Что полезно знать владельцу автокрана о специфике работы крановщика? Управление краном. Перед началом работы Крановое управление

Правильное управление краном обеспечивает плавное, без рывков и раскачивания, перемещение груза, а также точную остановку его над заданным местом. При этом сокращается время рабочего цикла, повышается производительность крана и обеспечивается безопасность обслуживающих груз такелажников и монтажников.


Механизмами башенного крана управляют из кабины крана. Кроме того, у ряда кранов одним или несколькими механизмами можно управлять с выносного пульта при монтаже и демонтаже кранов.

Управление из кабины. Направление движения рукояток, рычагов или маховиков контроллеров и командоконтроллеров, установленных в кабине крана, как правило, соответствует направлению вызываемых ими движений (рис. 125).

Рис. 125. Направление движения рукояток командоконтроллеров в унифицированной кабине кранов КБ

Включение машинистом рукояток в направлении от себя соответствует опусканию груза (стрелы) или повороту вправо, а включение рукояток на себя - подъему груза (стрелы) или повороту крана влево. Кабина крана поворачивается вместе с башней, поэтому движение крана вперед и назад может не совпадать с положением кабины относительно строительной площадки. В связи с этим при работе на кранах с поворотной кабиной рекомендуется условно принимать начальным любой из торцов кранового пути, чтобы движение крана от него соответствовало направлению «Вперед», а к нему - направлению «Назад».

В зависимости от конструкции крана и схемы электропривода управление механизмами кранов различных типов имеет свои особенности. Подробные сведения об управлении приводятся в Инструкции по эксплуатации, прилагаемой к крану заводом-изготовителем.

При управлении краном следует соблюдать ряд положений, общих для кранов любого типа.

Механизмы крана можно переключать с прямого хода на обратный только после полной остановки. Внезапное переключение механизма без остановки вызывает большие динамические нагрузки на кран и может привести к поломке механизма и даже к аварии крана.

Если необходимо быстро остановить несколько механизмов для предотвращения аварии или несчастного случая, то следует отключить аварийный выключатель. При этом отключится линейный контактор и электродвигатели будут отсоединены от питающей сети.

Запрещается использовать конечные выключатели для остановки механизмов крана, за исключением случаев проверки работы конечных выключателей перед началом смены.

Использовать выносной пульт для управления краном при перемещении грузов запрещается, так как при управлении с пульта режимы работы электропривода не соответствуют нормальным режимам при управлении из кабины. Кроме того, при переключении управления на выносной пульт в схеме крана закорачивается часть защитных устройств: максимальные реле, конечные выключатели, сигнализация.

Не разрешается применять для плавной посадки груза незарегистрированные в паспорте крана самодельные растормаживающие устройства с ручным или ножным управлением.

Включать механизм следует плавно, с выдержками на каждом положении контроллера. Не допускается резкий перевод рукоятки управления из нулевого в последнее положение, если в схеме не предусмотрен ступенчатый разгон под контролем реле времени.

Малые (посадочные) скорости механизмов следует использовать кратковременно и только для точной установки груза. Работа на малой скорости в течение длительного времени снижает производительность крана, а в ряде случаев (например, привод с тормозной машиной) приводит к перегреву и быстрому выходу из строя электрооборудования.

Характер управления определяется схемой электропривода крана, однако одна и та же схема требует разных приемов управления для механизма поворота или передвижения, грузовой или стреловой лебедки. Так, при обычном регулировании скорости двигателя путем ступенчатого изменения пускорегулирующего реостата в роторной цепи скорость подъема груза или стрелы увеличивается при переводе рукоятки контроллера от нулевого к последнему положению, а при опускании груза или стрелы скорость на первых положениях контроллера будет больше, чем на последнем положении. Это явление не распространяется на некоторые схемы привода (двухдвигательная лебедка, привод с тормозной машиной, система г-д постоянного тока), в которых первые положения спуска соответствуют малой (посадочной) скорости, получаемой специальным регулированием.

Для механизмов поворота, передвижения крана и грузовой тележки характерно увеличение скорости при переводе рукоятки из первого положения в последнее независимо от направления движения механизма.

Управление с выносного пульта. Управление механизмами с выносного пульта производят только при монтаже и наладке крана, когда машинист не может находиться в кабине управления.

Рис. 126. Выносной пульт управления крана К.Б-401А: 1 - кнопки S25, S26 управления механизмом передвижения, 2 - кнопки S24, S23 управления механизмом поворота, 3 - кнопки S28, S27 управления стреловой лебедкой, 4-6 - кнопки SI9, S20, S21, S22 управления грузовой лебедкой, 7 - аварийный выключатель S10

Выносной пульт представляет собой металлическую коробку (рис. 126), в которой помещены аппараты управления (кнопки, аварийный выключатель и т. п.), связанные с электрооборудованием крана многожильным кабелем длиной 18-20 м.

В зависимости от электрической схемы у разных типов кранов с выносного пульта можно управлять всеми механизмами либо частью механизмов крана. Включение аппаратов выносного пульта при управлении механизмами должно производиться только в той последовательности, которая разрешена Инструкцией по эксплуатации крана.

В электрических схемах кранов предусмотрена блокировка, исключающая возможность одновременного управления из кабины и с пульта. Эта блокировка обычно выполняется с помощью универсального переключателя, переключающего цепь управления на кабину ил выносной пульт.

Крановое электрооборудование и схемы управления кранами


1. Крановые электродвигатели

Для электропривода в крановых установках широкое применение находят асинхронные двигатели серии МТК с короткой а м кну тым ротором и серии МТ с фазным ротором, а также двигатели постоянного тока серии МП с параллельным, последовательным или смешанным возбуждением. Изготовляются крановые двигатели серии

КО одноекоростныё мощностью 4-16 кет и двухскоро-стные мощностью 4-32 кет во взрывозащищенном исполнении.



Электродвигатели серий МТК и МТ выпускаются на напряжение 220, 380 и 500 в. Мощность двигателей серии МТК - от 2,2 до 28 кет, скорость вращения - 750 и 1000 об/мин (синхронных). Мощность двигателей серии МТ от 2,2 до 125 кет, скорость вращения - 600, 750 и 1000 об/мин (синхронных). Мощность двигателей серии МП -от 2,5 до 130 кет, скорость вращения -номинальная- 420-130 об/мин (меньшая у двигателей большей мощности).

Для электроталей и установок непрерывного транспорта используются асинхронные двигатели общепромышленного исполнения. Широкое применение, в частности, находят двигатели с повышенным скольжением серий АС и АОС, с повышенным моментом серий АПИ и АОГ1, с контактными кольцами серий АК и АОК и др.

Наибольшее распространение в подъемно-транспортных машинах имеют двигатели с горизонтальным расположением вала. Двигатели фланцевого исполнения применяются в приводах механизмов передвижения кранов, электроталях и специальных лебедках; встроенные двигатели - в некоторых машинах непрерывного транспорта и электроталях.

В некоторых случаях двигатели выполняются как единое целое с редуктором и тормозным устройством. Примером подобного конструктивного исполнения являются двигатели с коническим статором и ротором, встроенные внутрь электрических талей. Двигатели с коническим ротором изготовляются мощностью от 0,25 до 30 кет.

Для подъемного механизма крановых установок промышленность выпускает специальные асинхронные двигатели с электромагнитным (вихревым) тормозом. В приводах транспортеров находят применение двигатели барабанного типа, в барабанах которых встроены редуктор и статор электродвигателя. Вращающийся барабан (ротор) приводит в действие ленту транспортера.

2. Контроллеры

В электроприводе строительных кранов применяются барабанные, кулачковые и магнитные контроллеры. Контроллеры барабанного типа постепенно выходят из употребления. Для тяжелых условий эксплуатации Крановых установок используются магнитные контроллеры, представляющие собой комплект оборудования, состоящий из командоконтроллера и станции управления (магнитной станции) - панели с установленными на ней контакторами, реле, рубильниками и предохранителями. Для управления крановыми двигателями передвижения и поворота применяют магнитные контроллеры типа ТН-60, для одновременного управления двумя двигателями - магнитные контроллеры типа ДТА-60, для регулирования скорости опускания груза - магнитные контроллеры типа ТСА-60. Командоконтроллер служит для управления магнитной станции - включения и выключения ее контакторов.

Ниже рассматриваются наиболее распространенные схемы управления двигателями с помощью контроллеров.

Схема управления асинхронным короткозамкнутым двигателем при помощи кулачкового контроллера НТ-53 (рис. 80).

С помощью контроллера НТ-53 производят непосредственное переключение в силовых цепях. Схемы контроллеров НТ-63 и ККТ-63 аналогичны схеме контроллера НТ-53. Они пригодны для управления механизмами в случаях, когда вследствие ненапряженного режима работы и небольших рабочих скоростей возможно использовать двигатели с короткозамкнутым ротором.

Перед пуском двигателя ручку контроллера устанавливают в положение 0. После этого подают к схеме питание, включая рубильник Р. Далее, нажимая на кнопку а Р. замыкают цепь управления (U-12-1-2-14- ’21) и включают главный линейный контактор Л. Затем нажатие на кнопку КР снимается, ток во вспомогательной цепи может протекать по параллельной цепи 12-18-5-4-12-14-15-16-21 или 12-18-3-4- 12-14-15-16-21. Устанавливая ручку контроллера в рабочее положение «Вперед», пускают двигатель в работу. Как видно на схеме, при таком положении ручки контроллера контакты К1 и КЗ замыкаются, что приводит к подаче питания фа‘зы Л1 к зажиму обмотки статора СЗ, а фазы ЛЗ к зажиму обмотки С1. При переводе ручки контроллера в положение «Назад» порядок питания двух фаз изменяется. Контакты К1 и К.2, замыкаясь, подают питание фазы Л1 (провод Л11) к обмотке статора С1, а контакты К4 и Кб, замыкаясь, - фазы ЛЗ (провод Л31) к обмотке статора СЗ.

Рис. 80. Схема управления асинхронным двигателем с короткозамкнутым сотором при помощи контроллера НТ-53

Если механизм не находится в одном из крайних предельных положений, то двигатель может вращаться в обоих направлениях; если же один из конечных выключателей (KB или КН) разомкнут, то движение возможно только в одном направлении, так как при разомкнутом KB разрывается цепь 18-5-4, а при разомкнутом КН - цепь 18-3-4.

Остановка двигателя производится поворотом ручки контроллера в нулевое положение. Двигатель также автоматически отключается от сети при наезде на один из конечных выключателей или при размыкании аварийного рубильника АВ. Защита двигателя осуществляется плавкими предохранителями и максимальными реле РМ. Нулевая защита осуществляется срабатыванием электромагнитной катушки линейного контактора JI. Повторный запуск двигателя может быть осуществлен лишь при возвращении ручки контроллера в нулевое положение. В случае необходимости параллельно двигателю может подключаться тормозной магнит или электрогидравлический тормоз.

Схема управления асинхронным двигателем с фазным ротором при помощи кулачкового контроллера НТ-54 (рис. 81).

Рассматриваемая схема, так же как и схема контроллеров серии ККТ-64, применяется для управления двигателями механизмов подъема, требующих регулирование скорости при опускании груза.

Рис. 81. Схема управления асинхронным двигателем с фазным ротором при помощи кулачкового контроллера НТ-54

Схема предусматривает максимальную защиту (реле РМ), нулевую защиту, конечное ограничение хода и нулевую блокировку. Линейный контактор JI и максимальное реле входят в комплект защитной панели. В схеме предусмотрен однофазный тормозной электромагнит ТМ.

Схемы управления асинхронными двигателями при помощи магнитных контроллеров.

В случаях, когда режим работы силовых контроллеров чрезмерно тяжелы, применяют магнитные контроллеры, что значительно облегчает работу крановщика.

Рис. 82. Схема управления асинхронным двигателем с фазным ротором при помощи магнитного контроллера серии ТС

Управления при помощи магнитного контроллера типа Т (рис. 82).

При включении выключателя 2Р в цепи управления и нулевом положении командоконтроллера замыкается катушка блокировочного реле РБ. Наличие замька-ющего (в нулевом положении командоконтроллера) контакта К1 позволяет производить пуск, начиная с нулевого положения командоконтроллера, иначе включить остальную часть схемы из-за контакта реле РБ нельзя. В первом положении «Вперед» замыкается контакт командоконтроллера К4 и получает питание катушка контактора В. Это может иметь место в тех случаях, если механизм находится не в -предельном положении хода «Вперед» и конечный выключатель KB замкнут. Статор двигателя подключается вместе с тормозным магнитом ТМ, открывающим тормоз. В первом положении сопротивление включено в цепь ротора полностью, во втором с включением контактора Я сопротивление уменьшается, затем по мере поворота контроллера замыкаются ступени ускорений У/, 2У, ЗУ и 4У.

Для смягчения механической характеристики двигателя небольшая часть сопротивления в каждой фазе (Р\-Рь, Р2-Рб’, Рз-Рв) остается включенной.

Первое положение магнитного контроллера Т может быть использовано для торможения противовклю-чением. Все остальные ступени контроллера используются как пусковые и регулировочные.

Контроллер предназначен для механизмов передвижения и поворота, и поэтому все основные рабочие части механических характеристик расположены в первом квадранте.

2) Управление при помощи магнитного контроллера типа ТС (рис. 83).

Эта схема в отличие от схемы Т имеет при движении вниз два тормозных положения (торможение противо-включением). При спуске груза двигатель включен на подъем, но фактически происходит движение груза вниз (под действием его веса).

Создаваемый двигателем тормозной момент не дает в этом случае грузу падать. Торможение используется только при значительных грузах; малый груз не способен преодолеть стремление двигателя вращаться в сторону движения груза вверх, поэтому вместо спуска на первых положениях будет наблюдаться подъем. В силовых кулачковых контроллерах, чем ближе к нулевому положению и, следовательно, чем большее сопротивление включено в роторную цепь, тем больше скорость одного и того же груза. Во избежание этого в панелях ТС выполнена блокировка блок-контактами Н и 4 У (8-27), не позволяющая контактору 4У отпасть, пока не разорвется цепь К8 или не отпадет контактор Н.

Рис. 83. Схема управления асинхронным двигателем с фазным ротором при помощи магнитного контроллера типа ТС

При включении двигателя по схеме панели ТС на спуск на тормозных положениях может фактически происходить движение вверх; конечный выключатель включен так, что он в этом случае способен отключить двигатель при переходе предельного верхнего положения.

Для предупреждения включения контактора В при полностью выведенном пусковом сопротивлении ротора служит включенный последовательно с катушкой В блок-контакт контактора 4У. Пока замкнут контакт 4У и зашунтироваио почти все сопротивление роторной цепи, включить двигатель в тормозной режим невозможно. В дальнейшем блок-контакт 4У размыкается, но это не вызывает отключения двигателя, так как цепь уже зашунтирована блок-контактом В (20-21). Тормозной магнит ТМ включается в панелях ТС специальным контактором М. Крутые механические характеристики в первом и втором положении тормозного спуска дают неустойчивое регулирование скорости привода при спуске; даже изменение потерь в механизме в процессе спуска вызывает значительное изменение рабочей скорости. Относительно небольшое изменение величины спускаемого груза дает на том же положении контроллера не только большое изменение скорости, но даже-при малых грузах - подъем вместо спуска. Контроллер по зволяет работать в режимах силового спуска (при малых грузах и больших потерях в механизмах) и генераторного сверхскоростного спуска (пятое положение спуска).

Схема управления асинхронным двигателем с электромагнитным вихревым тормозом (вихревым тормозным генератором)

Электромагнитные (вихревые) тормозы выполняются или в виде отдельной машины, сочлененной с двигателем подъема, или располагаются консольно на валу двигателя. Тормоз создает дополнительный нагрузочный момент, исключая таким образом режимы холостого хода и стабилизируя величину нагрузки двигателя подъема. При опускании груза с его помощью создается тормозящий момент, достаточный для регулирования скорости опускания и получения малых монтажных скоростей.

Основное электрооборудование при этом состоит из двигателя - вихревого тормоза, ящика пусковых сопротивлений, электрогидравлического тормоза, командоконтроллера и селеновых выпрямителей.

На рис. 84 приведена принципиальная схема электропривода грузовой лебедки с вихревым тормозным генератором. Такая схема применена на башенных кранах КБ-40, КБ-60, КБ-100 КБ-160. Ниже рассматривается работа схемы.

Первое положение подъема соответствует пусковому режиму. Совместная работа двигателя и тормозного генератора позволяет выбирать слабину каната со скоростью 10-20% ломинальной.

Во втором положении подъема производится разгон двигателя путем выведения части роторного сопротивления. Тормозной генератор на этом положении командокон-троллера не работает.

В третьем положении подъема пусковое сопротивление в цепи ротора выводится и двигатель работает на максимальной скорости. Тормозной генератор находится в отключенном состоянии.

Первое положение спуска соответствует работе двигателя с полным сопротивлением в цепи ротора и включенным тормозным генератором, что обеспечивает низкую посадочную скорость при опускании больших грузов.

Во втором положении спуска часть сопротивления роторной цепи выводится, тормозной генератор находится во включенном состоянии, что позволяет осуществлять посадку различных грузов.

В третьем положении спуска тормозной генератор отключается, а в цепи ротора остается небольшое добавочное сопротивление. При опускании небольших грузов скорость двигателя ниже синхронной, а при грузах большого веса она может превысить последнюю. Третье положение является основным при опускании груза. В первом и втором положениях командоконтроллера осуществляется окончательная посадка груза.

Рис. 84. Схема управления асинхронным двигателем с фазным ротором и вихревым тормозным генератором
ДП - электродвигатель механизма подъема: 77, С - контакторы реверса; 1У-ЗУ - контакторы ускорения; Г - контактор генератора; РМП, РМВ, РМК, РМС - блок максимальных реле; РТ - реле торможения; РУ - реле ускорения; ГС - сопротивление цепи генератора; АВ - аварийный выключатель; KB - конечный выключатель; 777 - тормоз электрогидравличеокий

Реле ускорения РУ выполняет автоматический пуск двигателя. Выдержка времени при закорачивании реле на спуске благодаря сопротивлению 2ДС -меньше, чем на подъеме. Реле торможения РТ создает форсировку тока возбуждения тормозного генератора в динамическом режиме в момент перехода с третьей позиции спуска.

Электрогидравлический тормо‘з включен так, чтобы его колодки были разжаты на всех позициях подъема и спуска.

Привод с вихревым тормозным генератором дает возможность осуществлять регулирование скорости в широких пределах как при опускании, так и при подъеме груза, независимо от его веса.

Схема управления двигателем постоянного тока при помощи кулачкового контроллера НП-102 (рис. 85).

Рис. 85. Схема управления двигателем постоянного тока при помощи кулачкового контроллера НП-102

Рассматриваемая схема предназначена для управления двигателем подъема. В схеме предусмотрен конечный выключатель для направления движения вверх. В нулевом положении контроллера при помощи замкнутого в этом положении контакта (нижний на схеме) создается цепь электрического торможения, состоящая из якоря (Я1-Я2), дополнительных полюсов ЦП, главных полюсов ПО и сопротивления (Р8-Р7). Верхние контакты 1-2 замкнуты в нулевом положении контроллера и служат дЛя осуществления нулевой блокировки. Через них в нулевом положении всех контроллеров крана происходит замыкание цепи катушки общего линейного контактора. Если хотя бы один из контроллеров находится не в нулевом положении, линейный контактор не может быть включен. Нулевую блокировку легко проследить на схемах контроллеров и Защитных панелей, также на полных схемах кранов. После вывода контроллеров из нулевых положений цепь нулевой блокировки шунтируется ‘блок-контактом линейного контактора. Контроллер НП-102 имеет несимметричную электрическую схему. В положении спуска якорь двигателя включается параллельно электрической цепи, состоящей из обмотки главных полюсов и части сопротивления. В этом легко убедиться, проследив соединения в первом положении спуска: +JI-ПО-Р6-Р1-Л и параллельно этой цепи +Л-ДП-Я2-Я1-Р7-Р8-РЗ- -Р1-Л. В последующих положениях контроллера точка присоединения второй цепи меняется и изменяется сама величина сопротивлений, так как постепенно переключаются контакты Р6, Р5, Р4, РЗ, Р2 и Р1.

Схема дает возможность кроме двигательных режимов иметь при подъеме грузов тормозные положения с регулированием скорости, а также положения силового спуска, необходимые для подъема грузов малого веса.

3. Командоаппараты

Командоаппараты предназначаются для воздействия на вспомогательные цепи управления и защиты. К ним относятся кнопочные станции, командоконтроллеры, путевые, конечные и аварийные выключатели.

Кнопки управления выполняются замыкающими (3) или размыкающими {Р), одно- и многоцепными, ручными и ножными. Специальные кнопки исключают возможность запуска механизма без ключа. Из отдельных кнопок управления комплектуются кнопочные станции.

КомандоконтроЛЛёрЫ предназначаются Для слож^ЫХ переключений в цепях управления. Они могут иметь значительное число положений и большое число цепей управления (в стандартных исполнениях 6 и 12). Ко-мандоконтроллеры КК-8000, предназначенные для управления рабочими органами механизма крана, встраиваются в кресло крановщика.

Командоаппараты могут управляться вручную, при помощи ножной педали, вспомогательным двигателем - серводвигателем или самим управляемым механизмом. В последнем случае специальные кулачки или рейки воздействуют на аппарат при переходе через определенные участки пути или после определенного числа оборотов барабана (путевые или конечные выключатели).

Аварийные выключатели служат для мгновенного разрыва основных цепей управления при необходимости быстрой остановки и обесточивания крана, конвейера и т. д. Иногда на одном подъемно-транспортном сооружении устанавливается несколько аварийных выключателей, последовательно включенных в цепь управления.

Конечные выключатели служат для ограничения хода механизмов подъема, передвижения тележек, мостов и башен кранов. В большинстве случаев они имеют контакты, размыкающиеся при переходе механизма через предельные положения. Контакты конечных выключателей в большинстве случаев находятся в цепи катушек контакторов. Конечные выключатели разделяются на тип КУ, действующие при наезде выключающей линейки, каната или груза, и на тип ВУ, действующие при повороте вала на определенный угол. Для целей блокировки используются также рычажные маломощные выключатели типа В-10.

4. Аппаратура управления тормозами

Для управления тормозами подъемно-транспортных машин обычно служат тормозные электромагниты, электрогидравлические и центробежные толкатели и серводвигатели.

Тормозные электромагниты бывают однофазные и трехфазные. Они характеризуются рабочим напряжением, относительной продолжительностью включения катушки, ходом или углом поворота, тяговым усилием (или моментом) якоря и допустимым числом включений магнита. Включаются тормозные магниты вместе с двигателем и производят растормаживание тормоза; при отключении двигателя тормозной электромагнит мгновенно обесточивается и тормоз замыкается под действием пружины.

Рис. 86. Однофазный электромагнит типа МО 1 - магнитопровод в виде П-образ-ного сердечника; 2-боковые стойки для крепления электромагнита к тормозной системе; 3 - катушка; 4 - якорь; 5 - неподвижная ось; 6 - планка; 7 - тормозной шток

По условиям нагрева тормозные электромагниты, работающие в повторно-кратковременном режиме, допускают до 900, а при длительном режиме до 300 включений в час. В наиболее ответственных случаях, при тяжелом режиме работы и большом числе включений, однофазные магниты Заменяют магнитами постоянного тока, питаемыми через выпрямители.

Общим недостатком тормозных электромагнитов переменного тока является то, что катушки их сгорают в тех случаях, когда электромагнит включен, но не смог но какой-либо причине (например, из-за заклинивания) втянуть свой якорь. Большой ток включения катушка выдержать длительно не может. Другим недостатком тормозных электромагнитов как переменного, так и постоянного тока является то, что в начале движения якоря, когда требуется наибольшее усилие, тяговые характеристики электромагнита обеспечивают наименьшую силу; в конце же хода нужно уменьшение усилия для ослабления удара, а электромагнит развивает наибольшую силу.

Толкатели. В связи с указанными недостатками тормозных электромагнитов для управления механическими тормозами широко используют электрогидравличе-ские и электромеханические толкатели и серводвигатели (тормозные двигатели).

Электрогидравлические толкатели используются в пружинных и колодочных тормозах серии ТТ. Они допускают до 720 включений в час. Толкатель снабжен двигателем с коротко-замкнуты» ротором, .вращающим крыльчатку в цилиндре с маслом. Вращение крыльчатки создает давление масла, не зависящее от направления вращения двигателя. Давление масла вызывает движение поршня, передаваемое через траверсу тормозу.

Толкатели обеспечивают надежное и плавное управление процессом торможения, регулирование скорости крановых механизмов. Для этого двигатели толкателей приключаются к ротору приводного двигателя; питаясь током пониженной частоты, двигатель толкателя развивает неполное число оборотов, тормоз не открывается полностью и, притормаживая механизм, снижает его скорость. Такая система является автоматической импульсной системой регулирования скорости.

5. Крановые сопротивления

Крановые сопротивления предназначены для пуска, регулирования скорости вращения и торможения двигателей переменного и постоянного тока. В зависимости от мощности электродвигателя, плавности регулирования скорости и торможения, сопротивления могут иметь различные величины, разное число ступеней и отличаться конструктивным исполнением. Крановые сопротивления изготовляют из константановой проволоки (типа НК) или из фехралевой ленты (типа НТ) толщиной 0,8-1,5 лш-:при ширине 8-15 мм, намотанной на ребро. Элементы сопротивлений собираются в стандартные по сопротивлению и размеру ящики сопротивлений.

К атегория: - Электрооборудование строительных машин

Управление мостовым краном невозможно без конкретных знаний и умений о спецтехнике данного типа. Это позволяет ускорить процесс работы, сделать использование устройства эффективнее в разы. Машина применяется для перемещения грузов различной величины, габаритов на промышленных предприятиях, складах.

Почему мостовой кран так востребован

Специалисты выделяют три главных причины, которые положительно влияют на рост спроса на технику среди населения Украины:

  • надежность;
  • практичность в эксплуатации;
  • высокие технические характеристики.

Кроме того, механизмы имеют три режима работы (исходя из базового назначения):

  • легкий;
  • средний;
  • тяжелый.

Такой подход облегчает процесс работы оборудования мостового типа.

Особенности устройства конструкции

Перед началом управления устройством данного типа, необходимо разобраться, как устроен мостовой кран. Конструкция состоит из кабины, кранового пути, грузовой тележки и моста. Допускается наличие вспомогательного устройства, которое способно поднять в 3-5 раза меньше груза, чем основная часть. Электропривод запускает механизм. Он также гарантирует три рабочих хода: подъем/спуск груза, передвижение тележки, моста.

Стоит сказать о кран-балке – вид мостового крана, у которого электрическая таль является грузовой тележкой. Их грузоподъёмность свыше 5 т. Подобной техникой управляют при помощи подвесного пульта.

С чего начинать работу

Перед тем, как приступать к непосредственным обязанностям, крановщик должен выполнить следующие действия:

  • ознакомиться с записями в вахтенном журнале;
  • произвести прием крана;
  • убедиться в исправности конструкции.

Машинист получает ключ-марку на управления спецмашиной. Данное действие имеет установленный порядок. Если передача осуществляется в момент ремонта, процедура откладывается до окончания работ.

При входе в кабину крановщик должен соблюдать правила безопасности. Кроме того, он обязан проверить все механизмы на наличие неполадок. При выявлении поломки машинист должен сообщить об этом.

Способы управления

Управление краном осуществляется несколькими способами:

  1. Регулирование выполняется с пола при помощи специального проводного или радиопульта.
  2. Контроль работы крана их кабины оператора.

Управление краном с пола не требует особых умений. На протяжении короткого срока можно выучить главные принципы работы механизма. Пульт управления мостовым краном упрощает решение сложных задач.

Основные функции:

  • подъем;
  • спуск;
  • остановка (нейтральное положение)
  • определение скорости;
  • аварийная остановка.

Устройство мостовых кранов, управляемых с пола, наиболее часто используют для кранов, которые имеют небольшой показатель грузоподъемности. Результаты работы такого способа максимально точные, безопасность на высшем уровне.

Для подъёма/спуска значительных по весу грузов, используют оборудование с управлением из кабины мостового крана. Подобные конструкции подвергаются обязательной регистрации в соответствующих органах. Работать на такой спецмашине разрешено только обученному водителю, который должен знать, как управлять краном.

Отдельно о требованиях к машинисту кабины

К человеку, который находится в кабине крана, выдвигают повышенные требования. Он должен:

  • обладать техническими знаниями по функционированию техники;
  • уметь ориентироваться во внештатных и аварийных ситуациях;
  • знать «на отлично» системы управления кранами;
  • быть стресоустойчивым, ответственным сотрудником.

Управление краном предполагает правильное использование рычагов и других средств, согласно исполняемой работе. Также предусмотрено контроль за поддержанием системы в рабочем состоянии. Особое внимание рекомендовано уделить регулировке муфт и тормозов.

Работать с подобной техникой трудно, что сказывается на профессиональных качествах машиниста.

Услуги «ПТЭ-Кран»

Компания предлагает грузоподъёмное оборудование от производителя. Команда «ПТЭ-Кран» комплексно подходит к делу: разрабатывает, производит и реализовывает спецтехнику на территории страны и за ее пределами. Опыт работы мастеров позволяет изготавливать высококачественные изделия. Конструкции полностью соответствуют нормам, требованиям.

Специалисты компании осуществляют также услуги по установке, обслуживанию техники данного типа. Работы проводят высококвалифицированные мастера с опытом работы от 3 лет.

Прайс можно найти на сайте. При необходимости, обратитесь к специалистам компании. При совершении покупки рекомендовано уточнить сумму к оплате.

Оформите заявку прямо сейчас. Выберите оптимальный вариант конструкции из каталога. Получите максимум выгоды от покупки и использования грузоподъёмного оборудования.

Сознайтесь, не раз вас посещали эти мысли, когда вы шли мимо стройплощадки. Ведь интересно было бы забраться в кабину экскаватора, который в этот момент тащит ковш, полный гравия. Там, наверно, куча рычагов непонятного назначения… Или вы мысленно представляете себе, что вон тот кран однажды помог бы вам вытащить из глубокого кювета целый автобус и спасти находящихся в нем несчастных сирот. Но… вы не знаете, как управлять краном. Нет, можно, конечно, почитать руководство по эксплуатации, но время для спасения сирот будет упущено! Так что на этот случай мы собрали для вас подходящие инструкции. Этой информации, конечно, недостаточно для получения сертификата на управление подобной техникой, и если вы решите без спросу порулить краном или экскаватором, вас, скорее всего, сдадут в полицию. Но если у вас все-таки окажется в распоряжении минут десять, и за это время вам понадобится разрушить планы злодеев (или погрузить пару палет на задний двор своего дома), вы будете знать, как это сделать.

Башенный кран Liebherr 316 EC-H Litronic

Подключите питание, повернув красный переключатель на задней стене кабины. Теперь сядьте лицом к панели управления. Слева сзади будет красная кнопка запуска всех систем. Нажмите ее, и в ответ начнет мигать расположенный рядом зеленый индикатор. Джойстики по правую и левую руку снабжены индуктивными датчиками и могут работать, только если вы обжимаете рукоятки ладонями. Правый джойстик отвечает за движения крюка вверх-вниз. Движение вперед — и трос с крюком поедет вниз, движение назад — начнет подниматься. Чтобы трос двигался очень медленно, нажмите кнопку, расположенную под большим пальцем. А если кран стоит на рельсах, его можно передвигать движениями вправо-влево того же джойстика. С помощью левого джойстика мы перемещаем крюк вдоль стрелы: вперед (от себя) — назад (на себя). Движения влево-вправо будут соответствовать поворотам стрелы.

Бонус для героя Большинство кранов умеют поворачивать стрелу с максимальной скоростью 0,6 об/мин, но этого вполне достаточно, чтобы злодей, которого вы подцепили на крюк, летел со скоростью около 50 км/ч. Сорвется с крюка — и улетит в вечность!

Вилочный погрузчик с ДВС Toyota 8-Series

Как и в обычном автомобиле, правая педаль — это газ, средняя — тормоз, левая — сцепление. Плавно отпустите сцепление, нажмите газ, и погрузчик покатится вперед. Рычаг слева от руля — стояночный, или экстренный, тормоз. Покидая кабину, не забудьте потянуть рычаг на себя. Обязательно пристегните ремни. Погрузчики иногда «клюют носом», и, чтобы этого избежать, на корму обычно ставят противовес в виде массивных чугунных брусков. Рукоятка селектора направления слева на рулевой колонке имеет три положения: вперед (от себя), назад (на себя) и нейтральное (даже при нажатии газа машина не едет). Справа три рычага. Ближайший к рулевой колонке управляет подъемом-опусканием вилки. Тот, что правее, — наклоном вилки, чтобы можно было подцеплять груз снизу. Если есть еще один рычаг, с его помощью можно варьировать расстояние между зубьями вилки с учетом ширины груза.

Калифорнийский канатный трамвай

Такие трамваи (например, в Сан-Франциско) передвигаются, прицепляясь к тросу (канату), а тот, в свою очередь, движется внутри специального желоба со скоростью 15 км/ч. Рычаг, находящийся в центре кабины, как раз и активирует захват, который жестко связывает вагон с канатом и приводит трамвай в движение. Но прежде чем трос может быть захвачен, его необходимо приподнять из желоба. Для этого кондуктор выходит из вагона и поднимает специальный рычаг, который вмонтирован прямо в дорожное полотно. Рычаг называется gypsy (англ. «цыган»). Теперь можно тянуть рычаг захвата на себя, а затем плавно трогаться, постепенно отпуская педаль тормоза. Чтобы остановить трамвай, медленно отпустите рычаг захвата и приведите в действие тормоза — либо нажатием педали тормоза (в этом случае колеса блокируются стальными тормозными башмаками), либо приведением в действие рельсового тормоза. Рельсовый тормоз — это набор деревянных планок, которые прижимаются к рельсам движением правого рычага. При необходимости аварийного торможения можно задействовать «стоп-кран» — слотовый тормоз: им управляет левый рычаг с красной рукоятью. Когда этот тормоз приводится в действие, в желоб, по которому движется кабель, опускается 40-см металлический клин. Повторное использование стоп-крана без ремонта невозможно.

Экскаватор John Deere 2106 LC

На правом подлокотнике расположена ручка зажигания. Поверните ее до упора и удерживайте, пока не заведется двигатель. Слева от сидения найдите рычаг с красной рукояткой. Когда он поднят, ничего не работает, так что придется его опустить. Педали и соединенные с ними рычаги управляют гусеницами, на которых передвигается экскаватор. Чтобы левая гусеница поехала вперед, нажмите левую педаль или двиньте вперед рычаг. Для заднего хода потяните рычаг на себя. То же самое касается правой гусеницы и соответствующей педали/рычага. При движении одной гусеницы экскаватор выполнит поворот. Для более точного управления гусеницами (например, при въезде на автоприцеп) используйте только рычаги. Ручка справа управляет стрелой. Движение ручки вперед заставит стрелу подниматься, а назад — опускаться. Работая ручкой влево-вправо, можно зачерпывать землю ковшом и высыпать содержимое. Левая ручка управления руководит движениями «рукояти» — балки между стрелой и ковшом. Движение на себя заставит «рукоять» приблизиться к кабине, а от себя — отведет ее вперед. Движения влево-вправо дают возможность поворачивать кабину и рабочее оборудование относительно гусеничного шасси.

Танк M1A1 Abrams

Влезьте в танк через круглый люк и займите место водителя в глубине корпуса. Заведите двигатель, поместив главный переключатель питания в положение «включено» и удерживая пусковой переключатель несколько секунд. Слева находится приборная панель с показаниями тахометра и уровня топлива. Нажмите левую педаль, чтобы привести в действие тормоз, затем сдвиньте вправо рычаг, находящийся справа на уровне груди, чтобы снять танк со стояночного тормоза. Переключатель в центре Т-образной колонки прямо перед вами — это селектор режимов АКПП. Поставьте его в положение D. Теперь выкрутите рукоятки на себя, как на мотоцикле. Танк начнет движение. Но будьте внимательны — рукоятки газа очень чувствительны. Чтобы повернуть налево — поверните на себя левую рукоять. Сделайте то же самое с правой рукоятью для правого поворота. Тяните осторожно — из-за высокой чувствительности инструментов управления боевая машина может повернуть слишком резко.

Бонус для героя Максимальная скорость танка всего лишь 67 км/ч, так что если нужно быстро смыться, танк не лучший вариант.

Вряд ли стоит говорить о том, что в большинстве случаев кран-манипулятор становится идеальным решением. Речь идёт о плотной городской застройке или локации, куда обыкновенный кран проехать не в состоянии.

Манипулятор в Москве поможет выполнить эвакуацию автомобиля в самые короткие сроки.

Кран манипуляторы предназначены для самых разнообразных работ. В пример можно привести следующие:

  • погрузка;
  • перемещение;
  • перевозка и т.д.

Каждый рабочий, который собирается работать на кране-манипуляторе в обязательном порядке должен пройти полное обучение. Речь идёт о том, что к каждому автомобилю прилагается подробная инструкция.

Однако существуют и более радикальные методы. Подразумеваются специальные курсы для водителей кранов-манипуляторов. На них любой желающий может понять на практике работу следующих систем: система безопасности, тяговая, буферная, тормозная, ходовая и т.д.

На самом деле управление манипулятором не такая сложная задача, как может показаться в начале. Хотя в обязательном порядке, водитель крана манипулятора должен не только видеть, но и чувствовать габариты автомобиля, стрелы и т.д.

Несмотря на то, что стрела крана-манипулятора значительно меньше, чем у традиционного крана, она может привести к несчастным случаям на строительных площадках и не только.

По этой причине, перед тем, как приступить непосредственно к работе на манипуляторе в обязательном порядке подаётся звуковой сигнал. Если люди находятся рядом с краном, они отойдут.

Кроме того, не стоит забывать о том, что не всегда придется использовать манипулятор на твёрдом асфальте. В инструкции к автомобилю будут прописаны инструкции в отношении использования последнего на краю котлована, или на болотистом, сыпучем грунте.

Как правило, основа автомобиля выполняется на базе хорошо известного грузовика. К примеру, КамАЗ пройдёт практически всюду. Вряд ли стоит напоминать о том, что манипуляторы активно используются на лесозаготовке.