Автоматическая коробка передач - гидравлическая, вариаторная, роботизированная. Гидроблок акпп

2222 Просмотров

Коробка-автомат современного автомобиля имеет достаточно сложное устройство. Это объясняется постоянно возрастающими мощностями двигателя, а, стало быть, и более высокими требованиями к различным составляющим трансмиссии. Одна из важнейших составляющих частей «автомата» - это его блок управления, или гидроблок АКПП. Сегодня мы расскажем про принцип работы этой неотъемлемой составляющей и выясним, почему она так важна для исправной работы автомобиля?

Назначение

Механическая КПП, в отличие от коробки-автомат, устроена несколько проще. Это происходит за счет того, что в ней отсутствует большое количество функциональных элементов, электроники и механики, которая обеспечивает исправную работу искусственного интеллекта трансмиссии.

Так, одной из главных особенностей коробки-автомат является отсутствие необходимости самостоятельно переключать передачи и осуществление максимально эффективного взаимодействия двигателя и ведущей оси. Роботизированные трансмиссии применяют для этого систему электрических приводов, которые своевременно активируют механизм сцепления и соединяют ведущий и ведомый валы должным образом.

В коробке-автомат все устроено несколько по-другому.

Основная разница в принципах работы, по сравнению с роботом, заключается в том, что здесь основную массу задач выполняет отнюдь не электроника. Львиную долю задач здесь осуществляет гидравлическая система, которая позволяет эффективно взаимодействовать валам, соединяющим колеса и двигатель, и своевременно изменять им свое положение друг относительно друга.

В роли гидравлической жидкости в устройстве управления смены скоростей выступает , имеющее официальное название АТФ. Это масло имеет достаточно высокую вязкость, а потому при небольших усилиях достигает высокого давления и способно передавать механическую энергию от одного элемента к другому.

В «автомате» необходимо не просто равномерное распределение масла при различных режимах работы. Нужно, чтобы в каждом отдельном режиме гидравлическая жидкость поступала лишь в одном конкретном направлении, чтобы перевести фрикционы в необходимое положение.

Именно для этих целей и служит гидроблок. Его задача - распределение АТФ должным образом. Причем направление движения масла будет изменяться в зависимости от количества оборотов двигателя, выбранной скорости и режима .

Принцип работы

Те, кто никогда не сталкивался с необходимостью изучения «автомата» на достаточно детальном уровне, ошибочно считают, что гидроблок состоит из большого количества функциональных элементов. В действительности, данный элемент имеет самое простое и примитивное устройство относительно прочих узлов трансмиссии, но его конструкция выверена крайне точно, во избежание поломок и скоропостижного износа функционального узла.

Как было сказано выше, главная задача гидроблока, установленного на «автомате» - распределение трансмиссионного масла должным образом и в необходимом направлении.

Это масло должно подаваться на вход гидроблока под высоким давлением, чтобы валы смогли взаимодействовать друг с другом и двигаться синхронно.

Функцию масляного нагнетателя выполняет специальный насос высокого давления, который способен создавать в своем корпусе величину, достигающую нескольких атмосфер. При повышении оборотов двигателя насос начинает функционировать более интенсивно, и, следовательно, создается более высокое давление.

Задача гидроблока - оперативно перенять у насоса струю масла и перенаправить ее к фрикционам, которые необходимо разомкнуть для переключения на более высокую или низкую передачу.

Это достигается за счет специфического строения элемента управления, которое в то же время является достаточно сложным. Так, гидроблок выполнен из специального закаленного сплава, который вынужден в течение эксплуатации выдерживать высокие нагрузки как по температуре, так и давлению. В связи с этим, стенки корпуса гидроблока выполнены из листа металла большой толщины.

Внутри гидроблок «автомата» имеет большое количество каналов, напоминающих собой лабиринт. Несмотря на то, что внешне эта система кажется архаичной, в действительности это не так. Она устроена так, что при подаче насосом давления масло распределяется должным образом. Направление движения масла определяется тем, в каком положении на данный момент находятся фрикционы. Этому способствует ЭБУ, который при помощи электроники анализирует все текущие показатели.

На легковых автомобилях наибольшее распространение получили гидромеханические коробки с планетарными механическими коробками. Их преимущества:

  • компактность конструкции;
  • меньшая металлоемкость и шумность;
  • больший срок службы.

К недостаткам относятся:

  • сложность;
  • высокая стоимость;
  • пониженный КПД.

Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.

Представляет собой гидравли­ческий механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатками:

  • насосного (ведущего);
  • турбинного (ведомого);
  • реактора.

Насосное колесо 3 закреплено на маховике 1 двигателя и образует корпус гидротрансформатора, внутри которого размещены тур­бинное колесо 2, соединенное с первичным валом 5 коробки передач и реактор 4, установленный на роликовой муфте 6 свободного хода. Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.

Рис. Гидротрансформатор:
а – общий вид; б – схема; 1 – маховик; 2 – турбинное колесо; 3 – насосное колесо; 4 – реактор; 5 – вал; 6 – муфта

Каждое колесо имеет наружный и внутренний торцы, между которыми располагаются профилированные лопасти, образующие каналы для протока жидкости. Все колеса гидротрансформатора максимально приближены друг к другу, а вытеснению жидкости препятствуют специальные уплотнения.

При работающем двигателе насосное, колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение. Из турбинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и существенное увеличение крутящего момента. Таким образом, масло циркулирует по замкнутому кругу и обеспечивается передача крутящего момента в гидротрансформаторе.

Характерной особенностью гидротрансформатора является увеличение крутящего момента при его передаче от двигателя к первичному валу коробки передач. Наибольшее увеличение крутящего момента на турбинном колесе гидротрансформатора получается при трогании автомобиля с места, при этом коэффициент трансформации может составлять до 2,4. В этом случае реактор неподвижен так как заторможен муфтой свободного хода. По мере разгона автомобиля увеличивается скорость вращения насосного и турбинного колес. При этом муфта свободного хода расклинивается и реактор начинает вращаться с увеличивающейся скоростью, оказывая все меньшее влияние на передаваемый крутящий момент. После достижения реактором максимальной скорости вращения гидротрансформатор перестает изменять крутящий момент и переходит на режим работы гидромуфты. Таким образом, происходит плавный разгон автомобиля и бесступенчатое изменение крутящего момента.

Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и к ведущими колесами автомобиля, Это обеспечивается следующим образом: с уменьшением скорости вращения ведущих колес автомобиля при возрастании сопротивления движению возрастает динамический напор жидкости от насоса на турбину, что приводит к росту крутящего момента на турбине, следовательно, на ведущих колесах автомобиля.

КПД гидротрансформатора определяет экономичность его работы. Максимальное значе­ние КПД гидротрансформатора может быть от 0,85 до 0,97, но обычно находится в диапазоне от 0,7 до 0,8. В комплексном гидротрансформаторе на режиме гидромуфты можно получить максимальное значение КПД до 0,97.

Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро­трансформатором устанавливают специальную планетарную коробку передач, которая компенсирует указанные недостатки.

Планетарная коробка передач

Планетарная коробка передач включает в себя планетарные механизмы . В простейшем планетарном механизме солнечная шестерня 6, закрепленная на ведущем валу 1, находится в зацеплении с шестернями-сателлитами 3, свободно установленными на своих осях. Оси сателлитов закреплены на водиле 4, жестко соединенном с ведомым валом 5, а сами сателлиты находятся и зацеплении с коронной шестерней 2, имеющей внутренние зубья.

Рис. Планетарный механизм:
1 – ведущий вал; 2 – коронная шестерня; 3 – сателлиты; 4 – водило; 5 – ведомый вал; 6 – солнечная шестерня; 7 – тормоз

Передача крутящего момента с ведущего вала 1 на ведомый вал 5 возможна только при заторможенной коронной шестерне 2 при помощи ленточного тормоза 7 или многодискового «мокрого» сцепления. В этом случае при вращении шестерни 6 сателлиты 3, перекатываясь по зубьям неподвижной шестерни 2, начнут вращаться вокруг своих осей и одновременно через водило 4 будут вращать ведомый вал 5. При растормаживании шестерни 2 сателлиты 3, свободно перекатываясь по шестерне 6, будут вращать шестерню 2, а вал 5 будет оставаться неподвижным.

В автоматических коробках передач применяются фрикционные муфты сцепления. Фрикционная муфта сцепления со­стоит комплекта покрытых слоем фрикционного материала дисков, прижатых друг к другу через прокладки в виде тонких пластин из гладкого металла.

Рис. Фрикционная муфта сцепления автоматической коробки передач:
1 – канал подачи рабочей жидкости; 2 – поршень; 3 – кожух муфты; а – выключенное состояние; б – включенное состояние

При этом часть фрикционных дисков оснащены внутренними шлицами, часть – наружными. Прижимание дисков друг к другу обеспечивается гидравлическим поршнем 2, для выключения сцепления применяется возвратная пружина. При подаче к поршню давления рабочей жидкости диски плотно прижимаются друг к другу, образуя одно целое. Как только давление снимается, возвратная пружина отводит поршень назад и диски выводятся из зацепления. В качестве возвратных пружин могут использоваться винтовые, диафрагменные и гофрированные дисковые пружины.

Двухступенчатая гидромеханическая коробка передач

В качестве примера гидромеханических передач рассмотрим двухступенчатую гидромеханическую коробку передач . Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3 и двумя ленточными тормозными механизмами 2 и 4 и гидравлической системы управлениях кнопочным переключением передач. Кнопки соответственно означают нейтральное положение, задний ход, первую передачу и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.

Рис. Гидромеханическая коробка передач:
1 – гидротрансформатор; 2,4 – тормозные механизмы; 3 – фрикцион; 5,6 – планетарные механизмы

В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4 выключены. Трогание автомобиля с места происходит при включенной первой передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6 останавливается.

Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на вторую передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.

Для движения автомобиля задним ходом включается только тормозной механизм 4.

В настоящее время автоматические коробки передач имеют электронное управление, что позво­ляет гораздо точнее выдерживать заданные моменты переключения (с точностью до 1 % вместо прежних 6…8 %). Появились дополнительные возможности: по характеру изменения скорости при данной нагрузке на дви­гатель компьютер может вычислить массу автомобиля и ввести соответствующие поправки в алгоритм переключения. Электронное управление предоставило неограниченные возможности для само­диагностики, что позволило корректиро­вать процессы управления в зависимости от многих параметров (от температуры и вязкости жидкости до степени износа фрикционных элементов).

Система автоматического управления обычно состоит из следующих подсистем:

  • функционирования (гидравлические насосы, регуляторы давления)
  • измерительная, собирающая информацию о параметрах управления
  • управляющая, вырабатывающая управляющие сигналы
  • исполнительная, осуществляющая управление переключением передач, работой двигателя
  • подсистема ручного управления
  • подсистема автоматических защит, предотвращающая возникновение опасных ситуаций

Основными элементами электронной системы управления являются электронный блок и рычаг управления.

АКП с электронным управлением

В качестве примера современной АКП с электронным управлением рассмотрим шестиступенчатую коробку передач 09G японского концерна AISIN.

АКП состоит из гидротрансформатора, механической планетарной коробки передач с многодисковыми фрикционами и многодисковыми тормозными механизмами, гидравлической системы, систем охлаждения и смазки, электрической системы.

Рис. Разрез автоматической шестиступенчатой коробки передач 09G:
К– многодисковые муфты; В – многодисковые тормоза; S – солнечные шестерни; Р – сателлиты; РТ – водило; F – обгонная муфта; 1 – вал турбинного колеса; 2 – ведомая шестерня промежуточной передачи; 3 – жидкостный насос

Планетарные ряды объединены по схеме, разработанной Лепеллетье (Lepelletier). Крутящий момент двигателя подводится к одинарному планетарному ряду. Далее он направляется на сдвоенный планетарный ряд Равиньо (Ravigneaux).

Рис. Двухредукторная планетарная система Лепеллетье:
а – обычный планетарный редуктор; б – планетарный редуктор Равиньо; 1 – вал турбинного колеса; Р1 – сателлит коронной шестерни Н1; Р2 – сателлит солнечной шестерни 2; Р3 – сателлит коронной шестерни 1; S1 ­­– солнечная шестерня 1; S2 — солнечная шестерня 2; S3 — солнечная шестерня 3; Н1 – коронная шестерня 1; Н2 – коронная шестерня 2

Управление одинарным планетарным рядом производится посредством многодисковых муфт K1 и K3 и многодискового тормоза B1. Число сателлитов в планетарных рядах выбирается в зависимости от передаваемого крутящего момента.

Сдвоенный планетарный ряд управляется посредством многодисковой муфты K2, многодискового тормоза B2 и обгонной муфты F. В системе управления муфтами предусмотрены устройства динамической компенсации рабочего давления, которые делают работу муфт независящей от частоты вращения. Муфты K1, K2 и K3 служат для подвода крутящего момента к планетарным рядам, а с помощью тормозов B1 и B2, а также обгонной муфты обеспечивается передача реактивных моментов на картер коробки передач.

Давление в рабочих цилиндрах муфт и тормозов изменяется посредством регулирующих клапанов.

Обгонная муфта F представляет собою механизм, который работает параллельно с тормозом.

Основным узлом автоматической коробки переключения передач является гидравлическая клапанная плита, или гидроблок АКПП. Давайте разберемся, за что отвечает гидроблок в АКПП, и стоит ли самостоятельно его ремонтировать в случае поломки.

Принцип работы гидроблока АКПП, или что такое гидроблок

Гидроблок включает в себя металлическую клапанную плиту с большим количеством каналов, в которых установлены регулирующие клапаны, наборы датчиков и соленоиды, отвечающие за работу коробки передач.

Интересно! Автомеханики, ремонтирующие АКПП, называют устройство гидроблока АКПП на профессиональном сленге «мозгами», потому что он немного напоминает мозг человека с его извилинами.

Принцип работы гидроблока АКПП очень прост. По определенным каналам он передает давление жидкости (АТФ) к механическим частям АКПП, в зависимости от необходимого действия, и от того, какая передача включается. Управляет всем этим процессом электронный блок управления (ЭБУ).

Когда необходим ремонт гидроблока, почему так важна диагностика

Поскольку гидроблок отвечает за перераспределение потоков и давления трансмиссионной жидкости, выходит, что все рывки и удары, которые вы вдруг начинаете чувствовать, - признаки неисправности гидроблока АКПП. При любых неполадках необходимо провести диагностику и лишь после этого начинать ремонт.

Важно! При своевременной диагностике можно отвести множество проблем в будущем. Если из строя вышла одна деталь, АКПП будет работать, но это спровоцирует поломку остальных деталей в будущем, и дальнейшая ее работа станет возможна только после проведения ремонта. А это очень кропотливая и дорогостоящая работа, которую выполнить собственными силами не всегда возможно.

Для диагностики устройства необходимо разобрать АКПП, так как, чтобы проверить гидроблок АКПП, необходимо корпусные плиты устройства взять на вакуум-тест. Вакуумная диагностика на основании показателей манометра покажет, исправлен гидроблок или изношен.

Причины поломки гидроблока АКПП


Характерные симптомы неисправности гидроблока АКПП проявляются в виде повышенной вибрации и скрежете при переключении передач. Также довольно часто неисправность представляется в виде толчков, ударов и пробуксовок между передачами. Зачастую ремонт гидроблока АКПП вызван несвоевременной заменой трансмиссионного масла , использованием некачественного масла и несоблюдением основных правил эксплуатации автовладельцем.Причины поломок гидроблока АКПП:

  • Использование грязного масла (со стружкой и прочими отложениями);
  • Загрязнение клапанов (при использовании некачественного масла);
  • Перегрев трансмиссии (спровоцировано загрязнением сотов радиатора охлаждения);
  • Наличие задиров на поверхностях муфт, каналов, золотников и пр. (что понижает качество масла и приводит к неисправности гидроблока);
  • Разбитость пружин (отвечающих за возвращение плунжера при выключении соленоида);
  • Стремительный разгон автомобиля (приводит к износу фрикционов);
  • Окисление контактной части соленоидов.

    Знаете ли вы? Для продления эксплуатационного срока АКПП и гидроблока необходимо своевременно производить замену трансмиссионного масла и промывать гидроблок. Замену соленоидов необходимо проводить с регулярностью в 80-150 тысяч километров.

    Как выполнить ремонт гидроблока своими руками

    Ремонт АКПП – дело серьезное, требующее специальных навыков и знаний автомеханика. А вот демонтаж и последующий монтаж устройства могут произвести многие автолюбители. Осуществление этих операций своими руками значительно снижает стоимость ремонта в целом.

    Стоит ли выполнять самостоятельный ремонт

    Ремонт гидроблока АКПП можно провести своими руками. Для этого необходимо иметь специальные приспособления и владеть определенными навыками автомеханика, а также иметь свободное время, желание сделать работу самостоятельно, и запастись терпением и упорством.

    Порядок замены гидроблока

    При замене гидроблока АКПП необходимо обратить внимание на нюансы, которые связаны с маркой автомобиля, который ремонтируется. Сперва в каждом автомобиле необходимо слить все масло из АКПП, снять аккумуляторную батарею и тогда уже начинать демонтаж гидроблока.

    Обратите внимание! При ремонте автомобиля Peugeot нужно сперва произвести замену клапанов. Главные различия их состоят в том, что их электромагнитный механизм оснащен отдельным разъемом и фиксируется при помощи 4-х крепких зажимов. Замену клапанов нужно проводить попарно.


    После демонтажа гидроблока, его следует помыть. Для этого выкручиваем 8 торксов, снимаем, моем. Под крышкой находится маленький фильтр и электроклапан-модулятор, они также снимаются и моются. После того, когда все детали гидроблока автомобиля будут помыты, собираем гидроблок в противоположном порядке.

    Перед тем как приступить к установке гидроблока, рекомендуется сменить резинки-уплотнители. Необходимо проверить, чтобы механический клапан вошел в выступ зубчатого сектора. Устанавливаем его на место, проверяем, чтобы провода были внутри, иначе переключение передач будет невозможно. Устанавливаем крепежный болт гидравлического блока на свое место. Подсоединяем 6 секансных электромагнитных клапанов и проверяем, правильно ли работает механизм переключения передач в разных положениях.

    После монтажа АКПП, приступаем к заливке 4 литров масла, которое необходимо разогреть до 58-68 градусов. Далее включаем мотор, оставляем его работающим и откручиваем пробку. Если масло начнет выходить тонкой струйкой, а затем капать, значит, все нормально, и уровень верный. В любом другом случае необходимо доливать еще пол литра масла и заново повторять все действия.

    Особенности ремонта на Ауди

    Устройство гидроблока АКПП Ауди включает в себя определенные отличия, это относится к процессу монтажа гидроблока. После демонтажа гидроблока на вас польется масло. Во время демонтажа гидроблока необходимо запоминать правильное расположение каждого шурупа, которым закреплен гидроблок. В противном случае вы рискуете закончить монтаж неправильно. В гидроблоке каждый болт имеет свой диаметр, а одинаковых запчастей почти нет.

    Гидроблок автомобиля Ауди состоит из 60 болтов, 4 поршня, приблизительно 20 шариков и штифтов. Необходимо запоминать порядок снятия узлов, это поможет сократить время при монтаже гидроблока. После установки всех деталей обратно, необходимо закрепить поддон и залить масло. При необходимости долить небольшое количество масла можно применить шприц.

    Ремонт гидроблока АКПП на Фольксвагене

    Меняют гидроблок АКПП на Фольксвагене обычным способом. Вначале необходимо достать гидроблок и промыть все его составляющие. Далее произвести монтаж в обратном порядке. Также существуют и свои нюансы, с которыми необходимо считаться при ремонте гидроблока АКПП на Фольксвагене. Нельзя доставать фильтр, пока не снимете гидроблок, поскольку один из болтов имеет отдельную гайку, которая находится с другой стороны. Вытянуть, возможно, а вот назад поставить не получится. При снятии гидроблока существует риск поломки прокладки, а чтобы ее заменить, потребуется разборка гидроблока.

    Чтобы извлечь пружину гидроаккумулятора, также необходимо разбирать гидроблок, поскольку требуется доставать детали, а выполнить это возможно лишь в разобранном виде. При монтаже гидроблока обратно следует применять лишь динамометрический ключ, поскольку на Фольксвагене небольшие моменты затяжек, и можно их поломать.

    Что такое гидроблок АКПП, вы уже знаете. При необходимости его ремонта автовладелец сам решает, делать ремонт своими руками или доверить ремонт специалисту.

    Подписывайтесь на наши ленты в

    После рассмотрения частностей, давайте все объединим в единую систему и посмотрим, как это все работает. В чем-то будем повторяться, однако общую картину сложить без некоторых повторений не удастся. Начнем с регуляторов давления .

    Объективно давление в системе создается выше требуемого для выполнения всех необходимых функций. Конструкция акпп предполагает установку насосов, которые должны обеспечивать требуемое нормальное давление при минимальных оборотах двигателя. Естественно водитель не может обеспечивать постоянные обороты – ехать надо. Да и глупо бы было. Поэтому давление в системе принципиально нестабильно.

    акпп ZF на спорткаре XKR-S

    Такие технические условия привели к необходимости использования в системе управления АКПП (и не только в чисто гидравлических, а и с ЭБУ ) специальных клапанов для удержания давления в некоторых пределах (чтобы донышко не вырвало). Особенностью гидравлической системы является наличие различных давлений по функциям в различных точках системы, и формирование этих различных видов давлений занимается гидроблок АКПП . Основных типов давлений три:

    — давление основной магистрали;

    — давление клапана-дросселя (TV давление );

    — давление скоростного регулятора.

    В числе дополнительных давлений можно отметить те, которые идут

    на подпитку ,

    — на управление блокировочной муфтой гидротрансформатора ,

    — в систему охлаждения трансмиссионки,

    — в систему смазки всей коробки.

    Чтобы все эти создаваемые давления работали по назначению, но, в то же время, не нанесли повреждений элементам гидросистемы, и используются клапаны , которые выравнивают и приводят к номинальному значению в контрольных точках системы. Конструкционно для выравнивания давления в основной магистрали используется два способа: с использованием вспомогательных давлений и с использованием соленоида , которым управляет .

    Для гидравлического способа регулирования характерно то, что давление созданное насосом формируется регулятором давления . Главной функцией давления в основной магистрали является управление фрикционными элементами с целью обеспечения переключения передач. Все остальные указанные давления формируются пропорционально давлению в основной магистрали (согласно закону сообщающихся сосудов).

    Естественное положение регулятора давления сразу же после насоса, дабы в основную магистраль поступало требуемое количество трансмиссионки. Поскольку насос начинает давить сразу же с включением двигателя, то и регулятор отрабатывает вслед за ним. Путь трансмиссионки лежит в контур системы управления трансмиссии и в контур подпитки трансформатора. Кроме того, жидкость по внутреннему каналу попадает под левый торец клапана.

    Принцип работы гидросистемы АКПП

    Дальше происходит стандартный процесс возрастания давления при заполнении системы жидкостью. регулятора до определенного момента остается в исходном положении и клапан регулятора неподвижен. С увеличением давления усилие жидкости преодолевает сопротивление пружины и перемещает клапан. При этом открывается отверстие для слива трансмиссионки в поддон. Давление в магистрали спадает, а клапан возвращается в исходное положение, перекрыв тем самым отток ATF в поддон. Давление снова возрастает. И этот циклический процесс продолжается все время работы АКПП .

    Очень хочется надеяться, что вы после прочтения всего цикла статей уже бы о гидроблоке знали не понаслышке. Также хочется, чтобы ремонт АКПП в Ростове и ремонт гидроблока в Ростове для вас не превращались в сплошной кошмар. Наши постараются сделать максимум полезного для вас.

    Как ни странно, но в настоящее время АКПП (автоматическая коробка переключения передач ) набирает популярность у автолюбителей и будущих автовладельцев. (Ваш покорный слуга относится к противникам данного вида коробок). Но об этом ниже.

    Итак, АКПП…

    Основное назначение АКПП - такое же, как и у механики – прием, преобразование, передача и изменения направления крутящего момента. Различаются автоматы по количеству передач, по способу переключения, по и по типу применяемых актуаторов.

    Работу АКПП лучше рассмотреть на конкретном примере, а именно на классической трехступенчатой коробке передач с гидравлическими актуаторами (приводами) и гидротрансформатором. Надо отметить, что существуют и преселективные АКПП.

    В устройство АКПП входит:

    1. Гидротрансформатор – механизм, обеспечивающий преобразование, передачу крутящего момента, используя рабочую жидкость. Рабочая жидкость для АКПП обычно, готовое трансмиссионное масло для автоматических коробок передач. Но многие автолюбители используют жидкость для гидравлических приводов большегрузной техники (веретенку), хотя это и неправильно. Веретенка не предназначена для работы в условиях высокой скорости движения шестерен.
    2. Планетарный редуктор – узел, состоящий из «солнечной шестерни», сателлитов, и планетарного водила и коронной шестерни. Планетарка является главным узлом автоматической коробки.
    3. Система гидравлического управления – комплекс механизмов, предназначенных для управления планетарным редуктором.

    Для того чтобы более полно объяснить принцип работы АКПП начнем с гидротрансформатора.

    Гидротрансформатор

    Гидротрансформатор служит одновременно сцеплением и гидромуфтой для передачи крутящего момента к планетарному механизму.

    Представьте себе две крыльчатки с лопастями, расположенными друг напротив друга на минимальном расстоянии и заключенных в одном корпусе. В нашем случае одна крыльчатка называется насосное колесо , которое соединено жестко с маховиком, вторая крыльчатка называется турбинным колесом и соединено посредством вала с планетарным механизмом. Между лопастными крыльчатками находится рабочая жидкость.

    Принцип работы гидротрансформатора

    Во время , при вращении маховика вращается и насосное колесо, его лопасти подхватывают рабочую жидкость и направляют ее на лопасти турбинного колеса, под действием центробежной силы. Соответственно лопасти турбинного колеса приходят в движение, но рабочая жидкость после выполнения работы отлетает от поверхности лопастей и направляется обратно на насосное колесо, тем самым тормозя его. Но не тут то было! Для изменения направления отлетающей рабочей жидкости между колесами располагается реактор , у которого так же имеются лопасти и расположены они под определенным углом. Получается следующее - жидкость от турбинного колеса возвращаясь через лопасти реактора ударяет вдогонку лопасти насосного колеса, тем самым увеличивая крутящий момент , потому что сейчас действуют две силы – двигателя и жидкости. Надо отметить, что при начале движения насосного колеса, реактор стоит неподвижно. Так продолжается до тех пор, пока обороты насосного не сравняются с оборотами турбинного колеса и стоящий неподвижно реактор только будет мешать своими лопастям – притормаживать обратное движение рабочей жидкости. Для исключения этого процесса в реакторе находится муфта свободного хода , которая позволяет реактору крутиться со скоростью крыльчаток, этот момент называется точкой сцепления .

    Получается, что при достижении номинальных оборотов двигателя, сила от двигателя передается на планетарный механизм через… жидкость. Другими словами гидротрансформатор АКПП превращается в гидромуфту. Значит, крутящий момент уже передался дальше – на планетарный механизм?

    Нет! Для того чтобы передать силу от двигателя, необходимо чтобы сработала муфта привода от ведущего вала. Но все по порядку…

    Планетарный редуктор

    Планетарный редуктор состоит из:

    1. планетарных элементов
    2. муфт сцепления и тормозов
    3. ленточных тормозов

    Планетарный элемент представляет собой узел из солнечной шестерни, вокруг которой расположены сателлиты, которые в свою очередь крепятся на планетарное водило. Вокруг сателлитов находится коронная шестерня. Вращаясь, планетарный элемент передает крутящий момент на ведомую шестерню.

    Муфта сцепления представляет собой набор дисков и пластин, чередующихся друг с другом. Чем-то муфта АКПП представляет собой сцепление мотоцикла. Пластины муфты вращаются одновременно с ведущим валом, а вот диски соединены с элементом планетарного ряда. Для трехступенчатой коробки планетарных рядов два – первой-второй передачи и второй-третьей. Привод в действие муфты обеспечивается сжатием между собой дисков и пластин, этот работу выполняет поршень. Но поршень не может сам двигаться, в действие он приводится гидравлическим давлением.

    Ленточный тормоз выполнен в виде обхватывающей пластины одного из элементов планетарного ряда и приводится в действие гидравлическим актуатором.

    Для понятия работы всей коробки разберем работу одного планетарного ряда. Представим себе, что затормозилась солнечная шестерня (в центре), значит, в работе остаются коронная и сателлиты на планетарном водило. В этом случае скорость вращения водило будет меньше, чем скорость коронной шестерни. Если позволить солнечной шестерне вращаться с сателлитами, а затормозить водило, то коронная шестерня изменит направление вращения (задний ход ). Если скорости вращения коронной шестерни, водило и солнечной шестерни, будут одинаковые, планетарный ряд будет вращаться как единое целое, то есть, не преобразовывая крутящий момент (прямая передача ). После всех преобразований крутящий момент передается на ведомую шестерню и далее на хвостовик коробки. Надо отметить что мы рассматриваем принцип работы автоматической коробки передач у которой ступени расположены на одной оси, такая коробка предназначена для авто с задним приводом и передним расположением двигателя. Для переднеприводных авто, размеры коробки должны быть уменьшены, поэтому как и вводятся несколько ведомых валов.

    Таким образом, затормаживая и отпуская один или несколько элементов вращения можно добиться изменения скорости вращения и изменения направления . Всем этим процессом управляет гидравлическая система управления.

    Гидравлическая система управления

    Гидравлическая система управления состоит из масляного насоса, центробежного регулятора, системы клапанов, исполняющих устройств и масляных каналов. Весь процесс управления зависит от скорости вращения двигателя и нагрузки на колеса. При движении с места масляный насос создает такое давление, при котором обеспечивается алгоритм фиксации элементов планетарного ряда так, что бы крутящий момент на выходе был минимальным, это и есть первая передача (как говорилось выше – затормаживается солнечная шестерня в двух ступенях). Далее при росте оборотов, давление увеличивается и в работу входит вторая ступень на уменьшенных оборотах, первая ступень работает в режиме прямой передачи. Увеличиваем еще обороты двигателя – начинает работать вся в режиме прямой передачи.

    Как только нагрузка на колеса увеличится, то центробежный регулятор начнет понижать давление от масляного насоса и весь процесс переключения повторится с точностью до наоборот.

    При включении пониженных передач на рычаге переключения, выбирается такая комбинация клапанов масляного насоса, при которой включение повышенных передач невозможно.

    Достоинства и недостатки АКПП

    Главным достоинством автоматической коробки передач , конечно, служит комфорт при вождении - дамы просто в восторге! И, бесспорно, с автоматом двигатель не работает в режиме повышенных нагрузок.

    Недостатки (и они очевидны) – низкий КПД, полное отсутствие «драйва» при трогании с места, большая цена, а главное – авто с автоматом нельзя завести с «толкача»!

    Подводя итоги, скажем, что выбор коробки это дело вкуса и… стиля вождения!