Если шины хранятся в спущенном состоянии и в помещении защищенным от солнца, то они дольше сохраняют свои кондиции.

Покрышки играют важную роль в управляемости и безопасности автомобиля, однако с возрастом они теряют свои качества и должны меняться на новые. Поэтому каждый водитель должен уметь определять возраст шин и производить их своевременную замену. О том, почему необходимо менять старые покрышки, как определять их возраст и время замены, читайте в данной статье.

Стандарты на срок службы автомобильных шин

Покрышки — один из немногих компонентов автомобиля, который не только подвергается износу во время эксплуатации, но и подвержен естественному старению. Поэтому замена покрышек производится не только в связи с их критическим износом или повреждениями, но и при сроках эксплуатации, превышающих допустимые. Слишком старые покрышки теряют свои качества, эластичность и прочность, а поэтому становятся слишком опасными для автомобиля.

На сегодняшний день в России сложилась противоречивая ситуация со сроками эксплуатации шин. С одной стороны, законодательно в нашей стране установлен так называемый гарантийный срок службы (срок эксплуатации) автомобильных покрышек, равный 5 годам со дня их производства. В течение данного срока покрышка должна обеспечивать заявленные эксплуатационные характеристики, при этом производитель в течение всего срока эксплуатации несет ответственность за свое изделие. Срок 5 лет устанавливается двумя стандартами — ГОСТ 4754-97 и 5513-97.

С другой стороны, в западных странах таких законов нет, и производители автомобильных шин заявляют о том, что срок эксплуатации их изделий достигает 10 лет. При этом в мире и в России не существует и законодательных актов, которые обязывали бы водителей и владельцев транспортных средств производить обязательную замену покрышек при истечении гарантийного срока эксплуатации. Хотя в российских ПДД есть норма об остаточной высоте протектора, и, как показывает практика, износ покрышек обычно происходит быстрее, чем истекает срок их службы.

Также существует и такое понятие, как срок хранения автомобильных шин, однако российское законодательство не устанавливает границ этого срока. Поэтому производители и продавцы обычно опираются на гарантийный срок службы, и говорят, что покрышка при соблюдении правильных условий может пролежать 5 лет, и после этого использоваться, как новая. Однако в ряде стран Европы и Азии максимальным сроком хранения считается 3 года, и по истечении этого срока покрышка уже не может считаться новой.

Итак, сколько же можно эксплуатировать покрышки , установленные на автомобиле? Пять, десять лет или больше? Ведь все указанные цифры — рекомендованные, но никто не обязывает водителя заменять покрышки, даже и через пятнадцать лет, главное, чтобы они были не изношены. Однако сами производители рекомендуют заменять покрышки возрастом 10 лет, а в большинстве случаев покрышки приходят в негодность через 6-8 лет эксплуатации.

С чем связаны указанные сроки эксплуатации и хранения автомобильных шин? Все дело в самой резине, из которой производятся покрышки — данный материал при всех своих преимуществах подвержен естественному старению, которое ведет к потере основных качеств. В результате старения резина может терять эластичность и прочность, в ней появляются микроскопические разрушения, со временем переходящие в заметные трещины, и т.д.

Старение покрышек — процесс, в первую очередь, химический. Под воздействием света, перепада температур, содержащихся в воздухе газов, масел и других веществ молекулы эластомера, составляющие резину, разрушаются, также разрушаются связи между этими молекулами — все это ведет к потере эластичности и прочности резины. В результате старения резины покрышки хуже противостоят износу, они буквально рассыпаются и уже не могут обеспечить необходимые эксплуатационные характеристики.

Именно из-за процессов старения резины производители и отечественный ГОСТ устанавливают гарантийный срок эксплуатации покрышек. Отечественный стандарт устанавливает срок, по истечении которого старение резины еще не оказывает негативного эффекта, а производители покрышек устанавливают реальный срок службы, при котором старение уже заметно. Поэтому стоит с большой осторожностью относиться к покрышкам возрастом свыше 6-8 лет, а покрышки, отметившие 10-летний «юбилей», необходимо менять в обязательном порядке.

Чтобы заменить покрышку, нужно определить ее возраст — сделать это довольно просто.

Способы проверки возраста шин

На автомобильных покрышках , как и на любом другом товаре, обязательно указывается дата производства — именно по этой дате можно судить о возрасте покупаемых или установленных на автомобиле шин. На сегодняшний день маркировка даты производства шин производится согласно утвержденному в 2000 году Министерством транспорта США (U.S. Department Of Transportation) стандарту.

На любой покрышке есть овал-опрессовка, перед которым расположена аббревиатура DOT и цифробуквенный индекс. В овале также выпрессованы цифры и буквы — именно они и говорят о дате производства шины. Точнее — дата зашифрована в последних четырех цифрах, которые означают следующее:

  • Первые две цифры — неделя года;
  • Последние две цифры — год.

Так, если в овал-опрессовке последние четыре цифры 4908, то шина была произведена на 48-й неделе 2008 года. По российским стандартам такая покрышка уже исчерпала свой ресурс, да и по мировым стандартам ее уже стоит заменить.

Однако на покрышках можно встретить и иные обозначения времени производства. В частности, в овал-опрессовке может быть не четыре, а три цифры, а также присутствует небольшой треугольник — это значит, что данная шина была произведена в период с 1990 по 2000 год. Понятно, что сейчас такие покрышки применять уже нельзя, даже если они были на хранении или установлены на автомобиле, который много лет простоял в гараже.

Таким образом, для определения возраста покрышки достаточно одного взгляда. Однако это знают далеко не все автовладельцы, чем пользуются нечестные продавцы, выдающие старые покрышки за новые. Поэтому при покупке резины нужно быть внимательным и обязательно проверять дату производства.

Определяем время, когда нужно заменить шины

Когда наступает момент замены шин? Есть несколько случаев, когда обязательно нужно покупать новые покрышки:

  • Возраст 10 лет и более — даже если эта шина внешне выглядит хорошо, в ней нет видимых повреждений и износ ее невелик, ее стоит снять и отправить на утилизацию;
  • Возраст шины 6-8 лет, при этом ее износ приближается к критическому;
  • Критический или неравномерный износ, крупные проколы и разрывы независимо от возраста покрышки.

Как показывает практика, шины , особенно в России с ее дорожными особенностями, редко «доживают» до десятилетнего возраста. Поэтому замена покрышек чаще всего производится по причине их износа или повреждений. Однако в нашей стране в продажу нередко поступают не совсем новые покрышки, поэтому каждый водитель должен уметь определять их возраст — только в этом случае можно обезопасить себя и свой автомобиль.


Другие статьи

30 Апреля

Майские праздники — это первые по-настоящему теплые выходные, которые можно с пользой провести на природе в кругу семьи и близких друзей! Сделать досуг на свежем воздухе максимально комфортным поможет ассортимент продукции интернет-магазина AvtoALL.

29 Апреля

Трудно найти ребенка, которому не нравились бы активные игры на улице, и каждый ребенок с самого мечтает об одной вещи — велосипеде. Выбор детских велосипедов — ответственная задача, от решения которой зависит радость и здоровье ребенка. Типы, особенности и выбор детского велосипеда — тема этой статьи.

28 Апреля

Теплое время года, особенно весна и лето — это сезон велосипедов, прогулок на природе и семейного отдыха. Но велосипед будет комфортным и принесет удовольствие только в том случае, если он подобран правильно. О выборе и особенностях покупки велосипеда для взрослых (мужчин и женщин) читайте в статье.

4 Апреля

Шведский инструмент Husqvarna известен во всем мире, он является символом настоящего качества и надежности. Среди прочего под этим брендом выпускаются и бензопилы — все о пилах Husqvarna, их актуальном модельном ряду, особенностях и характеристиках, а также о вопросе выбора читайте в данной статье.

11 Февраля

Отопители и предпусковые подогреватели немецкой компании Eberspächer — известные во всем мире устройства, повышающие комфорт и безопасность зимней эксплуатации техники. О продукции данного бренда, ее типах и основных характеристиках, а также о подборе отопителей и подогревателей — читайте в статье.

13 Декабря 2018

Многие взрослые не любят зиму, считая ее холодным, депрессивным временем года. Однако дети совсем другого мнения. Для них зима — это возможность поваляться в снегу, покататься на горках, т.е. весело провести время. И одним из лучших помощников для детей в их нескучном времяпровождении - это, например, всевозможные санки. Ассортимент рынка детских санок очень обширен. Рассмотрим некоторые виды из них.

1 Ноября 2018

Редкие строительные и ремонтные работы обходятся без применения простого ударного инструмента — молотка. Но чтобы выполнить работу качественно и быстро, нужно грамотно подобрать инструмент — именно о выборе молотков, их существующих типах, характеристиках и применяемости пойдет рассказ в этой статье.